• 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干湿循环下新近系黏土杂岩裂隙演化研究

任旺 王家鼎 卞小芮

任旺, 王家鼎, 卞小芮. 干湿循环下新近系黏土杂岩裂隙演化研究[J]. 水文地质工程地质, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041
引用本文: 任旺, 王家鼎, 卞小芮. 干湿循环下新近系黏土杂岩裂隙演化研究[J]. 水文地质工程地质, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041
REN Wang, WANG Jiading, BIAN Xiaorui. A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041
Citation: REN Wang, WANG Jiading, BIAN Xiaorui. A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041

干湿循环下新近系黏土杂岩裂隙演化研究

doi: 10.16030/j.cnki.issn.1000-3665.202009041
基金项目: 国家重点研发计划(2018YFC1504703);国家自然科学基金重点项目(41630639)
详细信息
    作者简介:

    任旺(1995-),男,硕士研究生,研究方向为工程地质。E-mail:1026801091@qq.com

    通讯作者:

    王家鼎(1962-),男,教授,博士生导师,从事水文地质与工程地质研究。E-mail:wangjd@nwu.edu.cn

  • 中图分类号: TU411.91

A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles

  • 摘要: 本文对武乡盆地黏土杂岩在反复干湿循环下的裂隙演化特征进行室内试验研究。试验采用烘干法模拟脱湿过程,水膜转移法模拟增湿过程,每完成一次脱湿增湿过程都要进行数码摄影、称重以记录裂隙变化情况,从而进行定性分析。通过应用Matlab软件进行图像处理以获取裂隙演化过程中的几何特征值。定性分析与定量分析相结合得到裂隙演化规律有:(1)脱湿过程:黏土杂岩裂隙率不断增加最终趋于稳定,第2次脱湿对裂隙率影响最大;几何特征上裂隙的变化先是沿着中间大裂隙向四周继续生长发育,然后随着循环次数增加转而形成新的大裂隙。(2)增湿过程:黏土杂岩吸水膨胀,裂隙逐渐趋于闭合,但出现不可逆形变量,随着增湿次数增加,这种累积变形量逐渐减小,第5次的干湿循环后,累积变形量基本消失,试样结构重新归于相对均一的松散结构。
  • 图  1  研究区工程地质剖面示意图

    Figure  1.  Engineering geological section of the study area

    图  2  试验流程图

    Figure  2.  Flow chart of the experiment

    图  3  试样裂隙灰度图像

    Figure  3.  Grayscale image of soil sample fissures

    图  4  裂隙二值化去杂图像

    Figure  4.  Binary declutter digital image of fissures

    图  5  脱湿过程裂隙演化规律图

    Figure  5.  Fracture evolution pattern in the drying process

    图  6  脱湿过程裂隙演化二值化图像

    Figure  6.  Binarization image of fracture evolution in the drying process

    图  7  裂隙率与脱湿次数关系曲线

    Figure  7.  Relationship of the fissure rate and dehumidification times

    图  8  干湿循环中的相对面积规律曲线

    Figure  8.  Relative area rule curve in wetting and drying cycles

    图  9  裂隙率与干湿循环次数关系拟合曲线

    Figure  9.  Fitting curves of the fissures ratio with wetting and dring cycles

    图  10  增湿次数增加的土体表面变化

    Figure  10.  Surface changes in soil with the increasing wetting times

    图  11  原状土体表面(a)与5次循环后土体表面(b)

    Figure  11.  (a) surface of the undisturbed soil and (b) surface of soil after 5 times of cycles

    表  1  试样物理特性指标

    Table  1.   Physical characteristics of the soil samples

    含水率/
    %
    比重天然重度/
    (kN•m-3
    孔隙比液限/
    %
    塑限/
    %
    塑性
    指数
    液性
    指数
    自由膨胀率/
    %
    292.7418.61.02141.12417.10.7745
    下载: 导出CSV

