ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

土工格栅与碎石土混合料界面作用的大型直剪试验研究

王家全, 祁航翔, 黄世斌, 唐毅

王家全,祁航翔,黄世斌,等. 土工格栅与碎石土混合料界面作用的大型直剪试验研究[J]. 水文地质工程地质,2022,49(4): 81-90. DOI: 10.16030/j.cnki.issn.1000-3665.202109022
引用本文: 王家全,祁航翔,黄世斌,等. 土工格栅与碎石土混合料界面作用的大型直剪试验研究[J]. 水文地质工程地质,2022,49(4): 81-90. DOI: 10.16030/j.cnki.issn.1000-3665.202109022
WANG Jiaquan, QI Hangxiang, HUANG Shibin, et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81-90. DOI: 10.16030/j.cnki.issn.1000-3665.202109022
Citation: WANG Jiaquan, QI Hangxiang, HUANG Shibin, et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81-90. DOI: 10.16030/j.cnki.issn.1000-3665.202109022

土工格栅与碎石土混合料界面作用的大型直剪试验研究

基金项目: 国家自然科学基金项目(41962017);广西自然科学基金重点项目(2022GXNSFDA035081);广西高等学校高水平创新团队及卓越学者计划项目(桂教人才[2020]6号)
详细信息
    作者简介:

    王家全(1981-),男,博士,教授,博士研究生导师,主要从事加筋土结构、地基基础工程、土木工程灾害防治等研究。E-mail:wjquan1999@163.com

  • 中图分类号: TU411.7

Large-scale direct shear test on the interface between geogrid and gravel-soil mixture

  • 摘要: 土工合成材料在各类加筋土工程中运用时,面临的问题主要是加筋体结构的稳定性、安全性及长期服役性能,而筋土界面摩擦特性对加筋体结构的稳定性与安全性有着直接的影响。目前对黏土和砂土的研究居多,针对现场常见的碎石土混合料与格栅界面相互作用的研究却鲜有报道。本文以兰州至海口高速公路广西南宁经钦州至防城港段改扩建工程项目为背景,通过室内大型直剪试验对碎石土混合料与土工格栅界面的剪切特性进行了相关研究,探讨了不同剪切速率、压实度、法向应力对直剪界面相互作用特性的影响。结果表明:在法向应力σv≤30 kPa时,界面剪切应力峰值随压实度的提高呈现出线性增长趋势,随法向应力进一步增加,增长趋势由线性增长向折线增长转变;随剪切速率的增加,其在剪切速率v=1.5 mm/min下界面剪切应力最大;界面似黏聚力随压实度的提高而增大,而界面似摩擦角正好与之相反;不同剪切速率下的界面似黏聚力与似摩擦角呈现一定范围内的波动变化,波动范围分别为38.725~50.495 kPa和25.873°~ 29.683°;筋土直剪界面的直剪曲线呈现应变硬化的特征,且不同影响因素下拐点所对应的剪切位移大多集中在剪切面长度的0.83%~1.83%之间。研究结果可为以碎石土混合料作为填料的加筋工程建设提供设计参数及理论参考。
    Abstract: When geosynthetics are used in various types of reinforced soil projects, the main problems are the stability, safety and long-term service performance of the reinforced structures. The friction characteristics of the reinforced soil interface have a direct impact on the stability and safety of the reinforced structures. However, there are many researches on clay and sand, and there are few reports on the interface interaction between gravel soil mixture and geogrid. In this study the reconstruction and extension project of Lanzhou-Haikou expressway from Nanning to Fangchenggang in Guangxi is taken as the background, the indoor large direct shear test of the gravel-soil mixture and geogrid interface shear characteristics are studied, and the effects of the different shear rate, degree of compaction and normal stress on the interaction characteristics of direct shear interface are discussed. The test results show that when the normal stress σv ≤30 kPa, the peak value of the interfacial shear stress presents a linear growth trend with the increasing compaction degree. With the further increase of normal stress, the growth trend changes from linear growth to polygonal growth. With the increasing shear rate, the shear stress at the interface between the reinforcement and soil is maximum at the shear rate v =1.5 mm/min. The interfacial cohesion increases with the increasing compaction degree, and the interfacial friction angle is just the opposite. Under different shear rates, the interfacial cohesion and friction angle fluctuate within a certain range of 38.725 kPa to 50.495kPa and 25.873° to 29.683°, respectively. The direct shear curve of the reinforced-soil direct shear interface is characterized by strain hardening, and the shear displacement corresponding to the inflection point under different influencing factors is mostly concentrated between 0.83% and 1.83% of the shear area length. The results can provide design parameters and theoretical reference for reinforced engineering construction with gravel - soil mixture as filler.
  • 图  1   直剪试验设备

