ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

四川茂县新磨村高位滑坡铲刮作用分析

张涛, 杨志华, 张永双, 陈亮, 吴瑞安

张涛, 杨志华, 张永双, 陈亮, 吴瑞安. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质, 2019, 46(3): 138-138. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.19
引用本文: 张涛, 杨志华, 张永双, 陈亮, 吴瑞安. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质, 2019, 46(3): 138-138. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.19
ZHANGTao, . An analysis of the entrainment of the Xinmo high-position landslide in Maoxian county, Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 138-138. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.19
Citation: ZHANGTao, . An analysis of the entrainment of the Xinmo high-position landslide in Maoxian county, Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 138-138. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.19

四川茂县新磨村高位滑坡铲刮作用分析

基金项目: 

国家自然科学基金项目(41502313;41731287);中国地质调查局地质调查项目(DD20160271)

An analysis of the entrainment of the Xinmo high-position landslide in Maoxian county, Sichuan

  • 摘要: 2017年6月24日,四川省茂县叠溪镇新磨村发生高位顺层山体滑坡,滑动高差达1 160 m,滑动平距约2 200 m。该滑坡的滑动方量巨大,与其滑动过程中产生的铲刮效应有关。为分析其铲刮效应,文章通过现场调查、遥感影像解译和无人机航拍图像,确定该滑坡的滑动全过程为:多次历史地震造成滑坡源区岩体结构破碎,降雨沿顶部裂隙入渗导致水压力增大及石英砂岩中的薄层板岩软化,在长期疲劳效应下斜坡上部岩体最终发生滑动;上部滑体在运移过程中,对斜坡中部浅表风化层、部分基岩及下部老滑坡堆积体进行铲刮并重新堆积。采用Rockfall软件模拟源区滑体的运动路径、速度与能量,结果表明:在碎屑流区和老滑坡堆积区都存在明显的集中铲刮作用,整个滑坡的高危险区也主要位于该区域,所以危险性分区可代表不同滑坡区域的铲刮程度。计算得两个区域的铲刮方量分别为4.9×106,4.38×106 m3,滑坡总方量为13.35×106 m3。该模拟和计算方法迅速有效,可为以后类似滑坡的应急、救灾和铲刮方量计算提供参考。
    Abstract: On 24 June 2017, a bedding landslide occurred in Diexi town, Maoxian County, Sichuan, China. The elevation difference of this landslide reached 1 160 m, with a long run-out of 2 200 m. The huge volume of this landslide is relevant to the entertainment during sliding. For researching the effect of entertainment, this paper reveals the process of this landslide based on site investigation, remote sensing image and UAV imagery data: historical earthquakes resulted in broken structures of rock masses; rainfall seeped into the thin layer of slate rock between quartz sandstones through rock failures, simultaneously the pore pressure increased, which results in the source area rock eventually sliding down; then the upper landslide body underwent entrainment at the middle bedrock area, part of which was weathered and lower gravel-soil accumulation area during its run-out process. We simulates the trajectory, velocity and energy of landslide by means of Rocfall software, the results show that centralized entertainment existed in debris flow area and gravel-soil accumulation area, which are exactly the high risk area. The entertainment volumes of the two area are 4.9×106 m3 and 4.38×106 m3, the overall volume of landslide is 13.35×106 m3.The methods of this paper is swiftly and effectively, which can provide reference for disaster relief and calculation of similar landslides.
  • [1] [1]严容. 岷江上游崩滑堵江次生灾害及环境效应研究[D]. 成都:四川大学, 2006.

    [YAN R. A preliminary study on the upper reaches of Minjiang River Terrace [D]. Chengdu:Sichuan University, 2016. (in Chinese)]

    [2] [2]许强, 李为乐, 董秀军,等. 四川茂县叠溪镇新磨村滑坡特征与成因机理初步研究[J]. 岩石力学与工程学报, 2017, 36(11):2612-2628.

    [XU Q, LI W L, DONG X J, et al. The xinmocun landsldie on june 24, 2017 in diexi maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628. (in Chinses)]

    [3]

    [3]EISBACHER G H . Destructive Mass Movements in High Mountains[J]. Arctic & Alpine Research, 1984, 17(4):61-67.

    [4]

    [4]HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches,[J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623.

    [5]

    [5]CUOMO S , PASTOR M , CAPOBIANCO V , et al. Modelling the space–time evolution of bed entrainment for flow-like landslides[J]. Engineering Geology, 2016, 212(Complete):10-20.

    [6]

    [6]PIRULLI M , PASTOR M . Numerical study on entrainment of bed material into rapid landslides[J]. Géotechnique, 2012, 62(11):959-972.

    [7]

    [7]HUSSIN H Y , QUAN L B , VAN W C J , et al. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps[J]. Natural Hazards and Earth System Sciences, 2012, 12(10):3075-3090.