    表  2  矿物成分统计

    Table  2.   Statistics of mineral compositions

    矿物成分石英斜长石钾长石方解石白云石蒙脱石伊利石赤铁矿
    含量/%49.222.57.04.10.012.54.00.7
    下载: 导出CSV
  • [1] DE KIMPE C R. Effect of air-drying and critical point drying on the porosity of clay soils[J]. Canadian Geotechnical Journal,1984,21(1):181 − 185. doi:  10.1139/t84-015
    [2] KNODEL P C, DIF A E, BLUEMEL W F. Expansive soils under cyclic drying and wetting[J]. Geotechnical Testing Journal,1991,14(1):96. doi:  10.1520/GTJ10196J
    [3] 张祖莲, 梁谏杰, 黄英, 等. 干湿循环作用下红土抗剪强度与微结构关系研究[J]. 水文地质工程地质,2018,45(3):78 − 85. [ZHANG Zulian, LIANG Jianjie, HUANG Ying, et al. A study of the relationship between shear strength and microstructure of laterite under drying and wetting cycles[J]. Hydrogeology & Engineering Geology,2018,45(3):78 − 85. (in Chinese with English abstract)
    [4] 胡小芳, 胡大为, 吴成宝. 多孔介质粘土颗粒群的粒径分布分形维[J]. 华南理工大学学报(自然科学版),2006,34(5):99 − 102. [HU Xiaofang, HU Dawei, WU Chengbao. Fractal dimension of size distribution of particle group in porous medium clay[J]. Journal of South China University of Technology (Natural Science Edition),2006,34(5):99 − 102. (in Chinese with English abstract)
    [5] 张晓蕾. 基于矿物成分的沉积岩岩性与岩石粒度的关系及其岩性组合特征研究[D]. 西安: 西北大学, 2018.

    ZHANG Xiaolei. Relationship between sedimentary lithology based on mineral composition and granularity and the characteristics of their sedimentary lithologic combination[D]. Xi’an: Northwest University, 2018. (in Chinese with English abstract)
    [6] 张永双, 曲永新, 周瑞光. 南水北调中线工程上第三系膨胀性硬粘土的工程地质特性研究[J]. 工程地质学报,2002,10(4):367 − 377. [ZHANG Yongshuang, QU Yongxin, ZHOU Ruiguang. Engineering geological properties of Neogene hard clay along the middle line of the north-south diversion water project in China[J]. Journal of Engineering Geology,2002,10(4):367 − 377. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2002.04.005
    [7] 朱楠, 刘春原, 王文静, 等. 衡水湖地区湿地湖泊相黏土工程地质特性研究[J]. 水文地质工程地质,2020,47(1):125 − 132. [ZHU Nan, LIU Chunyuan, WANG Wenjing, et al. Investigation of engineering geological characteristics of the marshy and lacustrine clays in the Hengshui Lake area[J]. Hydrogeology & Engineering Geology,2020,47(1):125 − 132. (in Chinese with English abstract)
    [8] 杨爱武, 郑宇轩, 肖敏. 人工制备结构性软黏土长期变形特性试验研究[J]. 水文地质工程地质,2019,46(2):133 − 140. [YANG Aiwu, ZHENG Yuxuan, XIAO Min. An experimental study of the long-term deformation characteristics of artificial structured soft clay[J]. Hydrogeology & Engineering Geology,2019,46(2):133 − 140. (in Chinese with English abstract)
    [9] CHEN R, XU T, LEI W D, et al. Impact of multiple drying-wetting cycles on shear behaviour of an unsaturated compacted clay[J]. Environmental Earth Sciences,2018,77(19):1 − 9.
    [10] 刘晓红, 杨果林, 方薇. 红粘土动本构关系与动模量衰减模型[J]. 水文地质工程地质,2011,38(3):66 − 72. [LIU Xiaohong, YANG Guolin, FANG Wei. Dynamic constitutive relation and dynamic modulus attenuation model of red clay[J]. Hydrogeology & Engineering Geology,2011,38(3):66 − 72. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3665.2011.03.012
    [11] 杨和平, 张锐, 郑健龙. 有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J]. 岩土工程学报,2006,28(11):1936 − 1941. [YANG Heping, ZHANG Rui, ZHENG Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering,2006,28(11):1936 − 1941. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4548.2006.11.004
    [12] 张永双, 曲永新. 硬土/软岩(岩土间新类型)的确认及其判别分类的探讨[C]// 全国工程地质大会, 2000.

