• 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川藏铁路康定隧址区地热水成因及其工程影响分析

张云辉 李晓 徐正宣 常兴旺 黄珣 多吉

张云辉, 李晓, 徐正宣, 常兴旺, 黄珣, 多吉. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007
引用本文: 张云辉, 李晓, 徐正宣, 常兴旺, 黄珣, 多吉. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007
ZHANG Yunhui, LI Xiao, XU Zhengxuan, CHANG Xingwang, HUANG Xun, DUO Ji. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007
Citation: ZHANG Yunhui, LI Xiao, XU Zhengxuan, CHANG Xingwang, HUANG Xun, DUO Ji. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007

川藏铁路康定隧址区地热水成因及其工程影响分析

doi: 10.16030/j.cnki.issn.1000-3665.202104007
基金项目: 川藏铁路重大工程风险识别与对策研究(2019YFG0460);国家自然科学基金项目(42072313;42102334);中央高校基本科研业务费项目(2682020CX10;2682021ZTPY063)
详细信息
    作者简介:

    张云辉(1990-),男,博士,助理研究员,主要从事水文地质与工程地质教学科研工作。E-mail:zhangyunhui@swjtu.edu.cn

    通讯作者:

    李晓(1963-),男,博士,副教授,主要从事水文地质与工程地质教学科研工作。E-mail:lixiao@cdut.edu.cn

  • 中图分类号: P314.1

An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway

  • 摘要: 川藏铁路康定隧址区穿越鲜水河断裂带,属地热异常区,对铁路建设造成一定的热害威胁。采用野外调查、水化学分析和氢氧同位素测试等技术方法,开展了川藏铁路康定隧址区地热水成因研究。结果表明,康定隧址区地热水水化学类型主要为HCO3·Cl—Na和HCO3—Na型,聚集于折多塘、康定和中谷3个热水区。地热水均为未成熟水,热储温度为104~172 ℃,深部初始地热水温度为186~250 ℃,冷水混合比例为0.56~0.81。氢氧同位素显示地热水补给高程为3768~4926 m。在康定隧址区,地热水受到高海拔水源补给,主体断裂构造为导热构造,次级分支断裂和发育节理、裂隙的断层破碎带为导水构造,地热水形成后沿浅部断层破碎带出露形成温泉。FEFLOW数值模拟分析表明研究区100 m深度地温场温度为35.4~95.1 ℃,研究区内三个热水区之间存在低温通道。隧道建设时应重点关注康定热水区的高温水热灾害。
  • 图  1  研究区地热地质图(根据文献[16]修改)

    Figure  1.  Geological and geothermal map with the sampling locations (modified from Ref. [16])

    图  2  研究区剖面图(根据文献[16]修改)

    Figure  2.  A-A’ section of study area (modified from Ref. [16])

    图  3  研究区水样Piper三线图

    Figure  3.  Piper diagrams for the water samples

    图  4  研究区水样TDS含量与${\rm{HCO}}_3^- $及SiO2含量与Na/Cl浓度比值关系图

    Figure  4.  Relationship between TDS and ${\rm{HCO}}_3^- $ concentrations and SiO2 concentration and Na/Cl concentration ratio of the water samples

    图  5  研究区地热水的Na-K-Mg三角图[17]

    Figure  5.  Na-K-Mg triangle diagram for the geothermal waters

    图  6  研究区地热水的δD-δ18O关系

    Figure  6.  Plot of oxygen and hydrogen isotopes of the water samples

    图  7  研究区地热水成因模式图

    Figure  7.  Genetic mode of geothermal waters in the tunnel area

    图  8  隧址区100 m深度地温场模拟图

    Figure  8.  Simulated geothermal field at a depth of 100 m in the tunnel area

    表  1  研究区水样的水化学和同位素测试分析结果

    Table  1.   Hydrochemical and isotopic constituents of the water samples in the study area

