• 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高放废物深地质处置地下水流数值模拟方法研究进展

李露露 周志超 邵景力 崔亚莉 赵敬波

李露露, 周志超, 邵景力, 崔亚莉, 赵敬波. 高放废物深地质处置地下水流数值模拟方法研究进展[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202010061
引用本文: 李露露, 周志超, 邵景力, 崔亚莉, 赵敬波. 高放废物深地质处置地下水流数值模拟方法研究进展[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202010061
LI Lulu, ZHOU Zhichao, SHAO Jingli, CUI Yali, ZHAO Jingbo. Advances in groundwater numerical simulation in deep geological disposal of high level radioactive waste[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202010061
Citation: LI Lulu, ZHOU Zhichao, SHAO Jingli, CUI Yali, ZHAO Jingbo. Advances in groundwater numerical simulation in deep geological disposal of high level radioactive waste[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202010061

高放废物深地质处置地下水流数值模拟方法研究进展

doi: 10.16030/j.cnki.issn.1000-3665.202010061
基金项目: 核设施退役及放射性废物治理专项项目(科工二司〔2017〕1405号)
详细信息
    作者简介:

    李露露(1994-),女,博士研究生,主要从事核素迁移数值模拟研究。E-mail:lululi_7992@163.com

    通讯作者:

    邵景力(1959-),男,教授,博士生导师,主要从事水文学及水资源专业的教学和科研工作。E-mail:jshao@cugb.edu.cn

  • 中图分类号: P641.2

Advances in groundwater numerical simulation in deep geological disposal of high level radioactive waste

  • 摘要: 地下水流数值模型不仅是认识深部水动力场形成演化机制的有效工具,也是建立核素迁移数值模型的基础,因而是高放废物处置场选址和安全评价中重要的技术手段。高放废物深地质处置地下水流数值模拟方法较多,如何选择适当的方法也是值得关注的问题。本文针对高放废物深地质处置地下水流数值模拟技术展开研究,通过阅读大量国内外文献,文章系统阐述了目前常用的4 类地下水流数值模拟方法的研究进展、适用条件和实例应用;综述了深地质处置中常用的模型不确定性分析方法及研究成果,列表给出了适用于放射性废物地质处置的地下水流数值模拟软件及其在废物处置选择和安全评价中的应用。研究结果表明:等效连续介质模型适用于大区域、长序列、裂隙发育程度较高或较均匀的地区,该类模型方法成熟、所需的数据和参数易于获得,但是不能精确刻画裂隙介质中地下水的流动特征。离散裂隙网络模型适合解决处置场地、储罐尺度等需要精细刻画的地下水流问题,但由于需要大量裂隙及其连通性数据、相关参数等,该方法存在着工作量大、耗时多的缺点。双重介质模型主要用于解决区域尺度裂隙水流问题,但并不能表现出裂隙介质的各向异性、不连续性等特征,因而适用范围存在一定的限制。等效-离散耦合模型可以通过区域分解法对裂隙密度大的区域采用等效连续介质模型,对于裂隙密度较小的地区采用离散裂隙网络模型,从而更符合一般地质条件下裂隙渗流的特征,但也存在交换量难以确定、两类模型耦合技术上的问题。通过灵敏度分析将不同敏感因子对模型敏感指标的影响程度进行排序,提高模型精度、减少参数不确定性分析的工作量。蒙特卡罗法是目前常用的一种模型不确定性方法,原理简单、易于实现。最后展望了数值模型在仿真性、不确定性分析、预测和多介质耦合等方面的研究前景。
  • 表  1  主要软件介绍