    Figure  1.   Direct shear test equipment

    图  2   碎石土混合料

    Figure  2.   Gravel-soil mixture

    图  3   填料颗粒级配曲线

    Figure  3.   Particle gradation curve of filler

    图  4   不同剪切速率下剪切应力与剪切位移的变化规律

    Figure  4.   Variations of the shear stress and shear displacement under different shear rates

    图  5   不同剪切速率下的剪切应力峰值

    Figure  5.   Peak shear stress at different shear rates

    图  6   不同压实度下剪切应力与剪切位移的变化规律

    Figure  6.   Variations of the shear stress and shear displacement under different compaction degrees

    图  7   不同压实度下的剪切应力峰值

    Figure  7.   Peak shear stress under different compaction degrees

    图  8   不同压实度下的抗剪强度拟合直线

    Figure  8.   Fitting lines of the shear strength under different compactness

    图  9   不同压实度下的界面参数变化规律

    Figure  9.   Variations of interface parameters under different compaction degrees

    图  10   不同剪切速率下的抗剪强度拟合直线

    Figure  10.   Shear strength fitting lines under different shear rates

    图  11   不同剪切速率下的界面参数变化规律

    Figure  11.   Variations of interface parameters under different shear rates

    图  12   不同影响因素下的直剪曲线拐点处的剪切位移变化规律

    Figure  12.   Variations of the shear displacement at the inflection point of direct shear curves under different influencing factors

    表  1   土工格栅的具体物理指标

    Table  1   Specific physical indicators of geogrids

    产品
    规格
    极限抗
    拉强度/
    (kN·m−1
    极限荷载
    下延伸率/%
    2%延伸率
    抗拉强度/
    (kN·m−1
    5%延伸率
    抗拉强度/
    (kN·m−1
    网孔
    尺寸/
    mm×mm
    纵/横向纵/横向纵/横向纵/横向
    TGSG
    5050
    51.1/51.712.1/11.718.6/20.733.1/35.840×40
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test Schemes

    填料类型压实度
    λ
    法向应力
    σv/kPa
    剪切速率
    v/(mm·min−1
    现场碎石土混合料0.7615,30,45,601.5
    0.8615,30,45,60
    0.9615,30,45,600.5,1.5,3.0,5.0,7.0
    下载: 导出CSV
  • [1] 徐超, 贾斌, 罗玉珊. 间接加筋作用及加筋土挡墙离心模型试验验证[J]. 水文地质工程地质,2015,42(2):77 − 82. [XU Chao, JIA Bin, LUO Yushan. Indirect reinforcement effect and verification by centrifuge modeling of reinforced soil wall[J]. Hydrogeology & Engineering Geology,2015,42(2):77 − 82. (in Chinese with English abstract)

    XU Chao, JIA Bin, LUO Yushan. Indirect reinforcement effect and verification by centrifuge modeling of reinforced soil wall[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 77-82. (in Chinese with English abstract)

