• 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估

马鑫 李旭峰 文冬光 罗兴旺 刁玉杰 杨国栋 尹书郭 曹伟

马鑫, 李旭峰, 文冬光, 罗兴旺, 刁玉杰, 杨国栋, 尹书郭, 曹伟. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.20201043
引用本文: 马鑫, 李旭峰, 文冬光, 罗兴旺, 刁玉杰, 杨国栋, 尹书郭, 曹伟. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.20201043
MA Xin, LI Xufeng, WEN Dongguang, LUO Xingwang, DIAO Yujie, YANG Guodong, YIN Shuguo, CAO Wei. A study ofthepotential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.20201043
Citation: MA Xin, LI Xufeng, WEN Dongguang, LUO Xingwang, DIAO Yujie, YANG Guodong, YIN Shuguo, CAO Wei. A study ofthepotential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.20201043

新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估

doi: 10.16030/j.cnki.issn.1000-3665.20201043
基金项目: 国家重点研发计划项目(2018YFB0605603);国家自然科学基金项目(41702284;41602272);中国地质调查局项目(DD20160307);湖北省自然科学基金项目(2019CFB451);冶金矿产资源高效利用与造块湖北省重点实验室开放基金项目(2020zy003);
详细信息
    作者简介:

    马鑫(1986-),男,高级工程师,主要从事二氧化碳地质储存与利用技术研究。E-mail:maxin@mail.cgs.gov.cn

    通讯作者:

    杨国栋(1986-),男,博士,讲师,主要从事二氧化碳地质储存与资源化利用、土壤与地下水污染调查与修复研究。E-mail:ygdguodong@126.com

  • 中图分类号: P641.5

A study ofthepotential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang

  • 摘要: 二氧化碳地质封存联合深部咸水开采技术(CO2-EWR)被认为是有效的碳减排途径之一。在新疆准东地区率先开展CO2-EWR技术,可在实现CO2减排的同时获得咸水,在一定程度上缓解当地的水资源短缺问题,取得环境经济双重效益。以往研究大多以概化模型为主,缺乏工程实践依托,根据准噶尔盆地东部CO2源汇匹配适宜性评价结果,基于我国首个CO2-EWR野外先导性工程试验场地资料,构建拟选CO2-EWR场地西山窑组三维(3D)非均质模型开展了场地尺度CO2-EWR技术潜力研究。研究表明,拟选场地CO2理论封存量为1.72×106(P50)t,动态封存量为2.14×106 t。采用CO2-EWR技术可实现CO2动态封存量11.18×106 t,较单独CO2地质封存提升5.22倍,同时可增采咸水资源10.17×106 t,CO2增采咸水比为1∶0.91。同时,该技术可有效缓解因CO2大量注入引起的储层压力累积,提高CO2封存效率,增加咸水开采潜力。本研究可为新疆准东地区实施规模化CO2地质封存联合深部咸水开采工程提供理论依据和技术支撑。
  • 图  1  准噶尔盆地CO2源汇匹配

    Figure  1.  Matching of CO2 source and sink in the Junggar Basin

    图  2  拟选准东CO2-EWR工程场地模型

    Figure  2.  The proposed site model for the CO2-EWR project ineastern Junggar of Xinjiang

    图  3  研究区三维静态地质模型

    孔隙度模型渗透率模型(X、Y方向)

    Figure  3.  Static reservoir models of the study area

    图  4  情景设置

    Figure  4.  Scenario settings

    图  5  CO2累计注入量与储层平均压力变化

    Figure  5.  Variation of the cumulative amount of CO2 injection and the average reservoir pressure

    图  6  单井CO2注入量与整体注入速率的变化

    Figure  6.  Variation of the cumulative amount of CO2 injection in a single well and the overall injection rate

    图  7  气相CO2饱和度空间分布

    Figure  7.  Distribution of CO2(g) saturation

    图  8  溶解态CO2空间分布(mol/kg H2O)

    Figure  8.  Distribution of dissolved CO2(mol/kg H2O)

    图  9  方案2中CO2累计注入量与产水量

    Figure  9.  Cumulative amount of CO2 injection and water production in Case 2

    图  10  方案1和2中各注入井井底压力

    Figure  10.  Bottom-hole pressure of injection well in Case 1 and Case 2

    图  11  CO2累计采出量与采出速率

    Figure  11.  Cumulative production amount and production rate of CO2

    图  12  采出CO2与采出咸水体积比(1bar,25 ℃)

    Figure  12.  Volume ratio of produced CO2 to produced saline water(1bar, 25 ℃)