    Table  1.   Introduction of main software

    名称软件描述适合介质用途及优缺点实际应用
    Modflow模块化三维有限差分模型,用来模拟连续介质三维地下水流动的计算程序。MODFLOW2005整合了MODPATH、MT3DMS等质点追踪、溶质运移模块等效连续介质水资源评价、矿坑排水的设计和优化、圈定水源保护区、确定污染物去向和暴露途径等,应用广泛。具有强大可视化功能,操作简便场地适宜性评价[[54]]90Sr的二维剖面迁移[[55]]
    GMS由图形用户界面和系列模块组成,Modflow模拟地下水运动,MT3DMS等模块可模拟核素迁移,FEMWATER耦合了3DFEMWATER、3DLEWASTE等效连续介质可进行水流、反应性溶质运移模拟、建立三维地层实体,进行钻孔数据管理、二维(三维)地质统计可视化地下水模拟软件,功能强大;但所需数据资料较多降雨对铀的迁移扩散影响模拟[[56]]
    Tough2/3一维、二维、三维孔隙或裂隙介质中多相流、多组分及非等温的水流及热量运移的数值模拟程序,可用于从微观到流域尺度的水流系统模拟等效连续介质和裂隙介质应用范围广泛,如地热储藏工程、核废料处置、二氧化碳地质处置等I和Cs在废物处置库黏土缓冲材料中的迁移行为[[57]],处置场的135Cs核素迁移模拟[[58]]
    Hydrus模拟非变饱和多孔介质中一维、二维、三维水流、热和溶质运移的数值模型,上边界条件处理灵活方便等效连续介质模拟土壤中水分、盐分、污染物运移;在国内得到广泛的应用放射性核素在非饱和带迁移行为评价[[59]],填埋场放射性核素迁移模拟[[60]]
    Feflow模拟有压或无压地下水二维和三维、稳定流或非稳定流、区域和断面、流体密度耦合或者非耦合、变饱和的渗流、溶质运移以及热运移等效连续介质和裂隙介质应用广泛,剖分方便,可进行离散裂隙网络的水流、溶质及热运移模拟。源汇项菜单功能过于集中,功能复杂丘陵山区地下水流动特征下氚的迁移规律[[52]]
    Goldsim风险模拟和蒙特卡罗模拟软件,定量表示所有复杂系统中固有的不确定性和风险,同时支持决策和风险分析,进行环境系统、工程系统和业务建模近场库室工程屏障模拟近场处置设施中核素在工程屏障与自然环境传输的情形,解决与生态和自然资源管理、污染预防、危险废物管理和环境恢复相关的问题,扩展性强,高度图形化内华达试验场Yucca Mountain总体系统性能评价分析[61],核素释放及远场迁移行为[[62-63]
    Hydrogeosphere三维控制体积有限元模拟器,包括地下水和地表水模块,可进行二维地表径流、三维变饱和流、稳定流/非稳定流以及密度流模拟等等效连续介质、裂隙介质和双重介质应用于水资源综合评估和流域水文特征分析以及污染物在地表和地下水中的运移等研究中。具有先进的迭代技术、强大的计算功能以及强大的三维可视化功能锦屏水电站坝址区水流和溶质运移模拟[[64]],Olkiluoto场址地下水流动及溶质运移模拟[[51]]
    Connectflow包括等效多孔介质(EPM)模块和DFN模块。可模拟饱和、非饱和地下水流动与核素运移,裂隙网络中密度变化的流动和输运等等效连续介质、裂隙网络介质应用于放射性废物处置中的安全评估、盐水入侵、填埋场建模、含水层污染等研究。可以模拟各种规模的裂隙和多孔介质中的地下水流动和输运EDZ(开挖扰动区)对处置库附近区域的扰动影响[[36]]
    Porflow解决涉及瞬态或稳态流体流动,热、盐和质量传输的多相、多孔或裂隙介质中的动态相变等问题。适应交替的流体和介质属性关系以及复杂和任意的边界条件等效连续介质、裂隙介质应用于盐水侵入淡水含水层和危险废物处理场所等研究。可用并行计算,精度和计算高效,但输入、输出过程非常耗时;不是一个真正的两相流代码处置单元内放射性核素迁移行为[[44]]
    下载: 导出CSV
  • [1] 潘自强, 钱七虎. 我国高放废物地质处置战略研究[J]. 中国核电,2013,6(2):98 − 100. [PAN Ziqiang, QIAN Qihu. The geological disposal of high-level radioactive waste strategy research in our country[J]. China Nuclear Power,2013,6(2):98 − 100. (in Chinese with English abstract)
    [2] 王驹, 苏锐, 陈伟明, 等. 中国高放废物深地质处置[J]. 岩石力学与工程学报,2006,25(4):649 − 658. [WANG Ju, SU Rui, CHEN Weiming, et al. Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(4):649 − 658. (in Chinese with English abstract)
    [3] 周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.

