Development and application of sea water intrusion models
-
摘要: 海水入侵是困扰沿海地区经济社会发展的重大资源、环境问题,严重影响沿海地区地下水资源。定量模拟、预测和可视化管理是对海水入侵进行有效监测和机理分析的重要手段。基于前期海水入侵模拟的理论研究及方法,提出了海水入侵模拟及预测模型VFT3D,该模型综合考虑地表水-地下水对海水入侵的协同控制作用,能够模拟变密度地下水流及复杂反应性迁移,实现模拟海水入侵的完整水文循环过程。文章介绍了VFT3D模型,利用VFT3D模型模拟了一个海水入侵案例,并与SEAWAT模型模拟结果进行了对比分析。结果表明VFT3D 模型模拟水头与SEAWAT模型模拟结果相差不大,但SEAWAT模型无法模拟海水入侵中复杂的化学反应过程。VFT3D 模型模拟发现,水文地球化学过程(阳离子吸附交换作用)对阳离子(Na+、K+、Mg2+和Ca2+)运移产生明显影响,同时引起过渡带中离子组分浓度发生变化,对海水入侵过程产生较大影响。因此,考虑变密度和复杂反应过程,才能更加准确地描述海水入侵,从而有利于地下咸水治理工程的科学实施。Abstract: Sea water intrusion is an important environmental issue that plagues the economic and social development in coastal areas. The implementation of quantitative simulation, prediction and visual management of sea water intrusion is a cost-effective means for monitoring and mechanism analysis of sea water intrusion, which can provide important theoretical and technical supports for the formulation of sea water intrusion control measures. VFT3D was proposed to model the sea water intrusion processes and predict the impacts on groundwater, which can comprehensively consider the effects of surface water and groundwater, simulate variable-density groundwater flow, and solve complex reactive migration problems. This article provides an introduction to the VFT3D model and presents an application of VFT3D to modeling seawater intrusion process. The simulated results are compared with those of the SEAWAT. The results show that the simulated water heads with VFT3D are close to the SEAWAT simulation results. The SEAWAT is unable to simulate complex chemical reactions during the sea water intrusion. The results indicate that geochemical processes (cation adsorption and exchange) have a significant effect on the movement of cations (Na+, K+, Mg2+ and Ca2+). Geochemical process leads to the concentration change in the transition zone, whose influence on the process of sea water intrusion can not be ignored. Therefore, the variable density and complex reaction process should be involved to more accurately describe the sea water intrusion, which can benefit the implementation of the underground saltwater remediation and management.
-
Keywords:
- seawater intrusion /
- groundwater /
- geochemical reaction /
- variable density flow /
- model
-
-
表 1 咸水(海水)、淡水的各组分浓度值以及对应的
εi 值Table 1 Concentrations of ions in sea water and fresh water and values for
εi pH Cl− Na+ SO2−4 Mg2+ Ca2+ K+ HCO−3 淡水/(mol·L−1) 7.93 0.0296 0.0205 0.0067 0.0017 0.0092 0.0008 0.0003 海水/(mol·L−1) 7.95 0.5295 0.4521 0.0265 0.0483 0.0100 0.0092 0.0004 εi值/(g·mol−1) 35.1 6 116.8 9.6 21.7 12.2 54.4 注:pH值无量纲。 表 2 阳离子交换作用及反应常数
Table 2 Ion-exchange reactions in the column
阳离子交换作用反应公式 lg Ka Na++X−=NaX 0 Mg2++2X−=MgX2 0.6 Ca2++2X−=CaX2 0.8 注:a反应常数来自于PHREEQC-2的数据库。 -
[1] 黄磊, 郭占荣. 中国沿海地区海水入侵机理及防治措施研究[J]. 中国地质灾害与防治学报,2008,19(2):118 − 123. [HUANG Lei, GUO Zhanrong. Mechanism of sea water intrusion in China's coastal areas and its prevention countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):118 − 123. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2008.02.025 [2] ATAIE-ASHTIANI B, WERNER A D, SIMMONS C T, et al. How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise?[J]. Hydrogeology Journal,2013,21(7):1673 − 1677. DOI: 10.1007/s10040-013-1021-0
