高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究
An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions
-
摘要: 为研究草本植物根系对增强高寒地区露天煤矿排土场边坡土体抗剪强度的贡献以及相关因素对边坡土体抗剪强度的影响,以青海境内祁连山北缘江仓露天煤矿排土场为试验区,在排土场边坡组合种植垂穗披碱草(Elymus nutans Griseb.)和冷地早熟禾(Poa pratensis L.)2种草本植物,在边坡3个不同位置处分别制取不含根系素土和根-土复合体试样进行直剪试验,探讨土体物理力学性质以及植物根系数量与根-土复合体抗剪强度之间的关系。结果表明:(1)随着边坡海拔升高,坡面浅层素土和根-土复合体试样的密度和砂粒含量呈显著增加,含水率、粉粒和黏粒含量显著降低;(2)与边坡素土试样抗剪强度相比,坡底、坡中和坡顶位置处根-土复合体抗剪强度增幅分别为4.09%、18.92%和0.69%;(3)在素土和根-土复合体试样中,含水率与黏聚力之间呈显著负相关关系,相关系数分别为-0.943和-0.969;土体中砂粒含量与内摩擦角之间呈显著正相关关系,相关系数分别为0.940和0.926;(4)坡底至坡顶位置处根-土复合体的黏聚力与素土相比,增幅分别为29.23%,54.40%,26.45%。Abstract: The contribution of herbaceous root systems to increase the shear strength of slope soil in open-pit coal mine dumps in alpine regions is examined in this study, and the influence of relevant factors on the shear strength of slope soil is also studied. The dump of the Jiangcang open cast coal mine located in the northern edge of the Qilian Mountains in Qinghai Province is taken as the test area. The mixture of two herbs (Elymus nutans Griseb., Poa pratensis L.) were planted in the slope of the dump and the samples of soil without roots and root-soil composite systems from the dump slope were prepared. The direct shear tests were carried out on the samples. Physical mechanics properties of soil at three different positions of the slope and the relationship between the root number and the shear strength of the root-soil composite systems are analyzed. The results indicate that (1) with the increasing elevation of the dump slope, the density and sand content of the samples of soil without roots and root-soil composite systems significantly increase at the shallow layer of the slope soil, but the content of water, powder and clay decrease significantly. (2) Compared with the samples of soil without roots, the increment amplitudes of the shear strength of the samples of the root-soil composite systems at the slope bottom, slope middle and slope top are 4.09%, 18.92% and 0.69% respectively. (3) In the samples of soil without roots and the root-soil composite systems, the correlation between the moisture content and the cohesion force is significantly negative, with the correlation coefficients (R2) of -0.943 and -0.969, respectively, while the correlation between the content of sand and the internal friction angle is significantly positive, with the correlation coefficients (R2) of 0.940 and 0.926, respectively. (4) Compared with the samples of soil without roots, the increment amplitudes of the cohesion value of the samples of the root-soil composite systems from the slope bottom to the slope top of the dump are 29.23%, 54.40% and 26.45% , respectively.
-
Keywords:
- alpine region /
- dump slope /
- herbs /
- root-soil composite system /
- shear strength /
- vegetated slope
-
-
[1] [1]Jiahai Yuan. The future of coal in China[J]. Resources, Conservation and Recycling, 2018, 129:290-292.
[2] [2]Liu J, Diamond J. China’s environment in a globalizing world[J]. Nature, 2005, 435(7046):1179-1186.
[3] [3]Yan Wang, Li Wang, Hongbo Shao. Ecological footprint analysis applied to a coal-consumption county in China[J]. Clean Soil Air Water, 2014, 42(7):1004-1013.