    编号取样类型位置溶解性总固体K+Na+Ca2+Mg2+Cl${\rm{SO}}_4^{2-} $${\rm{HCO}}_3^- $SiO2离子平衡检验/%
    /(mg·L−1)
    D1温泉水榆林村白湾1002.440.0340.0 4.00.6223.425.1530.9101.0−1.5
    D2灌顶温泉1430.855.0400.0 40.114.6294.375.8720.0178.30.6
    D3龙头沟温泉1649.656.0550.0 12.029.2260.60.11019.093.57.7
    D4榆林村温泉1949.775.0650.0 7.07.3340.446.41304.395.5−1.8
    D5金家河坝温泉1126.530.0330.0 41.112.2157.4182.4579.782.2−0.2
    D6二道桥清泉村温泉1147.112.0 74.0320.630.446.111.51281.493.1−2.5
    D7中谷热水塘11009.330.0270.0 71.116.464.96.5897.096.5−0.3
    D8中谷热水塘21315.832.0340.0 80.213.483.35.01128.8114.5−1.1
    D9亚拉乡11297.538.0390.0 98.220.799.310.01281.496.20.2
    D10亚拉乡21222.036.0370.0 90.221.385.12.91305.885.2−2.0
    D11中谷大盖1 805.431.0280.0 42.59.158.58.9762.781.54.2
    D12中谷大盖21132.034.0290.0 45.17.976.28.6915.3104.5−4.3
    D13折多塘 388.9 2.1140.0 9.00.68.98.7372.252.0−1.3
    D14冷泉水清泉山庄北60 m 156.4 0.2 1.9106.88.40.710.4171.7−1.9
    D15二道桥 329.9 2.6 4.4 73.223.80.788.7236.8−1.8
    D16地表水折多山海子 13.0 0.1 1.4 9.80.50.50.714.2−0.2
    D17雅拉河水 127.2 1.4 8.6 31.27.21.813.3124.310.3−1.6
    编号取样类型位置温度/℃pH水化学类型石英温标/℃硅焓方程法δ18O/‰δD/‰δD补给高程/m
    初始热水水温/℃冷水混合比
    D1温泉水榆林村白湾6.8HCO3·Cl—Na1381860.56−16.8−135.64926
    D2灌顶温泉847.6HCO3·Cl—Na172−14.7−115.64097
    D3龙头沟温泉818.7HCO3·Cl—Na1331980.63−16.2−127.84603
    D4榆林村温泉708.4HCO3·Cl—Na1352100.71−15.8−131.14740
    D5金家河坝温泉646.5HCO3·Cl—Na1272280.80−14.9−116.24122
    D6二道桥清泉村温泉487.4HCO3—Na133−15.6−107.73768
    D7中谷热水塘1406.9HCO3—Na1352500.81−15.6−115.94109
    D8中谷热水塘2476.7HCO3—Na1452400.76−15.9−119.34251
    D9亚拉乡1626.8HCO3—Na135−16.7−125.94524
    D10亚拉乡2457.1HCO3—Na1282080.74−17.0−128.74641
    D11中谷大盖1506.9HCO3—Na126−16.4−124.14450
    D12中谷大盖2377.0HCO3—Na140−16.3−120.54300
    D13折多塘467.8HCO3—Na1041900.81−15.3−113.84022
    D14冷泉水清泉山庄北60 m387.8HCO3—Ca
    D15二道桥127.8HCO3—Ca
    D16地表水折多山海子127.3HCO3—Ca−15.6−112.9
    D17雅拉河水8.1HCO3—Ca−13.3−99.6
    下载: 导出CSV
  • [1] 唐晗晗, 郭良辉, 方圆. 青藏高原东南缘热流估算及与地震活动相关性分析[J]. 地球物理学报,2020,63(3):1056 − 1069. [TANG Hanhan, GUO Lianghui, FANG Yuan. Estimation of heat flow in southeastern margin of Tibetan Plateau and its analysis of the correlation with earthquake activity[J]. Chinese Journal of Geophysics,2020,63(3):1056 − 1069. (in Chinese with English abstract) doi:  10.6038/cjg2019N0045
    [2] 李晓, 王金金, 黄珣, 等. 鲜水河断裂带康定至道孚段热水化学与同位素特征[J]. 成都理工大学学报(自然科学版),2018,45(6):733 − 745. [LI Xiao, WANG Jinjin, HUANG Xun, et al. Chemical and isotopic characteristics of hot water in the Kangding-Daofu section of Xianshuihe fault zone, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):733 − 745. (in Chinese with English abstract)
    [3] 张健, 李午阳, 唐显春, 等. 川西高温水热活动区的地热学分析[J]. 中国科学: 地球科学,2017,47(8):899 − 915. [ZHANG Jian, LI Wuyang, TANG Xianchun, et al. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Science China Earth Sciences,2017,47(8):899 − 915. (in Chinese with English abstract)
    [4] ZHANG J, LI W Y, TANG X C, et al. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Science China Earth Sciences,2017,60(8):1507 − 1521. doi:  10.1007/s11430-016-9053-2
    [5] TANG X C, ZHANG J, PANG Z H, et al. The eastern Tibetan Plateau geothermal belt, Western China: Geology, geophysics, genesis, and hydrothermal system[J]. Tectonophysics,2017,717:433 − 448. doi:  10.1016/j.tecto.2017.08.035
    [6] LI X, HUANG X, LIAO X, et al. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe fault zone, southwestern China[J]. International Journal of Environmental Research and Public Health,2020,17(2):500. doi:  10.3390/ijerph17020500
    [7] LI B, SHI Z M, WANG G C, et al. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China[J]. Journal of Hydrology,2019,579:124175. doi:  10.1016/j.jhydrol.2019.124175
    [8] QI J H, XU M, AN C J, et al. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China[J]. Physics of the Earth and Planetary Interiors,2017,263:12 − 22. doi:  10.1016/j.pepi.2017.01.001
    [9] ZHANG Y H, XU M, LI X, et al. Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in Kangding County, southwestern China[J]. Water,2018,10(1):80 − 96. doi:  10.3390/w10010080
    [10] 卞跃跃, 赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报,2018,39(4):491 − 497. [BIAN Yueyue, ZHAO Dan. Genesis of geothermal waters in the Kangding geothermal field, Sichuan Province[J]. Acta Geoscientica Sinica,2018,39(4):491 − 497. (in Chinese with English abstract) doi:  10.3975/cagsb.2018.060401
    [11] LUO J, PANG Z H, KONG Y K, et al. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China[J]. Environmental Earth Sciences,2017,76(9):1 − 24.
    [12] GUO Q, PANG Z H, WANG Y C, et al. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry,2017,81:63 − 75. doi:  10.1016/j.apgeochem.2017.03.007
    [13] 张云辉. 鲜水河断裂康定-磨西段地热系统成因及开发利用研究[D]. 成都: 成都理工大学, 2018.

