• 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究

李向全 马剑飞 张春潮 王振兴 付昌昌 白占学

李向全, 马剑飞, 张春潮, 王振兴, 付昌昌, 白占学. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 2021, 48(5): 34-45. doi: 10.16030/j.cnki.issn.1000-3665.202104005
引用本文: 李向全, 马剑飞, 张春潮, 王振兴, 付昌昌, 白占学. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 2021, 48(5): 34-45. doi: 10.16030/j.cnki.issn.1000-3665.202104005
LI Xiangquan, MA Jianfei, ZHANG Chunchao, WANG Zhenxing, FU Changchang, BAI Zhanxue. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 34-45. doi: 10.16030/j.cnki.issn.1000-3665.202104005
Citation: LI Xiangquan, MA Jianfei, ZHANG Chunchao, WANG Zhenxing, FU Changchang, BAI Zhanxue. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 34-45. doi: 10.16030/j.cnki.issn.1000-3665.202104005

川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究

doi: 10.16030/j.cnki.issn.1000-3665.202104005
基金项目: 中国地质调查局地质调查项目(DD20211374;20190505)
详细信息
    作者简介:

    李向全(1966-),男,博士,二级研究员,主要从事水文地质、重大工程地质安全方面的研究。E-mail:1711309960@qq.com

    通讯作者:

    马剑飞(1987-),男,硕士,助理研究员,主要从事水文地质、工程地质方面的研究。E-mail:majianfei@mail.cgs.gov.cn

  • 中图分类号: P641.1

Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway

  • 摘要: 川藏铁路建设面临高原构造岩溶高压突水突泥重大地质安全风险,开展高原构造岩溶发育规律与岩溶地下水循环模式研究对隧道突水突泥灾害早期预测具有重要意义。文章分析研究了川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式。研究表明,研究区构造岩溶发育具有明显的层序规律和高程分带性,一至四级岩溶发育区分别形成于中新世之前、中新世晚期至上新世、上新世和上新世至更新世,高程依次为4900~5300 m、4000~4300 m、3700~3800 m和2900~3200 m。活动断裂对岩溶水分布、富集具有明显控制作用,晚更新世以来的活动断裂沟通岩溶发育区段,形成特有的高原岩溶蓄水构造条件。岩溶地下水系统可分为高位补给区、远程管道径流区和集中排泄区,高位补给区位于一级岩溶发育区,三、四级岩溶发育区为岩溶水集中排泄区,常出露流量大于100 L/s的岩溶大泉。岩溶水流系统可分为浅部水流系统和深部水流系统。岩溶大泉主要接受冰雪融水补给,具有水压高、流程长和深循环的动力特征。低温状态下冰雪融水高CO2饱和浓度和${\rm{SO}}_4^{2-} $产生的盐效应促进了高TDS硫酸型岩溶水的形成。
  • 图  1  研究区地理位置图

    Figure  1.  Location map of the study area

    图  2  格聂山地区水文地质简图

    Figure  2.  Hydrogeological sketch map of the Genie Mountain

    图  3  察雅地区水文地质简图

    Figure  3.  Hydrogeological sketch map of Zaya County

    图  4  不同级次构造岩溶地貌

    (a)一级岩溶,格聂山,溶蚀洞穴;(b)二级岩溶,格聂山,落水洞;(c)三级岩溶,格聂山,溶洞;(d)三级岩溶,察雅,岩溶泉;(e)四级岩溶,格聂山,岩溶泉

    Figure  4.  Tectonic karst landforms of different levels

    图  5  格聂山地区亚日贡水文地质剖面图

    注:剖面多次穿越斋如隆—乐玉共断裂(F1)。

    Figure  5.  Hydrogeological section in Yarigong of the Genie Mountain

    图  6  格聂山地区高位冰湖、干海子遥感解译图

    Figure  6.  Interpretation of the high-level glacial lake of the Genie Mountain

    图  7  格聂山和察雅地区构造岩溶统计

    Figure  7.  Statistics of tectonic karst in the Genie Mountain and Zaya County

    图  8  察雅县雅曲勇水文地质剖面图

    注:剖面多次穿越雅曲勇断裂。

    Figure  8.  Hydrogeological section in Yaquyong of Zaya County

    图  9  构造岩溶发育地层时代占比

    Figure  9.  Proportion of the tectonic karst developed strata

    图  10  格聂山地区岩溶泉三期流量对比图

    Figure  10.  Comparison of karst spring flow measured on three times in the Genie Mountain