[4] [4]魏忠义, 白中科. 露天矿大型排土场水蚀控制的径流分散概念及其分散措施[J]. 煤炭学报, 2003, 28(5):486-490. [WEI Z Y, BAI Z K. The concept and measures of runoff-dispersing on water erosion control in the large dump of opencast mine[J]. Journal of China Coal Society, 2003, 28(5):486-490.(in Chinese)]
[5] [5]武强, 陈奇. 矿山环境问题诱发的环境效应研究[J]. 水文地质工程地质, 2008, 25(5):81-85. [WU Q, CHEN Q. An analysis of environmental effects induced by environmental problems in mines[J]. Hydrogeology & Engineering Geology, 2008, 25(5):81-85.(in Chinese)]
[6] [6]胡兴定, 白中科, 张灵, 等. 黄土区大型露天矿排土场水力侵蚀计算与防治[J]. 水土保持研究, 2017, 24(5):21-26. [HU X D, BAI Z K, ZHANG L, et al. Hydraulic erosion calculation and control in dumping site of large opencast coal mine in loess area[J]. Research of Soil and Water Conservation, 2017, 24(5):21-26.(in Chinese)]
[7] [7]Huang Lei, Zhang Peng, Hu Yigang, et al. Vegetation and soil restoration in refuse dumps from open pit coal mines[J]. Ecological Engineering, 2016, 94:638-646.
[8] [8]Xiaoyang Liu, Zhongke Bai, Wei Zhou, et al. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China[J]. Ecological Engineering, 2017, 98:228-239.
[9] [9]Gastauer M, Silva J R, Junior C F C, et al. Mine land rehabilitation:Modern ecological approaches for more sustainable mining[J]. Journal of Cleaner Production, 2018, 172:1409-1422.
[10] [10]张丹丹, 潘德成. 露天煤矿排土场植被控制水土流失典型模式评述[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(2):90-93. [ZHANG D D, PAN D C. Typical pattern reviews of vegetation control of soil and water loss in open-cut dump[J]. Journal of Liaoning Technical University(Natural Science), 2009, 28(2):90-93.(in Chinese)]
[11] [11]Vogel W G. A guide for revegetating coal minespoils in eastern United States: coal mining regions[R]. USDA Forest Service, Northeastern Forestry Experimental Stations, 1981.
[12] [12]台培东, 孙铁珩, 贾宏宇, 等. 草原地区露天矿排土场土地复垦技术研究[J]. 水土保持学报, 2002, 16(3):90-93. [TAI P D, SUN T H, JIA H Y, et al. Restoration for refuse dump of open-cast mine in steppe region[J]. Journal of Soil and Water Conservation, 2002, 16(3):90-93.(in Chinese)]
[13] [13]史倩华, 李垚林, 王文龙, 等. 不同植被措施对露天煤矿排土场边坡径流产沙影响[J]. 草地学报, 2016, 24(6):1263-1271. [SHI Q H, LI Y L, WANG W L, et al. The effect of different revegetation measures on runoff and sediment yielding of dump side slopes in open pit mine[J]. Acta Agrestia Sinica, 2016, 24(6):1263-1271.(in Chinese)]
[14] [14]Ling Zhang, Jinman Wang, Zhongke Bai, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area[J]. Catena, 2015, 128:44-53.
[15] [15]谷金锋, 蔡体久, 杨业. 高寒山区采矿迹地植被恢复研究[J]. 水土保持学报, 2014, 28(3):29-36. [GU J F, CAI T J, YANG Y. Research on vegetation restoration of abandoned mine land in alpine areas[J]. Journal of Soil and Water Conservation, 2014, 28(3):29-36.(in Chinese)]
[16] [16]孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1):3-12. [SUN H L, ZHENG D, YAO T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica, 2012, 67(1):3-12.(in Chinese)]
[17] [17]刘德玉. 青海省木里煤田江仓矿区地质生态环境风险评价[D]. 北京:中国地质科学院, 2013. [LIU D Y. Risk assessment of geo-ecological environment in Jiangcang diggings Muli coal field, Qinghai Province[D]. Beijing:Chinese Academy of Geological Sciences, 2013.(in Chinese)]
[18] [18]南京水利科学研究院. SL237—1999 土工试验规程[S]. 北京:中国水利水电出版社, 1999. [SL237—1999 Nanjing Hydraulic Research Institute. Specification of soil test[S]. Beijing:China Water Power Press, 1999.(in Chinese)]
[19] [19]祁兆鑫, 余冬梅, 刘亚斌, 等. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25 (6):1438-1448. [QI Z X, YU D M, LIU Y B, et al. Experimental research on factors affecting shear strength of halophyte root-soil composite systems in cold and arid environments[J]. Journal of Engineering Geology, 2017, 25 (6):1438-1448.(in Chinese)]
[20] [20]Behzad Fatahi, Hadi Khabbaz, Buddhima Indraratna. Bioengineering ground improvement considering root water uptake model[J]. Ecological Engineering, 2010, 36(2):222-229.