    [8]

    [8]MCCOY S W, KEAN J W, COE J A, et al. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment[J]. Journal of Geophysical Research Earth Surface, 2012, 117(F3):16.

    [9]

    [9]IVERSON R M, OUYANG C. Entrainment of bed material by Earth‐surface mass flows: Review and reformulation of depth‐integrated theory[J]. Reviews of Geophysics, 2015, 53(1):27-58.

    [10]

    [10]YIN Y, CHENG Y, LIANG J, et al. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2016, 13(1):9-23.

    [11] [11]王国章, 李滨, 冯振,等. 重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J]. 水文地质工程地质, 2014, 41(5):101-106.

    [WANG G Z, LI B, FENG Z, et al. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology & engineering geology, 2014, 41(5):101-106. (in Chinese)]

    [12] [12]陆鹏源, 侯天兴, 杨兴国,等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 2016, 35(6):1225-1232.

    [LU P Y, HOU T X, YANG X G, et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6):1225-1232. (in Chinese)]

    [13]

    [13]LAN H, MARTIN C D, LIM C H. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences, 2007, 33(2):262-279.

    [14] [14]高杨. 高速远程滑坡铲刮动力学分析[D]. 西安:长安大学, 2014.

    [GAO Y. Scraping dynamic analysis of the rapid and long run-out landslide [D]. Xi’an:Chang’an University, 2016. (in Chinese)]

    [15]

    [15]SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 1973, 5(4): 231-236.

    [16] [16]温铭生, 陈红旗, 张鸣之,等. 四川茂县“6·24”特大滑坡特征与成因机制分析[J]. 中国地质灾害与防治学报, 2017,28(3):1-7.

    [WEN M S, CHEN H Q, ZHANG M Z, et al. Characteristics and formation mechanism analysis of the “6·24” catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3):1-7. (in Chinese)]

  • 期刊类型引用(13)

    1. 韩培锋,李兴凯,田述军,樊晓一,刘之葵. 级配与拦挡位置对滑坡碎屑流运动影响研究. 安全与环境学报. 2024(04): 1422-1433 . 百度学术
    2. 贺旭荣,殷跃平,赵立明,胡卸文,王文沛,张仕林. 基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应. 地球科学. 2024(07): 2650-2661 . 百度学术
    3. 赵志明,潘岳,陈理. 四川茂县新磨村滑坡高速启动机理研究. 工程地质学报. 2023(01): 145-153 . 百度学术
    4. 王高峰,李浩,田运涛,陈宗良,徐友宁,高幼龙,叶振南,李瑞冬,谢兴隆. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测. 岩石力学与工程学报. 2023(04): 1003-1018 . 百度学术
    5. 汪美华,赵慧,倪天翔,余洋,陈红旗. 近30年滑坡研究文献图谱可视化分析. 中国地质灾害与防治学报. 2023(04): 75-85 . 百度学术
    6. 王猛,何德伟,贾志宏,胡至华. 基于多源遥感数据的高位滑坡特征分析——以广元市利州区荣山镇岩窝村滑坡为例. 中国地质灾害与防治学报. 2023(06): 57-68 . 百度学术
    7. 郭霞,刘鹏翔,李国建. 黄土滑坡灾害预警的Logistic模型分析. 能源与环保. 2022(04): 77-82+88 . 百度学术
    8. 蒋金晶,许强,郑光,彭双麒,王卓,陈达. 颗粒级配对碎屑流运动速度影响的滑槽试验研究. 人民长江. 2022(05): 197-203 . 百度学术
    9. 李郎平,兰恒星. 滑坡运动路径复杂度研究:综述与展望. 地球科学. 2022(12): 4663-4680 . 百度学术
    10. 张志东,樊晓一,姜元俊. 滑源区粒序分布及颗粒粒径对碎屑流冲击作用的影响研究. 水文地质工程地质. 2021(01): 49-59 . 本站查看
    11. 任占强,宋章,林棋文,程谦恭,刘毅,邓凯丰,蒙浩,涂津. 滑坡碎屑化运动物理模型相似材料特性研究. 水文地质工程地质. 2021(02): 132-142 . 本站查看
    12. 郑兆江. 金沟河引水枢纽内库滑坡变形机理及治理措施. 水科学与工程技术. 2020(02): 81-83 . 百度学术
    13. 黄海宁,黄健,周春宏,潘勇杰. 无人机影像在高陡边坡危岩体调查中的应用. 水文地质工程地质. 2019(06): 149-155 . 本站查看

    其他类型引用(18)

计量
  • 文章访问数:  730
  • HTML全文浏览量:  78
  • PDF下载量:  523
  • 被引次数: 31
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-12-21

目录

    /

    返回文章
    返回