    图  11  降曲某支流监测流量的逐日动态及滤波基流分割曲线

    Figure  11.  Daily dynamics of monitoring flow of a tributary of Jiangqu and the division curve of filtering base flow

    图  12  察雅和格聂山研究区水样Piper图

    Figure  12.  Piper diagrams of the water samples in the study area of Chaya County and Genie Mountain

    图  13  察雅和格聂山研究区水样δD和δ18O关系图

    Figure  13.  Plot of δD vs. δ18O in the study area of Chaya County and Gnie Mountain

    图  14  察雅恩达泉(a)及格聂山火龙沟泉(b)岩溶大泉典型混合模式

    Figure  14.  Typical mixed patterns of the Chaya Enda spring (a) and the Huolonggou Spring of the Genie Mountain (b)

    图  15  温度和Na2SO4影响下碳酸盐和侵蚀性二氧化碳的饱和浓度变化

    Figure  15.  Changes in the saturation concentration of carbonate and CO2(g) under the influence of temperature and Na2SO4 mineral

    图  16  川藏铁路交通廊道构造岩溶地下水循环模式示意图

    Figure  16.  Circulation mode of tectonic karst groundwater along the Sichuan-Tibet Railway

    表  1  研究区样品水化学组分及氢氧同位素含量

    Table  1.   Chemical compositions and hydrogen and oxygen isotope content of the water samples in the study area

    研究区样品类型水化学组分含量/(mg·L−1
    TDSK+Na+Ca2+Mg2+Cl${\rm{SO}}_4^{2-} $${\rm{HCO}}_3^- $
    察雅温泉 1255 2.40 14.54 271.10 58.9 4.89 754.00 215.40
    2051 3.45 35.10 422.10 95.05 5.59 1360.00 263.20
    冷泉 159.1 0.45 1.77 48.61 4.70 1.75 14.36 155.40
    2562 0.63 5.59 586.20 100.10 2.10 1752.00 203.80
    286.5 0.66 3.98 57.95 22.01 1.75 102.30 178.70
    地表水 107.40~232.70 1.04~2.37 3.95~13.30 19.33~52.81 4.23~30.08 1.05~1.75 4.31~24.71 110.60~256.60
    121.70~273.50 0.67~1.20 3.71~6.11 20.77~61.44 9.67~15.85 1.40~1.75 23.02~107.10 95.71~155.40
    格聂山温泉 1002 18.38 119.60 208.30 26.93 8.73 76.83 476.20
    1015.72 15.40 274.00 2.15 0.15 40.66 48.96 993.60
    冷泉 114.70~287.60 0.22~1.79 0.01~13.24 30.39~72.21 5.62~17.12 0.09~2.10 5.21~35.21 122.60~274.60
    242.11~330.34 0.87~2.00 2.39~4.49 59.50~85.40 15.2~28.40 0.33~1.53 45.90~103.12 204.10~228.80
    1014.00~1331.00 0.67~2.17 262.4~310.6 57.90~61.10 6.15~37.62 1.75~2.45 579.60~754.80 189.2~299.00
    1150.00 0.52 320.2 42.70 5.97 1.75 695.90 157.40
    地表水 101.80~216.45 0.25~1.50 0.07~3.31 26.40~59.90 2.60~10.60 0.10~1.75 2.90~28.19 97.63~194.80
    140.20~239.50 0.42~3.19 1.14~4.61 29.59~65.20 6.96~12.00 0.10~2.10 38.53~65.90 84.95~164.50
    研究区样品类型水化学类型pH同位素含量
    δD/‰δ18O/‰T/TU
    察雅温泉SO4·HCO3—Ca·Mg7.18−138−16.34.7
    SO4—Ca·Mg7.35−139−18.13.4
    冷泉HCO3—Ca7.99−135−17.76.9
    SO4—Ca·Mg7.17−139−18.24.3
    HCO3·SO4—Ca·Mg7.63−135−18.27.4
    地表水HCO3—Ca·Mg7.19~8.52−134~−122−17.3~−16.26.1~11.6
    HCO3·SO4—Ca·Mg7.23~8.40−128~−122−17.0~−16.38.2~16.4
    格聂山温泉HCO3—Ca·Na6.74−142−18.51.1
    HCO3—Na8.79−154−18.8
    冷泉HCO3—Ca·Mg7.66~8.30−131~−127−17.8~−16.84.9~8.0
    HCO3·SO4—Ca·Mg8.00~8.08−126~−122−16.9~−15.8<12.4
    SO4·HCO3—Na·Ca7.69~7.92−132~−127−17.1~−16.92.9~9.0
    SO4—Na7.79−131−17.78.1
    地表水HCO3—Ca·Mg7.55~8.28−127~−119−16.8~−15.86.4~9.6
    HCO3·SO4—Ca·Mg7.01~8.29−129~−124−17.5~−16.84.4~15.2
    下载: 导出CSV
  • [1] 王保弟, 王冬兵, 唐渊, 等. 川藏铁路交通廊带地质图及说明书(1∶250000)[R]. 成都: 中国地质调查局成都地质调查中心, 2019.