    [2] 刘倩萁, 张孟喜, 洪成雨. 基于光纤传感技术的土工格栅变形及受力研究[J]. 水文地质工程地质,2019,46(6):119 − 125. [LIU Qianqi, ZHANG Mengxi, HONG Chengyu. A study of deformation and stress of geogrids based on optical fiber sensing technology[J]. Hydrogeology & Engineering Geology,2019,46(6):119 − 125. (in Chinese with English abstract)

    LIU Qianqi, ZHANG Mengxi, HONG Chengyu. A study of deformation and stress of geogrids based on optical fiber sensing technology[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 119-125. (in Chinese with English abstract)

    [3] 黄英, 何发祥, 符必昌. 玻璃纤维与红土的界面作用特性研究[J]. 水文地质工程地质,2003,30(4):7 − 12. [HUANG Ying, HE Faxiang, FU Bichang. Interaction between the fiberglass and laterite[J]. Hydrogeology & Engineering Geology,2003,30(4):7 − 12. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2003.04.002

    HUANG Ying, HE Faxiang, FU Bichang. Interaction between the fiberglass and laterite[J]. Hydrogeology & Engineering Geology, 2003, 30(4): 7-12. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2003.04.002

    [4] 孟凡祥, 徐超. 筋土之间直剪试验与拉拔试验的对比分析[J]. 水文地质工程地质,2009,36(6):80 − 84. [MENG Fanxiang, XU Chao. Comparation and analyses of direct shear test and pull-out test of the interface between soils and geosynthetics[J]. Hydrogeology & Engineering Geology,2009,36(6):80 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2009.06.018

    MENG Fanxiang, XU Chao. Comparation and analyses of direct shear test and pull-out test of the interface between soils and geosynthetics[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 80-84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2009.06.018

    [5]

    LYONS C K, FANNIN J. A comparison of two design methods for unpaved roads reinforced with geogrids[J]. Canadian Geotechnical Journal,2006,43(12):1389 − 1394. DOI: 10.1139/t06-075

    [6] 包承纲. 土工合成材料界面特性的研究和试验验证[J]. 岩石力学与工程学报,2006,25(9):1735 − 1744. [BAO Chenggang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(9):1735 − 1744. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2006.09.002

    BAO Chenggang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2006.09.002

    [7] 朱顺然, 徐超, 丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学,2018,39(5):1775 − 1780. [ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics,2018,39(5):1775 − 1780. (in Chinese with English abstract)

    ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics, 2018, 39(5): 1775-1780. (in Chinese with English abstract)

    [8] 徐超, 廖星樾. 土工格栅与砂土相互作用机制的拉拔试验研究[J]. 岩土力学,2011,32(2):423 − 428. [XU Chao, LIAO Xingyue. Researches on interacton mechanism between geogrid and sand by pull-out tests[J]. Rock and Soil Mechanics,2011,32(2):423 − 428. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.02.017

    XU Chao, LIAO Xingyue. Researches on interacton mechanism between geogrid and sand by pull-out tests[J]. Rock and Soil Mechanics, 2011, 32(2): 423-428. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.02.017

    [9]

    ZHOU J, CHEN J F, XUE J F, et al. Micro-mechanism of the interaction between sand and geogrid transverse ribs[J]. Geosynthetics International,2012,19(6):426 − 437. DOI: 10.1680/gein.12.00028

    [10] 王协群, 张俊峰, 邹维列, 等. 格栅-土界面抗剪强度模型及其影响因素[J]. 土木工程学报,2013,46(4):133 − 141. [WANG Xiequn, ZHANG Junfeng, ZOU Weilie, et al. A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal,2013,46(4):133 − 141. (in Chinese with English abstract)

    WANG Xiequn, ZHANG Junfeng, ZOU Weilie, et al. A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal, 2013, 46(4): 133-141. (in Chinese with English abstract)

    [11] 王家全, 周健, 黄柳云, 等. 土工合成材料大型直剪界面作用宏细观研究[J]. 岩土工程学报,2013,35(5):908 − 915. [WANG Jiaquan, ZHOU Jian, HUANG Liuyun, et al. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(5):908 − 915. (in Chinese with English abstract)

