ISSN 1000-3665 CN 11-2202/P

    非饱和花岗岩残积土水-气两相驱替过程数值模拟

    Numerical simulation of water-gas two-phase displacement process in unsaturated granite residual soil

    • 摘要: 水流在非饱和土体中的入渗过程实质上是水在下渗的过程中驱替空气的两相流问题。为揭示非饱和花岗岩残积土水-气两相驱替动态渗流机理,选取福州某地原状花岗岩残积土作为研究对象,基于工业CT扫描图像与Level Set方法,研究了原状土样两相驱替的动态特征。结果表明:对于细观尺度水-气两相驱替模拟,Level Set法能很好地捕捉两种不混溶流体间的界面位置;水-气两相驱替过程存在大孔隙优先流特征,且“绕流”现象一般易于出现在孔隙成圆度较高处;两相渗流速度主要受孔道迂回度控制,笔直、较宽孔道,渗流速度相对较高,同时存在明显的“优势通道”,且随渗流时间增大以先急后缓的特征呈正相关变化,最大增速率为 10.77%,最小仅 1.90%;孔道横截面速度大小分布与孔隙结构有关,“回流”和“绕流”现象会使驱替速度骤降,降低幅度可达21.62%;驱替阻力最大出现在孔壁处,孔道越窄,阻力越大;驱替效率与驱替压差成正比关系,且初期加压增速效果显著,可达25.49%,后期仅为1.47%。该研究成果可丰富降雨型滑坡理论基础并预防灾害产生,具有重要的理论价值及工程意义。

       

      Abstract: Infiltration of current in unsaturated soil is essentially a two-phase flow problem of water displacing air in the process of infiltration. The accuracy of traditional two-phase flow research methods cannot meet the needs of engineering, and it is not conducive to repetitive research. In contrast, the numerical simulation method of multiphase flow at the meso-scale can better simulate the whole dynamic process of water flooding. Mao Huan, Qren and others have achieved great results in the field of pore meso-scale research, but on the one hand, most of them focus on the study of rock multiphase flow, and there are some differences between the research object and the actual pore structure. On the other hand, the widely used pore network model method cannot directly show the change of particle velocity at any time and cannot present the phase interface movement state. In view of this, in order to reveal the dynamic percolation mechanism of water-gas two-phase displacement of unsaturated granite residual soil, this paper selected undisturbed granite residual soil in Fuzhou as the research object and studied the dynamic characteristics of two-phase displacement of undisturbed soil samples by using industrial CT scanning images and Level Set method. The results show that the Level Set method can properly capture the interface position between two immiscible fluids for meso-scale water-gas two-phase displacement simulation. The water-gas two-phase displacement process has the characteristics of large pore preferential flow, and the ‘low around’ phenomenon can easily appear in the higher ground of porosity roundness in general. The displacement rate is mainly controlled by the tortuosity of the channel, displacement speed is relatively high in the straight and wide channel. There is an obvious phenomenon of ‘preferential passage’, and its seepage time is positively correlated with the first rapid and then slow characteristics, and the maximum and minimum growth rate are 10.77 % and 1.90 %, respectively. The velocity distribution of the pore cross-section is related to the pore structure, and the phenomena of ‘reflux’ and ‘flow around’ cause the displacement velocity to drop sharply, whose decreasing degree can reach 21.62 %. The maximum displacement resistance appears at the hole wall, and the narrower the hole, the greater the resistance. The displacement efficiency is directly proportional to the displacement pressure difference, and the initial pressure growth effect is significant (up to 25.49 %, and only 1.47 % later). The research results can provide a theoretical basis for the study of the water migration mechanism of porous slopes, and also can enrich the theoretical basis of rainfall-induced landslides and are helpful in preventing natural disasters.

       

    /

    返回文章
    返回