    ZHOU Zhifang, WANG Jinguo. Dynamics of fluids in fractured media[M]. Beijing: China Water Power Press, 2004. (in Chinese)
    [4] LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982,18(3):645 − 658. doi:  10.1029/WR018i003p00645
    [5] LONG J C S, WITHERSPOON P A. The relationship of the degree of interconnection to permeability in fracture networks[J]. Journal of Geophysical Research: Solid Earth,1985,90(B4):3087 − 3098. doi:  10.1029/JB090iB04p03087
    [6] DAVID T SNOW. Anisotropie permeability of fractured media[J]. Water Resources Research,1969,5(6):1273 − 1289. doi:  10.1029/WR005i006p01273
    [7] MASANOBU ODA. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986,22(13):1845 − 1856. doi:  10.1029/WR022i013p01845
    [8] 田开铭, 万力. 各向异性裂隙介质渗透性的研究与评价[M]. 北京: 学苑出版社, 1989.

    TIAN Kaiming, WAN Li. Research and evaluation of the permeability of anisotropic fractured media[M]. Beijing: Xueyuan Publishing House, 1989. (in Chinese)
    [9] WITTKE, WALTER. Rock mechanics: theory and applications, with case histories[M]. Berlin: Springer Verlag, 1990.
    [10] WILSON C R, WITHERSPOON P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research,1974,10(2):328 − 335. doi:  10.1029/WR010i002p00328
    [11] 王明玉, 陈劲松, 万力. 离散裂隙渗流方法与裂隙化渗透介质建模[J]. 地球科学,2002,27(1):90 − 96. [WANG Mingyu, CHEN Jinsong, WAN Li. Groundwater (fluid) flow modeling in fractured rocks via discrete fracture fluid flow approach[J]. Earth Science,2002,27(1):90 − 96. (in Chinese with English abstract)
    [12] LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research,1985,21(8):1105 − 1115. doi:  10.1029/WR021i008p01105
    [13] NORDQVIST A W, TSANG Y W, TSANG C F, et al. A variable aperture fracture network model for flow and transport in fractured rocks[J]. Water Resources Research,1992,28(6):1703 − 1713. doi:  10.1029/92WR00216
    [14] 魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质,2017,44(1):123 − 130. [WEI Yaqiang, DONG Yanhui, ZHOU Pengpeng, et al. Numerical simulation of radionuclide particle tracking based on discrete fracture network[J]. Hydrogeology & Engineering Geology,2017,44(1):123 − 130. (in Chinese with English abstract)
    [15] ANDERSSON J, DVERSTORP B. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research,1987,23(10):1876 − 1886. doi:  10.1029/WR023i010p01876
    [16] DVERSTORP B, ANDERSSON J, NORDQVIST W. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock[J]. Water Resources Research,1992,28(9):2327 − 2343. doi:  10.1029/92WR01182
    [17] 何杨, 柴军瑞, 唐志立, 等. 三维裂隙网络非稳定渗流数值分析[J]. 水动力学研究与进展(A辑),2007,22(3):338 − 344. [HE Yang, CHAI Junrui, TANG Zhili, et al. Numerical analysis of 3-D unsteady seepage through fracture network in rock mass[J]. Journal of Hydrodynamics (Series A),2007,22(3):338 − 344. (in Chinese with English abstract)
    [18] 宗自华, 王驹, 苏锐, 等. BS03钻孔周围裂隙特征分析及3D裂隙网络模拟[C]//第二届废物地下处置学术研讨会论文集. 2008.