    表  1  基于静态地质建模的CO2埋存量

    Table  1.   CO2 storage capacity from static geological modeling

    计算参数P10P50P90
    封存系数${E_{{\rm{saline}}}}$/%[32]1.22.44.1
    封存体积/(106 m31.222.434.16
    封存质量/(106 t)0.861.722.94
      注:基于蒙特卡罗模型计算的深部咸水层CO2有效封存系数可信度为90%时定义为P10,CO2有效封存系数可信度为50%时定义为P50,CO2有效封存系数可信度为10%时定义为P90,不同的可信度对应不同的CO2有效封存系数。
    下载: 导出CSV
  • [1] BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management,2003,44(20):3151 − 3175. doi:  10.1016/S0196-8904(03)00101-8
    [2] SCOTT V, GILFILLAN S, MARKUSSON N, et al. Last chance for carbon capture and storage[J]. Nature Climate Change,2013,3(2):105 − 111. doi:  10.1038/nclimate1695
    [3] CHAUDHRY R, FISCHLEIN M, LARSON J, et al. Policy stakeholders' perceptions of carbon capture and storage: a comparison of four US states[J]. Journal of Cleaner Production,2013,52:21 − 32. doi:  10.1016/j.jclepro.2013.02.002
    [4] DALGAARD T, OLESEN J E, PETERSEN S O, et al. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reductions?[J]. Environmental Pollution,2011,159(11):3193 − 3203. doi:  10.1016/j.envpol.2011.02.024
    [5] TOLÓN-BECERRA A, PÉREZ-MARTÍNEZ P, LASTRA-BRAVO X, et al. A methodology for territorial distribution of CO2 emission reductions in transport sector[J]. International Journal of Energy Research,2012,36(14):1298 − 1313. doi:  10.1002/er.1871
    [6] MC GEOUGH E J, LITTLE S M, JANZEN H H, et al. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: a case study[J]. Journal of Dairy Science,2012,95(9):5164 − 5175. doi:  10.3168/jds.2011-5229
    [7] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报,2006,25(5):963 − 968. [LI Xiaochun, LIU Yanfeng, BAI Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963 − 968. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2006.05.015
    [8] BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430 − 443. doi:  10.1016/S1750-5836(07)00086-2
    [9] XU T F, PRUESS K, APPS J. Numerical studies of fluid-rock interactions in EnhancedGeothermal Systems (EGS) with CO2 as working fluid[EB/OL]. 2008.
    [10] 张二勇. 澳大利亚Otway盆地二氧化碳地质封存示范工程[J]. 水文地质工程地质,2012,39(2):131 − 137. [ZHANG Eryong. Introduction to the CO2 geosequestration demonstration project in the Otway basin in Australia[J]. Hydrogeology & Engineering Geology,2012,39(2):131 − 137. (in Chinese with English abstract)
    [11] TAPIA J F D, LEE J Y, OOI R E H, et al. Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations[J]. Applied Energy,2016,184:337 − 345. doi:  10.1016/j.apenergy.2016.09.093
    [12] DE SILVA P N K, RANJITH P G. A study of methodologies for CO2 storage capacity estimation of saline aquifers[J]. Fuel,2012,93:13 − 27. doi:  10.1016/j.fuel.2011.07.004
    [13] 张炜, 吕鹏. 二氧化碳地质封存中“对流混合”过程的研究进展[J]. 水文地质工程地质,2013,40(2):101 − 107. [ZHANG Wei, LV Peng. Density-driven convection in carbon dioxide geological storage: a review[J]. Hydrogeology & Engineering Geology,2013,40(2):101 − 107. (in Chinese with English abstract)
    [14] BERGMO P E S, GRIMSTAD A A, LINDEBERG E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity[J]. International Journal of Greenhouse Gas Control,2011,5(3):555 − 564. doi:  10.1016/j.ijggc.2010.09.002
    [15] 李琦, 魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报,2013,31(27):65 − 70. [LI Qi, WEI Yani. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review,2013,31(27):65 − 70. (in Chinese with English abstract) doi:  10.3981/j.issn.1000-7857.2013.27.010
    [16] 杨国栋, 李义连, 马鑫, 等. 超临界CO2增强热卤水开采模型研究[J]. 地质科技情报,2014,33(6):233 − 240. [YANG Guodong, LI Yilian, MA Xin, et al. Modeling study of enhanced thermal brine extraction using supercritical CO2[J]. Geological Science and Technology Information,2014,33(6):233 − 240. (in Chinese with English abstract)
    [17] LI Q, WEI Y N, LIU G Z, et al. Combination of CO2 geological storage with deep saline water recovery in Western China: Insights from numerical analyses[J]. Applied Energy,2014,116:101 − 110. doi:  10.1016/j.apenergy.2013.11.050
    [18] HEATH J E, MCKENNA S A, DEWERS T A, et al. Multiwell CO2injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup[J]. Environmental Science & Technology,2014,48(2):1067 − 1074.
    [19] BUSCHECK T A, SUN Y W, HAO Y, et al. Combining brine extraction, desalination, and residual-brine reinjection with CO2 storage in saline formations: Implications for pressure management, capacity, and risk mitigation[J]. Energy Procedia,2011,4:4283 − 4290. doi:  10.1016/j.egypro.2011.02.378
    [20] FANG Q, LI Y L. Exhaustive brine production and complete CO2 storage in Jianghan Basin of China[J]. Environmental Earth Sciences,2014,72(5):1541 − 1553. doi:  10.1007/s12665-014-3059-2
    [21] LIU D Q, AGARWAL R, LI Y L. Numerical simulation and optimization of CO2-enhanced water recovery by employing a genetic algorithm[J]. Journal of Cleaner Production,2016,133:994 − 1007. doi:  10.1016/j.jclepro.2016.06.023
    [22] MA X, LI X F, YANG G D, et al. Study on field-scale of CO2 geological storage combined with saline water recovery: a case study of east Junggar basin of Xinjiang[J]. Energy Procedia,2018,154:36 − 41. doi:  10.1016/j.egypro.2018.11.007
    [23] 万青山, 赵辉, 喻高明. 彩南油田彩9井区西山窑组油藏井间动态连通性研究[J]. 石油化工应用,2013,32(2):41 − 43. [WAN Qingshan, ZHAO Hui, YU Gaoming. Research on interwell dynamic connectivity for Xishanyao reservoir wellblock Cai-9 Cainan oilfield[J]. Petrochemical Industry Application,2013,32(2):41 − 43. (in Chinese with English abstract) doi:  10.3969/j.issn.1673-5285.2013.02.011
    [24] 董雪梅, 徐怀民, 马迪娜·马吾提, 等. 彩9井区西山窑组特低渗油藏高含水期加密调整试验[J]. 新疆石油地质,2014,35(5):558 − 561. [DONG Xuemei, XU Huaimin, MADINA Mawutihan, et al. Well infill adjustment test of Xishanyaoultra-low permeability reservoir in high water cutstage in wellblock Cai-9 of Cainan oilfield, Junggar Basin[J]. Xinjiang Petroleum Geology,2014,35(5):558 − 561. (in Chinese with English abstract)
    [25] 李旭峰, 刁玉杰, 马鑫, 等. 准噶尔等盆地二氧化碳地质储存综合地质调查成果报告[R]. 北京: 中国地质调查局, 2019.

