ISSN 1000-3665 CN 11-2202/P
    郑若璇,孙秀丽,王渝,等. 大尺寸三维电动-水力渗透协同固结淤泥能耗特性[J]. 水文地质工程地质,2023,50(1): 69-77. DOI: 10.16030/j.cnki.issn.1000-3665.202112040
    引用本文: 郑若璇,孙秀丽,王渝,等. 大尺寸三维电动-水力渗透协同固结淤泥能耗特性[J]. 水文地质工程地质,2023,50(1): 69-77. DOI: 10.16030/j.cnki.issn.1000-3665.202112040
    ZHENG Ruoxuan, SUN Xiuli, WANG Yu, et al. Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 69-77. DOI: 10.16030/j.cnki.issn.1000-3665.202112040
    Citation: ZHENG Ruoxuan, SUN Xiuli, WANG Yu, et al. Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 69-77. DOI: 10.16030/j.cnki.issn.1000-3665.202112040

    大尺寸三维电动-水力渗透协同固结淤泥能耗特性

    Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation

    • 摘要: 为解决目前电渗应用的高能耗困境及大尺寸模拟困难等问题,提出针对低渗透性、高含水率土体的电动-水力渗流协同作用的三维固结方法。自行研制了一套阴极-集水-排水协同作用的多功能集排水系统,采用间歇式抽水代替连续抽水。采用三维电动-水力渗流固结系统对取自贡湖湾湿地和白旄堆场的2种不同太湖底泥进行了电渗试验研究,同时对白旄堆场太湖底泥进行了传统一维电渗固结试验,并对2种试验条件下的单位体积排水能耗和单位体积单位排水量能耗等关键指标进行了对比。结果表明:三维集水井设计可大大降低土体阴极附近电阻,间断性提高系统电流,提高排水效率,降低电渗总能耗;间歇式抽水可间歇性降低系统内总电流,利用电动-水力协同作用,保持系统渗流的连续性;三维电动-水力渗流固结系统的电流呈周期性减小—增大模式,并且降低速率较慢,尤其对于有机质含量较高的土体,电渗过程电流始终保持在一个较高的水平,提高了排水固结效率。三维电动-水力渗流固结系统的单位体积排水能耗和单位体积单位排水量能耗分别约为一维电渗系统的2/3和1/30。在高含水量软土固结排水中具有显著的节能效果。三维电动-水力渗流固结系统可以提高排水固结效率、大幅度降低能耗,为实际工程应用提供了可靠的理论、设计依据和数据支持,具有很好的推广价值。

       

      Abstract: The 3D electro-osmosis-hydraulic synergistic consolidation method is proposed based on the theory of electroosmosis and consolidation to solve the problem of the high energy consumption and large-scale simulation of practice conditions for low permeability and high-water content soils. A set of multi-functional catchment drainage systems combining the synergistic action of the cathode-catchment-intermittent pumping mode is developed. Consolidation of two types of Taihu lake sediments from the Gonghuwan wetland and Baimao Storage site are investigated using this system. Two key indicators of energy consumption per unit volume and displacement per unit volume of the 3D electro-osmosis-hydraulic synergistic consolidation system and the traditional 1D electroosmosis system are analyzed to illustrate the advantage of the 3D system. The results show that the design of water collecting well can greatly reduce the resistance near the soil cathode, intermittently improve the system current, improve the drainage efficiency and reduce the energy consumption. Intermittent pumping can intermittently reduce the system current, and maintain the continuity of system seepage by using the electric and hydraulic synergistic effect. A decrease-increase periodic decrease mode of the current for the 3D electrohydraulic seepage consolidation system is observed. The decrease rate of the current is slower than that of the 1D electro-osmotic system, especially for the soil with high organic matter content, the current in the electroosmotic process is maintained at a relatively higher level, which improves the drainage consolidation efficiency. The energy consumption per unit volume and displacement per unit volume of the 3D electro-hydraulic seepage consolidation system are about 2/3 and 1/30 that of the 1D electro-osmotic system, respectively. The 3D electro-hydraulic seepage consolidation system has remarkable energy saving effect in consolidation and drainage of soft soil with high water content. The 3D electroosmosis-hydraulic consolidation system can greatly improve the drainage consolidation efficiency, greatly reduce energy consumption and better guide the application of the proposed method to the electro-osmotic consolidation of high-water content sludge and another related field.

       

    /

    返回文章
    返回