ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

三峡库区巫山县塔坪H1滑坡变形机制

卫童瑶, 殷跃平, 高杨, 李滨, 贺凯, 唐俊刚, 张天贵

卫童瑶, 殷跃平, 高杨, 李滨, 贺凯, 唐俊刚, 张天贵. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质, 2020, 47(4): 73-81. DOI: 10.16030/j.cnki.issn.1000-3665.202003043
引用本文: 卫童瑶, 殷跃平, 高杨, 李滨, 贺凯, 唐俊刚, 张天贵. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质, 2020, 47(4): 73-81. DOI: 10.16030/j.cnki.issn.1000-3665.202003043
WEITongyao, . Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 73-81. DOI: 10.16030/j.cnki.issn.1000-3665.202003043
Citation: WEITongyao, . Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 73-81. DOI: 10.16030/j.cnki.issn.1000-3665.202003043

三峡库区巫山县塔坪H1滑坡变形机制

基金项目: 

国家重点研发计划项目(2018YFC1504800);国家自然科学青年基金(41907257)

Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area

  • 摘要: 自2008 年三峡库区175 m试验性蓄水以来,受库水波动及强降雨影响,沿江库岸发生多起顺向古滑坡变形灾害。以三峡库区巫山县塔坪H1滑坡为例,结合近十年滑坡调查勘察与变形监测资料,分析了该滑坡蓄水后的变形特征。通过研究分析认为:(1)塔坪H1滑坡为顺层古岩质滑坡,岩体呈碎裂状,岩性主要为三叠系香溪组软硬相间的砂岩、泥页岩,岩层间夹多套软弱夹层,形成了多级滑带控制的滑坡变形。(2)滑坡变形分为3个区域,位移量变形最大的滑坡前缘消落带区域,最大水平位移已达80 cm,其次是处于缓慢变形状态的曲尺场镇前部区域和后部相对稳定的曲尺场镇区域。(3)数值模拟结果显示,库水位周期性波动影响着滑坡前缘涉水区域稳定性变化,短时强降雨沿岩体结构面入渗会加速滑坡中前部区域稳定性快速下降。在水位波动和短时强降雨的共同影响下,塔坪H1滑坡在每年汛期呈现缓慢变形。目前塔坪H1滑坡中前部处于持续变形阶段,亟需开展滑坡防治工程,提高滑坡稳定性,确保场镇安全。
    Abstract: Affected by the water level fluctuations and heavy rainfall, several bedding rock landslides have reactivated since the 175 m trail impoundment in the Three Gorges Reservoir area. The Taping H1 landslide near Quchi in Wushan County is taken as an example, and combining the landslide investigation and monitoring, the deformation characteristics and reactivation mechanism of the landslide are analyzed. The research results show that (1) the Taping H1 landslide is an ancient bedding rock landslide, the rock mass is fragmented and is mainly composed of soft and hard sandstone, mudstone and shale of the Triassic Xiangxi Group, which is sandwiched by multiple layers of weak inter layers, forming a multi-stage slip zone to control landslide deformation. (2) According to the monitoring of surface and underground displacements, the deformation of the landslide is divided into three regions. The maximum horizontal displacement of the landslide leading zone of the landslide with the largest displacement has reached 80 cm. The middle area of the landslide is slowly deformed, and the area of the rear Quchi Township is relatively stable. (3) The numerical simulation results show that the water level fluctuations influences the deformation and stability of the landslide leading edge which is below the water surface, and the heavy rainfall infiltration along the structural plane accelerates the deformation of the front area of the landslide. The middle and front areas of the Taping H1 landslide is currently in the stage of continuous deformation. Under the combined influence of water level fluctuations and short-term heavy rainfall, the Taping H1 landslide shows a slow deformation during the annual flood season, which is consistent with the monitoring results. Landslide prevention projects are urgently needed to improve the stability of the landslide and ensure the safety of the town.
  • [1]

    [1]YIN Y P, HUANG B L, WANG W P, et al. Reservoir-induced landslides and risk control in Three Gorges project on Yangtze River, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 577-595.

    [2]

    [2]TANG H M, WASOWSKI J, JUANG C H. Geohazards in the three Gorges Reservoir Area, China-Lessons learned from decades of research[J]. Engineering Geology, 2019, 261: 105-267.

    [3]

    [3]SONG K, WANG F W, YI Q L, et al. Landslide deformation behavior influenced by water level fluctuations of the three Gorges Reservoir (China)[J]. Engineering Geology, 2018,247:58-68.