[21] [21]Jiangtao FU, Xiasong HU, Gary Brierley, et al. The influence of plant root system architectural properties upon the stability of loess hillslopes, Northeast Qinghai, China[J]. Journal of Mountain Science, 2016, 13(5):785-801.
[22] [22]窦增宁, 赵玉娇, 刘昌义, 等. 模拟降雨条件下寒旱地区边坡土体位移及土压力特征[J]. 水文地质工程地质, 2018, 45(2):117-122. [DOU Z N, ZHAO Y J, LIU C Y, et al. Soil displacement and earth pressure characteristics of slopes in a cold and arid region under rainfall simulation[J]. Hydrogeology & Engineering Geology, 2018, 45(2):117-122.(in Chinese)]
[23] [23]王元战, 刘旭菲, 张智凯, 等. 含根量对原状与重塑草根加筋土强度影响的试验研究[J]. 岩土工程学报, 2015, 37(8):1405-1410. [WANG Y Z, LIU X F, ZHANG Z K, et al. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8):1405-1410.(in Chinese)]
[24] [24]王云琦, 王玉杰, 张洪江, 等. 重庆缙云山不同土地利用类型土壤结构对土壤抗剪性能的影响[J]. 农业工程学报, 2006, 22(3):40-45. [WANG Y Q, WANG Y J, ZHANG H J, et al. Impacts of soil structure on shear-resistance of soil under different land uses in Jinyun Mountain of Chongqing City[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(3):40-45.(in Chinese)]
[25] [25]余冬梅, 付江涛, 胡夏嵩, 等. 柴达木盆地大柴旦盐湖区盐生植物根-土复合体力学强度试验研究[J]. 盐湖研究, 2017, 25(1):37-48. [YU D M, FU J T, HU X S, et al. Experimental research on mechanical strength of rooted soil of halophytes in Da Qaidam salt lake area in the Qaidam basin, Qinghai Province[J]. Journal of Salt Lake Research, 2017, 25(1):37-48.(in Chinese)]
[26] [26]胡夏嵩, 毛小青, 朱海丽, 等. 青藏高原植被护坡[M]. 北京:地质出版社, 2011:106-118. [HU X S, MAO X Q, ZHU H L, et al. Slope protection with vegetation on Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 2011:106-118.(in Chinese)]
[27] [27]栗岳洲, 付江涛, 余冬梅, 等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报, 2015, 34(7):1370-1383. [LI Y Z, FU J T, YU D M, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7):1370-1383.(in Chinese)]
[28] [28]邹慧, 毕银丽, 金晶晶, 等. 采煤沉陷对植被土壤容重和水分入渗规律的影响[J]. 煤炭科学技术, 2013, 41(3):125-128. [ZOU H, BI Y L, JIN J J, et al. Mining subsidence affected to soil volume-weight and water infiltration law of different vegetation type[J]. Coal Science and Technology, 2013, 41(3):125-128.(in Chinese)]