    ZHANG Yongshuang, QU Yongxin. Confirmation of hard soil/soft rock (a new type between rock and soil) and discussion on its discriminant classification [C]// National Engineering Geology Congress, 2000. (in Chinese)
    [13] 李滨, 吴树仁, 石菊松, 等. 陕西宝鸡市三趾马红土工程地质特性及灾害效应[J]. 地质通报,2013,32(12):1918 − 1924. [LI Bin, WU Shuren, SHI Jusong, et al. Engineering geological properties and hazard effects of Hipparion laterite in Baoji, Shaanxi Province[J]. Geological Bulletin of China,2013,32(12):1918 − 1924. (in Chinese with English abstract)
    [14] 韩贝传, 曲永新, 张永双. 裂隙型硬粘土的力学模型及其在边坡工程中的应用[J]. 工程地质学报,2001,9(2):204 − 208. [HAN Beichuan, QU Yongxin, ZHANG Yongshuang. Mechanical model for cracked hard clay and its application to slopes engineering in Nanyang basin[J]. Journal of Engineering Geology,2001,9(2):204 − 208. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2001.02.016
    [15] 王家鼎, 王建斌, 谷天峰, 等. 水-力耦合作用下三趾马红土围岩变形特征研究[J]. 工程地质学报,2016,24(6):1157 − 1169. [WANG Jiading, WANG Jianbin, GU Tianfeng, et al. Research on the deformation characteristics of the surrounding rock about hipparion red clay under the action of water-force coupling[J]. Journal of Engineering Geology,2016,24(6):1157 − 1169. (in Chinese with English abstract)
    [16] 易顺民, 赵文谦. 单轴压缩条件下三峡坝基岩石破裂的分形特征[J]. 岩石力学与工程学报,1999,18(5):520 − 523. [YI Shunmin, ZHAO Wenqian. The fractal characteristics of rock fracture in dam foundation of the Three Gorges project under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(5):520 − 523. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.1999.05.006
    [17] 袁俊平, 卢毅, 韩翔宇, 等. 岩土体孔隙结构研究中的CT图像处理方法比较[J]. 河北工程大学学报(自然科学版),2019,36(4):51 − 57. [YUAN Junping, LU Yi, HAN Xiangyu, et al. Comparison of CT image processing methods in the study of pore structure of rock and soil mass[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(4):51 − 57. (in Chinese with English abstract)
    [18] 马佳, 陈善雄, 余飞, 等. 裂土裂隙演化过程试验研究[J]. 岩土力学,2007,28(10):2203 − 2208. [MA Jia, CHEN Shanxiong, YU Fei, et al. Experimental research on crack evolution process in fissured clay[J]. Rock and Soil Mechanics,2007,28(10):2203 − 2208. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-7598.2007.10.038
    [19] 熊俊豪, 刘宝臣, 刘磊, 等. 基于摄影法的红黏土裂隙试验研究[J]. 地下空间与工程学报,2020,16(2):381 − 387. [XIONG Junhao, LIU Baochen, LIU Lei, et al. A method for crack image processing of red clay[J]. Chinese Journal of Underground Space and Engineering,2020,16(2):381 − 387. (in Chinese with English abstract)
    [20] 胡世昆. 基于数字图像处理技术的路面裂缝检测算法研究[D]. 南京: 南京邮电大学, 2012.

    HU Shikun. Research on pavement crack detection algorithom based on digital image processing[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2012. (in Chinese with English abstract)
    [21] 厉荣宣, 沈希忠, 张树行, 等. 基于图像处理的轴类零件表面裂纹检测[J]. 图学学报,2015,36(1):62 − 67. [LI Rongxuan, SHEN Xizhong, ZHANG Shuhang, et al. Surface crack detection of shaft components based on image processing[J]. Journal of Graphics,2015,36(1):62 − 67. (in Chinese with English abstract) doi:  10.3969/j.issn.2095-302X.2015.01.012
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  7
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-10-26
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回