    [4] [4]殷跃平.三峡库区地下水渗透压力对滑坡稳定性影响研究[J].中国地质灾害与防治学报,2003,14(3):1-8.

    [YIN Y P.Study on the influence of groundwater seepage pressure on landslide stability in the Three Gorges reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2003,14(3): 1-8.(in Chinese)]

    [5] [5]殷跃平,彭轩明.三峡库区千将坪滑坡失稳探讨[J].水文地质工程地质,2007,34(3):51-54.

    [YIN Y P, PENG X M. Failure mechanism on Qianjiangping Landslide in the Three Gorges Reservoir region[J].Hydrogeology & Engineering Geology, 2007,34 (3): 51-54.(in Chinese)]

    [6]

    [6]YIN Y P, HUANG B L, CHEN X T, et al. Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China[J]. Landslides, 2015, 12(2):355-364.

    [7] [7]卢书强,易庆林,易武,等.三峡库区树坪滑坡变形失稳机制分析[J].岩土力学,2014,35(4):1123-1130.

    [LU S Q, YI Q L, YI W, et al. Analysis of deformation and failure mechanism of Shuping landslide in the Three Gorges reservoir area[J]. Rock and Soil Mechanics, 2014, 35 (4): 1123-1130.(in Chinese)]

    [8] [8]代贞伟,殷跃平,魏云杰,等.三峡库区藕塘滑坡特征、成因及形成机制研究[J].水文地质工程地质,2015,42(6):145-153.

    [DAI Z W, YIN Y P, WEI Y J, et al. Characteristics, origin and formation mechanism of the Outang landslide in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2015, 42 (6): 145-153.(in Chinese)]

    [9] [9]黄达,匡希彬,罗世林.三峡库区藕塘滑坡变形特点及复活机制研究[J].水文地质工程地质,2019,46(5):127-135.

    [HUANG D, KUANG X B, LUO S L. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46 (5): 127-135.(in Chinese)]

    [10]

    [10]HUANG D, GU D M, SONG Y X, et al. Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges Reservoir[J]. Engineering Geology, 2018, 238: 36-51.

    [11] [11]周剑,邓茂林,李卓骏,等.三峡库区浮托减重型滑坡对库水升降的响应规律[J].水文地质工程地质,2019,46(5):136-143.

    [ZHOU J, DENG M L, LI Z J, et al. Response patterns of buoyancy weight loss landslides under reservoir water level fluctuation in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2019, 46 (5): 136-143.(in Chinese)]

    [12] [12]李晓,张年学,廖秋林,等.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩石力学与工程学报,2004, 23 (21):3714-3720.

    [LI X, ZHANG N X, LIAO Q L, et al. Analysis of groundwater dynamic field of sliding slope groundwater due to the combined effect of reservoir water level fluctuation and rainfall[J]. Journal of Rock Mechanics and Engineering, 2004,23(21): 3714-3720.(in Chinese)]

    [13] [13]殷跃平.三峡库区边坡结构及失稳模式研究[J].工程地质学报,2005,13(2):145-154.

    [YIN Y P. Human-cutting slope structure and failure pattern at the Three Gorges reservoir Area[J]. Journal of Engineering Geology, 2005,13(2): 145-154.(in Chinese)]

    [14] [14]张开鹏,刘新喜.降雨入渗对三峡库区堆积层滑坡稳定性的影响[J].中国安全科学学报,2006, 16(6):4-8.

    [ZHANG K P, LIU X X. The effect of rainfall infiltration on the stability of the accumulation layer landslide in the Three Gorges reservoir area[J]. Chinese Journal of Safety Science, 2006, 16(6): 4-8.(in Chinese)]

    [15] [15]孙广忠. 岩体力学性质的结构效应[C]//全国第三次工程地质大会论文集. 成都, 1988: 266-271.

    [SUN G Z. Structural effects of mechanical properties of rock masses[C]// Proceedings of the Third National Engineering Geology Conference. Chengdu, 1988: 266-271 (in Chinese)]

    [16] [16]肖拥军,杨昌才,何惠军.三峡库区黄土坡滑坡体原岩结构特征及演化模式研究[J].水文地质工程地质,2012,39(5):121-125.

    [XIAO Y J, YANG C C, HE H J. Research on landslide’s original rock structure characteristics and evolution model of the Huangtupo landslide in the Three Gorges reservoir area[J]. Hydrogeology & Engineering Geology, 2012, 39 (5): 121-125.(in Chinese)]

    [17] [17]黄达,顾东明,陈智强,等.三峡库区塔坪H2古滑坡台阶状复活变形的库水-降雨耦合作用机制[J].岩土工程学报,2017,39(12):2203-2211.