-
期刊类型引用(20)
1. 石川,刘亚斌,朱海丽,梁燊,薛立夫,王舒,胡夏嵩,李国荣. 青藏高原东北部黄土区灌木柠条锦鸡儿根—土界面剪切特性. 水土保持通报. 2023(01): 69-77 . 百度学术
2. 曾庆军,毕世明,郝珖存,唐小骏. 速生植物根系固化浅层疏浚土的直剪试验. 水运工程. 2023(06): 38-44 . 百度学术
3. 赵菊,刘方,朱健,刘元生,陈祖拥. 煤矸石—磷石膏—菌渣混合基质与黑麦草根系复合体抗剪性能的差异性. 水土保持通报. 2023(04): 103-109 . 百度学术
4. 何伟鹏,刘昌义,周国英,胡夏嵩,付江涛,卢海静,闫聪,杨馥铖,李国荣. 退化高寒草原人工恢复植被根系及根-土复合体力学特性研究. 水文地质工程地质. 2022(02): 207-218 . 本站查看
5. 杨馥铖,刘昌义,胡夏嵩,李希来,付江涛,卢海静,申紫雁,许桐,闫聪,何伟鹏. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究. 干旱区研究. 2022(02): 560-571 . 百度学术
6. 李姜瑶,余冬梅,张西营,胡夏嵩,刘亚斌,周林虎,李丹. 西宁盆地黄土区边坡土体含水量对植物根-土复合体抗剪强度影响的试验研究. 工程地质学报. 2022(02): 281-292 . 百度学术
7. 闫聪,胡夏嵩,李希来,刘昌义,卢海静,付江涛,许桐,申紫雁. 高寒矿区排土场植被恢复对边坡土体物理力学性质影响研究. 工程地质学报. 2022(02): 383-393 . 百度学术
8. 李叶鑫,吕刚,宁宝宽,陈四利,王道涵,魏忠平. 排土场土体裂缝区植被根系及抗剪强度分布特征. 水土保持研究. 2022(04): 108-114+120 . 百度学术
9. 李阳,张建军,魏广阔,胡亚伟,赵宇辉,唐鹏. 晋西黄土区极端降雨后浅层滑坡调查及影响因素分析. 水土保持学报. 2022(05): 44-50 . 百度学术
10. 杨鑫光,李希来,王克宙,李志炜,马盼盼. 煤矸石山生态恢复的主要路径. 生态学报. 2022(19): 7740-7751 . 百度学术
11. 钟彩尹,李鹏程,马滔,吴礼舟. 根-土复合体的三轴试验及其强度分析. 水文地质工程地质. 2022(06): 97-104 . 本站查看
12. 张春涛,马建刚,丁明净,向晓华. 蔓竹单根抗拉及根-土复合体抗剪特性. 四川农业大学学报. 2022(06): 883-892 . 百度学术
13. 许桐,刘昌义,胡夏嵩,徐志闻,申紫雁,余冬梅. 西宁盆地黄土区荷载条件下植被护坡力学效应. 农业工程学报. 2021(02): 142-151 . 百度学术
14. 刘武江,赵燚柯,段青松,张立芸,杨苑君,刘宇飞,熊寿德,和贵祥. 不同播种方式草本植物土壤团聚体特征及对根系固土力的影响. 水土保持研究. 2021(06): 25-31+38 . 百度学术
15. 李凤明,白国良,韩科明. 木里矿区生态环境受损特征及治理方法研究. 煤炭工程. 2021(10): 116-121 . 百度学术
16. 袁玉卿,张瑞昌,周婧,张业. 草根对开封城墙土抗剪性能影响. 河南大学学报(自然科学版). 2021(06): 712-718 . 百度学术
17. 杨幼清,胡夏嵩,李希来,王涛,刘昌义,刘亚斌,李淑霞,余冬梅. 高寒矿区软弱基底排土场边坡稳定性数值模拟. 地质与勘探. 2020(01): 198-208 . 百度学术
18. 刘小平,刘天林,曹晓毅,张宝元,王玉涛. 排弃物料力学性质大型三轴剪切试验研究. 水文地质工程地质. 2020(04): 191-198 . 本站查看
19. 付江涛,余冬梅,李晓康,刘昌义,胡夏嵩. 柴达木盆地盐湖区盐生植物根–土复合体物理力学性质指标概率统计分析. 岩石力学与工程学报. 2020(08): 1696-1709 . 百度学术
20. 胡卸文,侯羿腾,王严,杨瀛. 火烧迹地土壤根系特征及其对抗剪强度的影响. 水文地质工程地质. 2019(05): 106-112 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 884
- HTML全文浏览量: 89
- PDF下载量: 701
- 被引次数: 26