    ZHANG Yunhui. Research on genesis and development of the geothermal system in the Kangding-moxi segment of the Xianshuihe fault[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)
    [14] LI J X, YANG G, SAGOE G, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics,2018,75:154 − 163. doi:  10.1016/j.geothermics.2018.04.008
    [15] LIU Q Q, SHI Y N, WEI D P, et al. Near-surface geothermal gradient observation and geothermal analyses in the Xianshuihe fault zone, eastern Tibetan Plateau[J]. Acta Geologica Sinica - English Edition,2017,91(2):414 − 428. doi:  10.1111/1755-6724.13108
    [16] 梁信之, 谭庆鹄, 师常庆, 等. 1∶20万康定幅区域报告[R]. 成都: 四川省地质矿产局区域调查队, 1985.

    LIANG Xinzhi, TAN Qinghu, SHI Changqing, et al. 1∶200 000 Kangding regional survey report[R]. Chengdu: Regional Geological Survey Party, Sichuan Bureau of Geological Exploration and Exploration of Mineral Resources, Sichuan, 1985.
    [17] GIGGENBACH W F. Geothermal solute equilibria Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi:  10.1016/0016-7037(88)90143-3
    [18] 史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质,2018,45(3):165 − 172. [SHI Jie, NAI Weihua, LI Ming, et al. Hydrogeochemical characteristics of high temperature geothermal field of the Quman geothermal field in Xinjiang[J]. Hydrogeology & Engineering Geology,2018,45(3):165 − 172. (in Chinese with English abstract)
    [19] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5:41 − 50. doi:  10.1016/0375-6505(77)90007-4
    [20] 李明辉, 袁建飞, 黄从俊, 等. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质,2020,47(6):36 − 46. [LI Minghui, YUAN Jianfei, HUANG Congjun, et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’an in east Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(6):36 − 46. (in Chinese with English abstract)
    [21] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702 − 1703. doi:  10.1126/science.133.3465.1702
    [22] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境,2015,24(11):1860 − 1869. [SONG Chunlin, SUN Xiangyang, WANG Genxu. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China[J]. Resources and Environment in the Yangtze Basin,2015,24(11):1860 − 1869. (in Chinese with English abstract) doi:  10.11870/cjlyzyyhj201511008
    [23] 赵志宏, 徐浩然, 刘峰, 等. 川藏铁路折多山段隧道温度场与热害初步预测[J]. 现代地质,2021,35(1):180 − 187. [ZHAO Zhihong, XU Haoran, LIU Feng, et al. Preliminary prediction of temperature field and thermal damage in Zheduoshan region along Sichuan-Tibet Railway[J]. Geoscience,2021,35(1):180 − 187. (in Chinese with English abstract)
    [24] 何丽娟, 汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语,2021,23(3):3 − 9. [HE Lijuan, WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as terrestrial heat flow[J]. China Terminology,2021,23(3):3 − 9. (in Chinese with English abstract) doi:  10.12339/j.issn.1673-8578.2021.03.001
    [25] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract) doi:  10.6038/cjg20160815
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  17
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-06-15
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回