[3] SEFELNASR A, SHERIF M. Impacts of seawater rise on seawater intrusion in the Nile delta aquifer, Egypt[J]. Groundwater,2014,52(2):264 − 276. DOI: 10.1111/gwat.12058
[4] 熊贵耀, 付腾飞, 徐兴永, 等. 滨海含水层海水入侵影响因素研究综述[J]. 海洋科学,2019,43(6):102 − 112. [XIONG Guiyao, FU Tengfei, XU Xingyong, et al. Review of factors affecting seawater intrusion in coastal aquifers[J]. Marine Sciences,2019,43(6):102 − 112. (in Chinese with English abstract) DOI: 10.11759/hykx20181105001 [5] 崔震, 陈广泉, 徐兴永, 等. 北长山岛海水入侵成因机理及现状评价[J]. 海洋环境科学,2015,34(6):930 − 936. [CUI Zhen, CHEN Guangquan, XU Xingyong, et al. Mechanism and assessment of seawater intrusion in the Northern Changshan Island[J]. Marine Environmental Science,2015,34(6):930 − 936. (in Chinese with English abstract) [6] 崔相飞, 周训, 徐中平, 等. 海岸带咸淡水界面的研究进展[J]. 水文地质工程地质,2018,45(2):29 − 35. [CUI Xiangfei, ZHOU Xun, XU Zhongping, et al. Advances in research on the fresh water-salt water interface in coastal zones[J]. Hydrogeology & Engineering Geology,2018,45(2):29 − 35. (in Chinese with English abstract) [7] 郭占荣, 黄奕普. 海水入侵问题研究综述[J]. 水文,2003,23(3):10 − 15. [GUO Zhanrong, HUANG Yipu. Comprehensive study on seawater intrusion[J]. Hydrology,2003,23(3):10 − 15. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0852.2003.03.003 [8] 陈广泉. 基于GIS的莱州湾地区海水入侵灾害风险评价研究[D]. 青岛: 中国海洋大学, 2010. CHEN Guangquan. Risk assessment of seawater intrusion disaster in the Laizhou Bay based on GIS[D]. Qingdao: Ocean University of China, 2010. (in Chinese with English abstract)
[9] TRAN D A, TSUJIMURA M, PHAM H V, et al. Intensified salinity intrusion in coastal aquifers due to groundwater overextraction: A case study in the Mekong Delta, Vietnam[J]. Environmental Science and Pollution Research,2021:1 − 15.
[10] GOMAA S M, HASSAN T M, HELAL E. Assessment of seawater intrusion under different pumping scenarios in Moghra aquifer, Egypt[J]. Science of the Total Environment,2021,781:146710. DOI: 10.1016/j.scitotenv.2021.146710
[11] 耿雪峰, 肖林超, 汪磊. 深圳市海水入侵形成原因分析[J]. 山西建筑,2014,40(13):68 − 70. [GENG Xuefeng, XIAO Linchao, WANG Lei. The causes of seawater intrusion in Shenzhen City[J]. Shanxi Architecture,2014,40(13):68 − 70. (in Chinese with English abstract) [12] 赵洁, 林锦, 吴剑锋, 等. 未来气候变化对大连周水子地区海水入侵程度的影响预测[J]. 水文地质工程地质,2020,47(3):17 − 24. [ZHAO Jie, LIN Jin, WU Jianfeng, et al. Prediction of the impact of future climate change on the extent of seawater intrusion in Zhoushuizi district of Dalian City in Northern China[J]. Hydrogeology & Engineering Geology,2020,47(3):17 − 24. (in Chinese with English abstract) [13] 李选彧. 未来气候变化对丹东市海水入侵程度的影响预测[J]. 黑龙江水利科技,2020,48(10):59 − 64. [LI Xuanyu. Forecast of influence of future climate change on degree of seawater intrusion in Dandong City[J]. Heilongjiang Hydraulic Science and Technology,2020,48(10):59 − 64. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-7596.2020.10.017 [14] MERCER J W, LARSON S P, FAUST C R. Simulation of salt-water interface motion[J]. Groundwater,1980,18(4):374 − 385. DOI: 10.1111/j.1745-6584.1980.tb03412.x