    ZONG Zihua, WANG Ju, SU Rui, et al. Characteristics of fracture and modeling of 3D fracture network surrounding borehole BS03[C]//Proceedings of the second symposium on underground waste disposal. 2008. (in Chinese with English abstract)
    [19] 黄帆, 姚池, 周创兵, 等. 考虑裂隙迹长和开度相关性的随机裂隙网络数值模拟及渗流分析[J]. 水利水运工程学报,2018(2):35 − 42. [HUANG Fan, YAO Chi, ZHOU Chuangbing, et al. Numerical simulation and seepage analysis of stochastic fracture network considering correlation between fracture trace length and aperture[J]. Hydro-Science and Engineering,2018(2):35 − 42. (in Chinese with English abstract)
    [20] EZZEDINE S, DE MARSILY G. Study of transient flow in hard fractured rocks with a discrete fracture network model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):1605 − 1609.
    [21] BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks strata[J]. Journal of Applied Mathematics and Mechanics,1960,24(5):1286 − 1303. doi:  10.1016/0021-8928(60)90107-6
    [22] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal,1963,3(3):245 − 255. doi:  10.2118/426-PA
    [23] ZIMMERMAN R W, CHEN G, HADGU T, et al. A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow[J]. Water Resources Research,1993,29(7):2127 − 2137. doi:  10.1029/93WR00749
    [24] 杨栋, 赵阳升, 段康廉, 等. 广义双重介质岩体水力学模型及有限元模拟[J]. 岩石力学与工程学报,2000,19(2):182 − 185. [YANG Dong, ZHAO Yangsheng, DUAN Kanglian, et al. The hydraulic model of rockmass with generalized double porosity media and its FEM simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(2):182 − 185. (in Chinese with English abstract)
    [25] 黄勇. 多尺度裂隙介质中的水流和溶质运移随机模拟研究[D]. 南京: 河海大学, 2005.

    HUANG Yong. Stochastic simulation study of flow and solute transport in multi-scales fractured media[D]. Nanjing: Hohai University, 2005. (in Chinese with English abstract)
    [26] CACAS M C, LEDOUX E, DE MARSILY G, et al. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[J]. Water Resources Research,1990,26(3):479 − 489.
    [27] 黄勇, 周志芳. 基于区域分解算法的地下水耦合模型及其应用[J]. 工程地质学报,2007,15(1):103 − 107. [HUANG Yong, ZHOU Zhifang. Domain decomposition algorithm for calculating seepage in rock mass with fractured zones and its application in dam foundation[J]. Journal of Engineering Geology,2007,15(1):103 − 107. (in Chinese with English abstract)
    [28] MCLAREN R G, FORSYTH P A, SUDICKY E A, et al. Flow and transport in fractured tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms[J]. Journal of Contaminant Hydrology,2000,43(3/4):211 − 238.
    [29] BODVARSSON G S, WU Y S, ZHANG K N. Development of discrete flow paths in unsaturated fractures at Yucca Mountain[J]. Journal of Contaminant Hydrology,2003,62/63:23 − 42. doi:  10.1016/S0169-7722(02)00177-8
    [30] SCHWARTZ M O. Modelling radionuclide transport in large fractured-media systems: the example of Forsmark, Sweden[J]. Hydrogeology Journal,2012,20(4):673 − 687. doi:  10.1007/s10040-012-0837-3
    [31] SHAHKARAMI P, LIU L C, MORENO L, et al. Radionuclide migration through fractured rock for arbitrary-length decay chain: Analytical solution and global sensitivity analysis[J]. Journal of Hydrology,2015,520:448 − 460. doi:  10.1016/j.jhydrol.2014.10.060
    [32] 彭志娟. 高放废物处置库EDZ中核素129I、135Cs的迁移模拟研究[D]. 抚州: 东华理工大学, 2019.

    PENG Zhijuan. Numerical simulation of 129I &135Cs nuclide migration in EDZ of the high-level radioactive waste repository[D]. Fuzhou: East China Institute of Technology, 2019. (in Chinese with English abstract)
    [33] WARREN J E, PRICE H S. Flow in heterogeneous porous media[J]. Society of Petroleum Engineers Journal,1961,1(3):153 − 169. doi:  10.2118/1579-G
    [34] 吴吉春, 陆乐. 地下水模拟不确定性分析[J]. 南京大学学报(自然科学版),2011,47(3):227 − 234. [WU Jichun, LU Le. Uncertainty analysis for groundwater modeling[J]. Journal of Nanjing University (Natural Sciences),2011,47(3):227 − 234. (in Chinese with English abstract)
    [35] VAITINEN T, NIEMI A, KUUSELA L A, et al. Estimation of block conductivities from hydrologically calibrated fracture networks-description of methodology and application to Romuvaara investigation area[R]. Finland: Posiva Oy, 1999.
    [36] JOYCE S, HARTLEY L, APPLEGATE D, et al. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden[J]. Hydrogeology Journal,2014,22(6):1233 − 1249. doi:  10.1007/s10040-014-1165-6
    [37] PANDEY M, DATTA D, KUMAR B, et al. Uncertainty quantification of contaminant transport through geological repository using 2D Monte Carlo simulation[J]. BARC Newsletter,2013,330:1 − 7.
    [38] 苏锐, 王驹, 陈伟明, 等. 放射性核素在CRP-GEORC地质处置库远场中迁移的灵敏性与不确定性分析[C]//第二届废物地下处置学术研讨会论文集. 2008.