    WANG Jiaquan, ZHOU Jian, HUANG Liuyun, et al. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 908-915. (in Chinese with English abstract)

    [12]

    MOSALLANEZHAD M, ALFARO M C, HATAF N, et al. Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil[J]. Geotextiles and Geomembranes,2016,44(3):457 − 462. DOI: 10.1016/j.geotexmem.2015.07.005

    [13] 郑俊杰, 曹文昭, 周燕君, 等. 三向土工格栅筋-土界面特性拉拔试验研究[J]. 岩土力学,2017,38(2):317 − 324. [ZHENG Junjie, CAO Wenzhao, ZHOU Yanjun, et al. Pull-out test study of interface behavior between triaxial geogrid and soil[J]. Rock and Soil Mechanics,2017,38(2):317 − 324. (in Chinese with English abstract)

    ZHENG Junjie, CAO Wenzhao, ZHOU Yanjun, et al. Pull-out test study of interface behavior between triaxial geogrid and soil[J]. Rock and Soil Mechanics, 2017, 38(2): 317-324. (in Chinese with English abstract)

    [14] 靳静, 杨广庆, 刘伟超. 横肋间距对土工格栅拉拔特性影响试验研究[J]. 中国铁道科学,2017,38(5):1 − 8. [JIN Jing, YANG Guangqing, LIU Weichao. Experimental study on effect of transverse rib spacing on geogrid pull-out characteristics[J]. China Railway Science,2017,38(5):1 − 8. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4632.2017.05.01

    JIN Jing, YANG Guangqing, LIU Weichao. Experimental study on effect of transverse rib spacing on geogrid pull-out characteristics[J]. China Railway Science, 2017, 38(5): 1-8. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4632.2017.05.01

    [15] 刘开富, 许家培, 周青松, 等. 土工格栅–土体界面特性大型直剪试验研究[J]. 岩土工程学报, 2019, 41(增刊1): 185 − 188

    LIU Kaifu, XU Jiapei, ZHOU Qingsong, et al. Large-scale direct shear tests on properties of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 185 − 188. (in Chinese with English abstract)

    [16]

    PANT A, DATTA M, RAMANA G V, et al. Measurement of role of transverse and longitudinal members on pullout resistance of PET geogrid[J]. Measurement,2019,148:106944. DOI: 10.1016/j.measurement.2019.106944

    [17]

    NAMJOO A M, JAFARI K, TOUFIGH V. Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior[J]. Transportation Geotechnics,2020,24:100403. DOI: 10.1016/j.trgeo.2020.100403

    [18]

    MIAO C X, ZHENG J J, ZHANG R J, et al. DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape[J]. Computers and Geotechnics,2017,81:249 − 261. DOI: 10.1016/j.compgeo.2016.08.028

    [19] 王志杰, 杨广庆, 王贺, 等. 刚性与柔性顶部边界下筋土界面特性的细观数值研究[J]. 岩土工程学报,2019,41(5):967 − 973. [WANG Zhijie, YANG Guangqing, WANG He, et al. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering,2019,41(5):967 − 973. (in Chinese with English abstract)

    WANG Zhijie, YANG Guangqing, WANG He, et al. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 967-973. (in Chinese with English abstract)

    [20] 刘续, 唐晓武, 申昊, 等. 加筋土结构中筋材拉拔力的分布规律研究[J]. 岩土工程学报,2013,35(4):800 − 804. [LIU Xu, TANG Xiaowu, SHEN Hao, et al. Stress distribution of reinforcement of reinforced soil structures under drawing force[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):800 − 804. (in Chinese with English abstract)

    LIU Xu, TANG Xiaowu, SHEN Hao, et al. Stress distribution of reinforcement of reinforced soil structures under drawing force[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 800-804. (in Chinese with English abstract)

    [21]