    [HUANG D, GU D M, CHEN Z Q, et al. The step-recovery coupling mechanism of reservoir-water-rainfall deformation in the step-shaped resurrection of ancient H2 landslide in Taping, Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (12): 2203-2211.(in Chinese)]

  • 期刊类型引用(19)

    1. 杨雨亭,代贞伟,陆愈实,张晨阳,闫慧,侯雪峰,唐俊刚. 库岸古滑坡复活变形特征及双滑带稳定性响应. 地球科学. 2024(04): 1498-1514 . 百度学术
    2. 苗元亮,张书坤,孟超. 三峡库区库岸堆积层滑坡变形趋势分析. 中国地质调查. 2024(06): 86-92 . 百度学术
    3. 谭银龙,许万忠,曹家菊,罗丹,王本栋,谯立家,周谊. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析. 水文地质工程地质. 2023(01): 113-121 . 本站查看
    4. 苏培东,严磊,邱鹏,梁宇,汪意凌. 考虑水库岸坡特征的滑坡稳定性计算修正传递系数法. 中国地质灾害与防治学报. 2023(01): 40-48 . 百度学术
    5. 尹玉玲,徐素宁,王军,胡克. 典型黄土丘陵区地质灾害隐患识别与时序监测. 水文地质工程地质. 2023(02): 141-149 . 本站查看
    6. 朱宇航,黄海峰,殷坤龙,郭子正,郭飞,赖鹏. 基于滑坡破坏模式分析的易发性评价——以三峡库区首段泄滩河左岸为例. 中国地质灾害与防治学报. 2023(02): 156-166 . 百度学术
    7. 陈敬业,王钧,宫清华,袁少雄,许安泽,罗依珍. 植被增渗效应对花岗岩残积土浅层滑坡的影响机理研究. 水文地质工程地质. 2023(03): 115-124 . 本站查看
    8. 贲琰棋,易武,李华兵,黄晓虎,刘伟,肖宇煌. 基于“阶跃”变形特征的降雨型滑坡预警判据探讨. 中国地质灾害与防治学报. 2023(04): 30-38 . 百度学术
    9. 檀梦皎,殷坤龙,付智勇,朱春芳,陶小虎,朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析. 中国地质灾害与防治学报. 2022(01): 45-57 . 百度学术
    10. 裴小龙,杨瀚文,宋东阳,杨斌,田野. 雅砻江中游楞古水电站夏日滑坡发育特征及稳定性分析. 中国地质灾害与防治学报. 2022(01): 75-82 . 百度学术
    11. 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析. 中国地质灾害与防治学报. 2022(01): 27-34 . 百度学术
    12. 陈云生,刘光彬,张一铭,黄海峰,吴秋军. 阳鹿高速公路K52新滑坡变形特征与成因机理分析. 中国地质灾害与防治学报. 2022(01): 83-91 . 百度学术
    13. 石爱红,李国庆,丁德民,苑权坤. 考虑非饱和土基质吸力的丁家坡滑坡变形机制及稳定性评价. 水文地质工程地质. 2022(06): 141-151 . 本站查看
    14. 窦晓东,张泽林. 甘肃舟曲垭豁口滑坡复活机理及成因探讨. 中国地质灾害与防治学报. 2021(02): 9-18 . 百度学术
    15. 蒋先念,张晨阳. 三峡库区典型顺斜向岩质滑坡变形破坏特征及失稳机制分析. 中国地质灾害与防治学报. 2021(02): 36-42 . 百度学术
    16. 王玉川,郭其峰,周延国. 中等倾角岩层顺向坡滑坡发育特征及形成机制分析——以拖担水库左岸坝肩滑坡为例. 中国地质灾害与防治学报. 2021(04): 17-23 . 百度学术
    17. 严耀庭. 库水位下降速率对三峡塔坪滑坡稳定性的影响. 山西建筑. 2021(20): 96-98 . 百度学术
    18. 梁宇,严磊,苏培东,邱鹏,龙伟,汪意凌. 溪洛渡库区河口滑坡变形特征和形成机制. 科学技术与工程. 2021(34): 14500-14507 . 百度学术
    19. 谢祖芬. 上部黏土下伏碎斑熔岩一类浅层滑坡变形破坏过程研究. 福建交通科技. 2020(05): 74-77 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  348
  • HTML全文浏览量:  180
  • PDF下载量:  1539
  • 被引次数: 30
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-19
  • 发布日期:  2020-09-09

目录

    /

    返回文章
    返回