    SU Rui, WANG Ju, CHEN Weiming, et al. Sensitivity analysis and uncertainty simulation of the migration of radionuclide in the system of geological disposal-CRP-GEORC model[C]//Proceedings of the second conference on underground waste disposal. 2008. (in Chinese with English abstract)
    [39] 林达. 某铀尾矿(库)地域浅层地下水中铀迁移的随机模拟研究[D]. 衡阳: 南华大学, 2008.

    LIN Da. Stochastic simulation research of uranium migration in shallow groundwater at uranium mill-tailing sites[D]. Hengyang: University of South China, 2008. (in Chinese with English abstract)
    [40] BELCHER W R. Death Valley regional groundwater flow system, Nevada and California: hydrogeologic framework and transient groundwater flow model[M]. U.S: Dept. of the Interior, 2010.
    [41] LÖFMAN J, MÉSZÉROS F. Simulation of hydraulic disturbances caused by the underground rock characterization facility in olkiluoto, Finland[C]//Dynamics of fluids and transport in fractured rock. Washington: American Geophysical Union, 2013: 129−149.
    [42] 董艳辉, 李国敏, 黎明. 甘肃北山大区域地下水流动模拟[J]. 科学通报,2009,54(23):3790 − 3792. [DONG Yanhui, LI Guomin, LI Ming. Groundwater flow simulation in Beishan area of Gansu[J]. Chinese Science Bulletin,2009,54(23):3790 − 3792. (in Chinese with English abstract) doi:  10.1360/csb2009-54-23-3790
    [43] 王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究[D]. 北京: 核工业北京地质研究院, 2014.

    WANG Hailong. Regional groundwater flow simulation and rock mass permeability characteristics in Beishan preselected area of high-level radioactive waste repository[D]. Beijing: Beijing Institute of Geology, Nuclear Industry, 2014. (in Chinese with English abstract with English abstract)
    [44] 季瑞利. 处置单元放射性核素135Cs、129I迁移模拟研究[D]. 北京: 核工业北京地质研究院, 2009.

    JI Ruili. Simulation study on the migration of radionuclides 135Cs and 129I in the disposal unit[D]. Beijing: Beijing Institute of Geology for Nuclear Industry, 2009. (in Chinese with English abstract)
    [45] WERNER K, BOSSON E, BERGLUND S. Flow and radionuclide transport from rock to surface systems: characterization and modelling of potential repository sites in Sweden[C]//Proceedings of the 11th International conference on environmental remediation and radioactive waste management, september 2−6, 2007. Bruges, Belgium. 2009: 867−872.
    [46] LIU H H, DOUGHTY C, BODVARSSON G S. An active fracture model for unsaturated flow and transport in fractured rocks[J]. Water Resources Research,1998,34(10):2633 − 2646. doi:  10.1029/98WR02040
    [47] RECHARD R P, COTTON T A, VOEGELE M D. Site selection and regulatory basis for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliability Engineering & System Safety,2014,122:7 − 31.
    [48] RECHARD R P. Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliability Engineering & System Safety,2014,122(13):207 − 222.
    [49] 王礼恒. 甘肃北山区域-盆地-岩体多尺度地下水数值模拟研究[D]. 北京: 中国科学院大学, 2015.