[15] 唐心强, 王虹, 左风华, 等. 海岸带含水层咸淡水界面随潮汐波动的数值模拟[J]. 安全与环境学报,2007,7(4):84 − 92. [TANG Xinqiang, WANG Hong, ZUO Fenghua, et al. Numerical simulation of fresh-saline water interface interactive regularities in coastal areas due to the tidal fluctuation[J]. Journal of Safety and Environment,2007,7(4):84 − 92. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6094.2007.04.023 [16] 杨林, 黄栋声, 李海良, 等. 滨海盆地变密度地下水流与溶质运移三维耦合数值模型研究[J]. 水利水电技术,2020,51(3):116 − 123. [YANG Lin, HUANG Dongsheng, LI Hailiang, et al. Study on three-dimensional numerical model of variable-density groundwater flow and solute transport in the coastal basin[J]. Water Resources and Hydropower Engineering,2020,51(3):116 − 123. (in Chinese with English abstract) [17] DUNLOP G, PALANICHAMY J, KOKKAT A, et al. Simulation of saltwater intrusion into coastal aquifer of Nagapattinam in the lower Cauvery basin using SEAWAT[J]. Groundwater for Sustainable Development,2019,8:294 − 301. DOI: 10.1016/j.gsd.2018.11.014
[18] 董健, 曾献奎, 吴吉春. 不同类型海岸带海水入侵数值模拟研究进展[J]. 高校地质学报,2018,24(3):442 − 449. [DONG Jian, ZENG Xiankui, WU Jichun. Advances in numerical simulation of seawater intrusion in different coastal zones[J]. Geological Journal of China Universities,2018,24(3):442 − 449. (in Chinese with English abstract) [19] ABD-ELHAMID H F, JAVADI A A. A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers[J]. Journal of Hydrology,2011,401(3/4):259 − 271.
[20] 马婧, 鲁春辉, 吴吉春, 等. 一种可增加海岛地下淡水资源储量的方法研究[J]. 水文地质工程地质,2020,47(3):1 − 7. [MA Jing, LU Chunhui, WU Jichun, et al. A method for improving the fresh groundwater storage of oceanic islands[J]. Hydrogeology & Engineering Geology,2020,47(3):1 − 7. (in Chinese with English abstract) [21] 杨林, 黄栋声, 李海良, 等. 滨海盆地变密度地下水流与溶质运移三维耦合数值模型研究[J]. 水利水电技术,2020,51(3):116 − 123. [YANG Lin, HUANG Dongsheng, LI Hailiang, et al. Study on three-dimensional numerical model of variable-density groundwater flow and solute transport in the coastal basin[J]. Water Resources and Hydropower Engineering,2020,51(3):116 − 123. (in Chinese with English abstract) [22] 吕盼盼, 宋健, 吴剑锋, 等. 水力屏障和截渗墙在海水入侵防治中的数值模拟研究[J]. 水文地质工程地质,2021,48(4):32 − 40. [LYU Panpan, SONG Jian, WU Jianfeng, et al. A numerical simulation study for controlling seawater intrusion by using hydraulic and physical barriers[J]. Hydrogeology & Engineering Geology,2021,48(4):32 − 40. (in Chinese with English abstract) [23] ABD-ELATY I, STRAFACE S, KURIQI A. Sustainable saltwater intrusion management in coastal aquifers under climatic changes for humid and hyper-arid regions[J]. Ecological Engineering,2021,171:106382. DOI: 10.1016/j.ecoleng.2021.106382
[24] ZEYNOLABEDIN A, GHIASSI R, PIROOZ M D. Investigating island groundwater salinity, using vulnerability index and numerical methods[J]. Water Supply,2020,20(7):2804 − 2814. DOI: 10.2166/ws.2020.180
[25] WEBB M D, HOWARD K W F. Modeling the transient response of saline intrusion to rising sea-levels[J]. Groundwater,2011,49(4):560 − 569. DOI: 10.1111/j.1745-6584.2010.00758.x
[26] POST V E A, PROMMER H. Multicomponent reactive transport simulation of the Elder problem: Effects of chemical reactions on salt plume development[J]. Water Resources Research,2007,43(10):W10404.