    WANG Baodi, WANG Dongbing, TANG Yuan, et al. Geological map and manual of Sichuan-Tibet Railway traffic corridor (1∶250000)[R]. Chengdu: Chengdu Center of China Geological Survey, 2019. (in Chinese)
    [2] 潘桂棠, 王立全, 张万平, 等. 青藏高原及邻区大地构造图及说明书(1∶1 500 000)[M]. 北京: 地质出版社, 2013: 1−208.

    PAN Guitang, WANG Liquan, ZHANG Wanping, et al. The geotectonic map and instructions of the Qinghai-Tibet Plateau and adjacent areas (1∶1 500 000)[M]. Beijing: Geological Publishing House, 2013: 1−208. (in Chinese with English abstract)
    [3] 郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1 − 17. [GUO Changbao, WU Rui'an, JIANG Liangwen, et al. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience,2021,35(1):1 − 17. (in Chinese with English abstract)
    [4] 崔之久. 青藏高原的古岩溶[J]. 自然杂志,1979(9):24 − 25. [CUI Zhijiu. Paleokarst in the Qinghai-Xizang Plateau[J]. Chinese Journal of Nature,1979(9):24 − 25. (in Chinese)
    [5] 高全洲, 陶贞, 崔之久, 等. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报,2002,57(3):267 − 274. [GAO Quanzhou, TAO Zhen, CUI Zhijiu, et al. The nature, formation age and genetic environment of the palaeokarst on the Qinghai-Xizang plateau[J]. Acta Geographica Sinica,2002,57(3):267 − 274. (in Chinese with English abstract) doi:  10.3321/j.issn:0375-5444.2002.03.002
    [6] 王富葆. 青藏高原喀斯特的若干问题[J]. 山地研究,1991,9(2):65 − 72. [WANG Fubao. Some problems of Karst on Qinghai-Xizang plateau[J]. Journal of Mountain Research,1991,9(2):65 − 72. (in Chinese)
    [7] 朱学稳. 西藏高原喀斯特的物质及“残余峰林”质疑[J]. 中国岩溶,1994,13(3):220 − 228. [ZHU Xuewen. The nature of Tibet plateau karst and the query concerning “relict fenglin karst”[J]. Carsologica Sinica,1994,13(3):220 − 228. (in Chinese with English abstract)
    [8] 许模, 毛邦燕, 张广泽, 等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版),2020,47(6):724 − 732. [XU Mo, MAO Bangyan, ZHANG Guangze, et al. A preliminary study on correlation of atmospheric CO2 concentration and Karst development in the eastern margin of Qinghai-Tibet plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(6):724 − 732. (in Chinese with English abstract)
    [9] 李向全, 马剑飞, 郭长宝, 等. 川藏铁路金沙江构造结合带(格聂山隧道段)地质安全风险评价专题报告[R]. 北京: 中国地质调查局川藏铁路建设地质安全风险评价指挥部, 2020.