    WANG Liheng. Multi-scale groundwater numerical simulation study of regional-basin-site in Gansu Beishan area[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese with English abstract)
    [50] 曹潇元, 侯德义, 胡立堂. 甘肃北山区域地下水流数值模拟研究[J]. 水文地质工程地质,2020,47(2):9 − 16. [CAO Xiaoyuan, HOU Deyi, HU Litang. Numerical simulation of regional groundwater flow in the Beishan area of Gansu[J]. Hydrogeology & Engineering Geology,2020,47(2):9 − 16. (in Chinese with English abstract)
    [51] BLESSENT D, THERRIEN R, GABLE C W. Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock[J]. Advances in Water Resources,2011,34(12):1539 − 1552. doi:  10.1016/j.advwatres.2011.09.008
    [52] 朱君, 陈超, 李婷, 等. 丘陵山区地下水流动特征及核素迁移数值模拟[J]. 山西大学学报(自然科学版),2019,42(2):465 − 472. [ZHU Jun, CHEN Chao, LI Ting, et al. Numerical simulation of groundwater flow characteristics and radionuclide migration in hilly area[J]. Journal of Shanxi University (Natural Science Edition),2019,42(2):465 − 472. (in Chinese with English abstract)
    [53] 包敏, 王群书. 熔岩玻璃体239Pu在地下水中的迁移模拟研究[J]. 原子能科学技术,2014,48(10):1757 − 1765. [BAO Min, WANG Qunshu. Migration simulation of 239Pu in groundwater from melt glass[J]. Atomic Energy Science and Technology,2014,48(10):1757 − 1765. (in Chinese with English abstract)
    [54] YI S P, MA H Y, ZHENG C M, et al. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in Southern China[J]. Science of the Total Environment,2012,414:624 − 631. doi:  10.1016/j.scitotenv.2011.10.060
    [55] BUGAI D, SKALSKYY A, DZHEPO S, et al. Radionuclide migration at experimental polygon at Red Forest waste site in Chernobyl zone. Part 2: Hydrogeological characterization and groundwater transport modeling[J]. Applied Geochemistry,2012,27(7):1359 − 1374. doi:  10.1016/j.apgeochem.2011.09.028
    [56] 吴晓艳, 熊正为, 彭小勇, 等. 降雨对铀尾矿库地下水中核素迁移影响的模拟研究[J]. 安全与环境学报,2013,13(1):92 − 95. [WU Xiaoyan, XIONG Zhengwei, PENG Xiaoyong, et al. Simulation research on the effects of precipitation on the nuclide migration in groundwater of the uranium tailings impoundment[J]. Journal of Safety and Environment,2013,13(1):92 − 95. (in Chinese with English abstract)
    [57] CHO W J, LEE J O, CHOI H J. Radionuclide migration through an unsaturated clay buffer under thermal and hydraulic gradients for a nuclear waste repository[J]. Annals of Nuclear Energy,2012,50:71 − 81. doi:  10.1016/j.anucene.2012.07.010
    [58] 彭志娟, 李寻, 陈经明, 等. 处置单元核素135Cs迁移数值模拟研究[J]. 地下水,2018,40(6):113 − 116. [PENG Zhijuan, LI Xun, CHEN Jingming, et al. Numerical simulation study on migration of nuclide 135Cs in disposal unit[J]. Ground Water,2018,40(6):113 − 116. (in Chinese with English abstract)
    [59] PONTEDEIRO E M, VAN GENUCHTEN M T, COTTA R M, et al. The effects of preferential flow and soil texture on risk assessments of a NORM waste disposal site[J]. Journal of Hazardous Materials,2010,174(1/2/3):648 − 655.
    [60] MERK R. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44[J]. Journal of Environmental Radioactivity,2012,105:60 − 69. doi:  10.1016/j.jenvrad.2011.10.014
    [61] ROBINSON B A, LI C H, HO C K. Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada[J]. Journal of Contaminant Hydrology,2003,62/63:249 − 268. doi:  10.1016/S0169-7722(02)00166-3
    [62] LEE Y M, HWANG Y. A GoldSim model for the safety assessment of an HLW repository[J]. Progress in Nuclear Energy,2009,51(6/7):746 − 759.
    [63] LEE Y M, JEONG J. Evaluation of nuclide release scenarios for a hypothetical LILW repository[J]. Progress in Nuclear Energy,2011,53(6):760 − 774. doi:  10.1016/j.pnucene.2011.05.010
    [64] 黄勇, 周志芳, 余钟波. HydroGeoSphere在锦屏水电站坝址区水流和溶质运移模拟中的应用[J]. 水动力学研究与进展,2009,24(2):242 − 249. [HUANG Yong, ZHOU Zhifang, YU Zhongbo. Application of HydroGeoSphere in simulating flow and solute transport of dam site in Jinping hydropower station[J]. Chinese Journal of Hydronynamics,2009,24(2):242 − 249. (in Chinese with English abstract)
  • 加载中
表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  3
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2020-12-14
  • 网络出版日期:  2021-09-09

目录

    /

    返回文章
    返回