[27] GUO W, LANGEVIN C D. User’s guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow[C]// U. S. Geological Survey Techniques of Water- resources Investigations Book 6. Reston: US Geological Survey, 2002.
[28] CELIA M A, BOULOUTAS E T, ZARBA R L. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research,1990,26(7):1483 − 1496. DOI: 10.1029/WR026i007p01483
[29] HAN F, ZHENG Y, TIAN Y, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance[J]. Journal of Hydrology,2021,595:126045. DOI: 10.1016/j.jhydrol.2021.126045
[30] MONNIN C. Density calculation and concentration scale conversions for natural waters[J]. Computers & Geosciences,1994,20(10):1435 − 1445.
[31] MAO X, PROMMER H, BARRY D A, et al. Three-dimensional model for multi-component reactive transport with variable density groundwater flow[J]. Environmental Modelling & Software,2006,21(5):615 − 628.
[32] 吴吉春, 薛禹群, 刘培民. 龙口-莱州地区海水入侵的发展与水化学特征[J]. 南京大学学报,1994,30(1):98 − 110. [WU Jichun, XUE Yuqun, LIU Peimin. Development and hydrochemical characteristic of seawater intrusion in Longkou-Laizhou District[J]. Journal of Nanjing University (Natural Science Edition),1994,30(1):98 − 110. (in Chinese with English abstract) [33] 吴吉春, 薛禹群, 谢春红, 等. 海水入侵过程中水-岩间的阳离子交换[J]. 水文地质工程地质,1996,23(3):18 − 19. [WU Jichun, XUE Yuqun, XIE Chunhong, et al. The cation exchange between water-rock interaction in the process of seawater intrusion[J]. Hydrogeology & Engineering Geology,1996,23(3):18 − 19. (in Chinese with English abstract) [34] 李梦娇. 海岸带不同土壤类型的水-岩相互作用实验研究[D]. 北京: 中国地质大学(北京), 2019. LI Mengjiao. Experimental study on water-rock interaction of different soil types in coastal zone[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese with English abstract)
-
期刊类型引用(5)
1. 支传顺,胡晓农,陈麟,焦裕飞,白晶. 微生物对海水入侵响应特征及指示意义的研究进展. 水文地质工程地质. 2024(02): 192-203 . 本站查看
2. 彭益,张文,王汉勋,张彬,孙哲. 某海岛地下水封油库渗流场数值模拟. 隧道与地下工程灾害防治. 2024(01): 94-104 . 百度学术
3. 张春鹏,查恩爽,张皎. 海水入侵实践教学方法及技能强化训练. 高教学刊. 2024(24): 124-127 . 百度学术
4. 宁彩艳,徐立荣,李倩,徐晶,陈学群. 地下坝防治海水入侵的数值模拟. 济南大学学报(自然科学版). 2024(05): 533-540 . 百度学术
5. 王志秀,李亚松,郝奇琛,张媛静,肖勇,刘春雷. 基于盐度动态模拟估算潮间带地下淡水排泄量. 水文地质工程地质. 2024(05): 56-67 . 本站查看
其他类型引用(2)