    LI Xiangquan, MA Jianfei, GUO Changbao, et al. Report on the geological safety risk assessment of the Jinsha River structural junction (Genie Mountain Tunnel section) of the Sichuan-Xizang Railway[R]. Beijing: Geological Safety Risk Assessment Headquarters of Sichuan-Xizang Railway Construction of China Geological Survey, 2020. (in Chinese)
    [10] 张春潮, 李向全, 马剑飞, 等. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质,2021,35(1):199 − 208. [ZHANG Chunchao, LI Xiangquan, MA Jianfei, et al. Formation model of geothermal water in Chaya of Tibet: Perspective from hydrochemistry and stable isotopes[J]. Geoscience,2021,35(1):199 − 208. (in Chinese with English abstract)
    [11] 肖序常, 王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论评,1998,44(4):372 − 381. [XIAO Xuchang, WANG Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet plateau[J]. Geological Review,1998,44(4):372 − 381. (in Chinese with English abstract) doi:  10.3321/j.issn:0371-5736.1998.04.006
    [12] 蒋复初, 吴锡浩. 青藏高原东南部地貌边界带晚新生代构造运动[J]. 成都理工学院学报,1998,25(2):162 − 168. [JIANG Fuchu, WU Xihao. Late Cenozoic tectonic movement in geomorphologic boundary belt of southeastern Qinghai Xizang plateau[J]. Journal of Chengdu University of Technology,1998,25(2):162 − 168. (in Chinese with English abstract)
    [13] 潘保田, 高红山, 李炳元, 等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究,2004,24(1):50 − 57. [PAN Baotian, GAO Hongshan, LI Bingyuan, et al. Step-like landforms and uplift of the Qinghai-Xizang plateau[J]. Quaternary Sciences,2004,24(1):50 − 57. (in Chinese with English abstract) doi:  10.3321/j.issn:1001-7410.2004.01.006
    [14] 吴富峣, 蒋良文, 张广泽, 等. 川藏铁路金沙江断裂带北段第四纪活动特征探讨[J]. 高速铁路技术,2019,10(4):23 − 28. [WU Fuyao, JIANG Liangwen, ZHANG Guangze, et al. Discussion on quaternary activity characteristics of northern section of Jinshajiang fault zone along Sichuan-Tibet Railway[J]. High Speed Railway Technology,2019,10(4):23 − 28. (in Chinese with English abstract)
    [15] 夏金梧, 朱萌. 金沙江主断裂带中段构造特征与活动性研究[J]. 人民长江,2020,51(5):131 − 137. [XIA Jinwu, ZHU Meng. Study on tectonic characteristics and activity of middle section of Jinshajiang Main Fault Zone[J]. Yangtze River,2020,51(5):131 − 137. (in Chinese with English abstract)
    [16] 马晓婧, 刘强, 潘继花, 等. 基于数字滤波法的拒马河基流分割及演变规律研究[J]. 北京师范大学学报(自然科学版),2020,56(5):659 − 663. [MA Xiaojing, LIU Qiang, PAN Jihua, et al. Baseflow separation and temporal changes in the Juma River, China[J]. Journal of Beijing Normal University (Natural Science),2020,56(5):659 − 663. (in Chinese with English abstract)
    [17] 徐榕焓, 王小刚, 郑伟. 基流分割方法研究进展[J]. 水土保持通报,2016,36(5):352 − 359. [XU Ronghan, WANG Xiaogang, ZHENG Wei. Research progresses in baseflow separation methods[J]. Bulletin of Soil and Water Conservation,2016,36(5):352 − 359. (in Chinese with English abstract)
    [18] 张春潮, 侯新伟, 李向全, 等. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质,2021,48(3):62 − 71. [ZHANG Chunchao, HOU Xinwei, LI Xiangquan, et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology,2021,48(3):62 − 71. (in Chinese with English abstract)
    [19] 王振, 郭华明, 刘海燕, 等. 玛曲高原区潜水水化学和氢氧同位素特征[J]. 水文地质工程地质, 2021, 48(1): 18-26.

    WANG Zhen, GUO Huaming, LIU Haiyan, et al. Hydrochemical and hydrogen and oxygen isotope characteristics of subsurface water in the Maqu Plateau[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 18-26. (in Chinese with English abstract)
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  17
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-04-15
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回