    LI Xufeng, DIAO Yujie, MA Xin, et al. Report on comprehensive geological survey of carbon Dioxide storage in Junggar Basin[R]. Beijing: China Geological Survey, 2019. (in Chinese)
    [26] LI Y K, NGHIEM L X. Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and henry's law[J]. The Canadian Journal of Chemical Engineering,1986,64(3):486 − 496. doi:  10.1002/cjce.5450640319
    [27] PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals,1976,15(1):59 − 64.
    [28] PENG D Y, ROBINSON D B. Two- and three-phase equilibrium calculations for coal gasification and related processes[C]//Thermodynamics of Aqueous Systems with Industrial Applications. WASHINGTON, D. C.: AMERICAN CHEMICAL SOCIETY, 1980: 393-414.
    [29] Corey A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly,1954,19:38 − 41.
    [30] AHMED T K, NASRABADI H. Case study on combined CO2 sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar[J]. Journal of Environmental Management,2012,109:27 − 32.
    [31] GOODMAN A, HAKALA A, BROMHAL G, et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control,2011,5(4):952 − 965. doi:  10.1016/j.ijggc.2011.03.010
    [32] BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2015,40:188 − 202. doi:  10.1016/j.ijggc.2015.01.007
    [33] WEN D G, MA X, WANG L Q, et al. Combined study of static and dynamic reservoir modelling for the CO2 storage project in deep saline aquifer in Zhundong, Xinjiang, China[J]. Social Science Electronic Journal,2019:1 − 8.
    [34] DEMPSEY D, O’MALLEY D, PAWAR R. Reducing uncertainty associated with CO2 injection and brine production in heterogeneous formations[J]. International Journal of Greenhouse Gas Control,2015,37:24 − 37. doi:  10.1016/j.ijggc.2015.03.004
    [35] HOSSEINI S A, NICOT J P. Scoping analysis of brine extraction/re-injection for enhanced CO2 storage[J]. Greenhouse Gases: Science and Technology,2012,2(3):172 − 184. doi:  10.1002/ghg.1283
    [36] 许志刚, 陈代钊, 曾荣树. CO2地质埋存渗漏风险及补救对策[J]. 地质论评,2008,54(3):373 − 386. [XU Zhigang, CHEN Daizhao, ZENG Rongshu. The leakage risk assessment and remediation options of CO2 geological storage[J]. Geological Review,2008,54(3):373 − 386. (in Chinese with English abstract) doi:  10.3321/j.issn:0371-5736.2008.03.011
    [37] 马鑫, 李义连, 杨国栋, 等. 盖层不确定性对CO2地质封存安全性的影响[J]. 安全与环境工程,2013,20(4):45 − 50. [MA Xin, LI Yilian, YANG Guodong, et al. Impact of the uncertainties of caprocks on the security of CO2 geological storage[J]. Safety and Environmental Engineering,2013,20(4):45 − 50. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1556.2013.04.011
    [38] YASUNISHI A, YOSHIDA F. Solubility of carbon dioxide in aqueous electrolyte solutions[J]. Journal of Chemical & Engineering Data,1979,24(1):11 − 14.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  17
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-05
  • 修回日期:  2021-01-14

目录

    /

    返回文章
    返回