    ZHU H H, ZHANG C C, TANG C S, et al. Modeling the pullout behavior of short fiber in reinforced soil[J]. Geotextiles and Geomembranes,2014,42(4):329 − 338. DOI: 10.1016/j.geotexmem.2014.05.005

    [22]

    CHEN J H, SAYDAM S, HAGAN P C. An analytical model of the load transfer behavior of fully grouted cable bolts[J]. Construction and Building Materials,2015,101:1006 − 1015. DOI: 10.1016/j.conbuildmat.2015.10.099

    [23] 陈榕, 李博, 郝冬雪, 等. 基于黏聚力模型的土工格栅筋土界面作用模拟方法[J]. 岩土工程学报,2020,42(5):934 − 940. [CHEN Rong, LI Bo, HAO Dongxue, et al. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):934 − 940. (in Chinese with English abstract)

    CHEN Rong, LI Bo, HAO Dongxue, et al. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 934-940. (in Chinese with English abstract)

    [24] 王军, 王攀, 刘飞禹, 等. 密实度不同时格栅–砂土界面循环剪切及其后直剪特性[J]. 岩土工程学报,2016,38(2):342 − 349. [WANG Jun, WANG Pan, LIU Feiyu, et al. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):342 − 349. (in Chinese with English abstract) DOI: 10.11779/CJGE201602019

    WANG Jun, WANG Pan, LIU Feiyu, et al. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. (in Chinese with English abstract) DOI: 10.11779/CJGE201602019

    [25] 中华人民共和国交通部. 公路工程土工合成材料试验规程: JTGE 50 —2006[S]. 北京: 人民交通出版社, 2009

    Ministry of Transport of the People’s Republic of China. Test methods of geosynthetics for highway engineering: JTG E 50— 2006[S]. Beijing: China Communications Press, 2009. (in Chinese)

    [26] 包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利水电出版社, 2008

    BAO Chenggang. The principle and application of geosynthetics in engineering[M]. Beijing: China Water Power Press, 2008. (in Chinese)

    [27] 徐肖峰, 魏厚振, 孟庆山, 等. 直剪剪切速率对粗粒土强度与变形特性的影响[J]. 岩土工程学报,2013,35(4):728 − 733. [XU Xiaofeng, WEI Houzhen, MENG Qingshan, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):728 − 733. (in Chinese with English abstract)

    XU Xiaofeng, WEI Houzhen, MENG Qingshan, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. (in Chinese with English abstract)

    [28] 徐超, 孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J]. 岩土力学,2010,31(10):3101 − 3106. [XU Chao, MENG Fanxiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics,2010,31(10):3101 − 3106. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2010.10.012

    XU Chao, MENG Fanxiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics, 2010, 31(10): 3101-3106. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2010.10.012

  • 期刊类型引用(5)

    1. 支传顺,胡晓农,陈麟,焦裕飞,白晶. 微生物对海水入侵响应特征及指示意义的研究进展. 水文地质工程地质. 2024(02): 192-203 . 本站查看
    2. 彭益,张文,王汉勋,张彬,孙哲. 某海岛地下水封油库渗流场数值模拟. 隧道与地下工程灾害防治. 2024(01): 94-104 . 百度学术
    3. 张春鹏,查恩爽,张皎. 海水入侵实践教学方法及技能强化训练. 高教学刊. 2024(24): 124-127 . 百度学术
    4. 宁彩艳,徐立荣,李倩,徐晶,陈学群. 地下坝防治海水入侵的数值模拟. 济南大学学报(自然科学版). 2024(05): 533-540 . 百度学术
    5. 王志秀,李亚松,郝奇琛,张媛静,肖勇,刘春雷. 基于盐度动态模拟估算潮间带地下淡水排泄量. 水文地质工程地质. 2024(05): 56-67 . 本站查看

    其他类型引用(2)

图(12)  /  表(2)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  341
  • PDF下载量:  186
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-09-08
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-05-29
  • 发布日期:  2022-07-24

目录

    /

    返回文章
    返回