A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin
-
摘要:
地处特提斯—喜马拉雅构造域与滨太平洋构造域交接转换部位的四川盆地,是造山带环绕的多旋回沉积盆地,地热资源禀赋较好,但地质构造复杂,不同构造带地热条件和成热模式差异较大,严重制约地热勘探开发与利用。在四川盆地已有地热勘探开发资料和油气勘探研究成果的基础上,系统总结了四川盆地的地热储层、地热流体、大地热流和地温梯度场的特征及分布规律,对比研究了四川盆地不同类型盆山结构区的地热储盖层组合和地热条件的异同性,指明了不同构造单元的勘探靶区。结果表明:(1)四川盆地及周缘的大地热流值为中低热流值,地温梯度在16~30 °C/km之间,地热源受活动断裂和基底构造控制明显,发育传导型水热系统,多属中低温(<90 °C)地热资源;(2)四川盆地的地热资源分布主要受盆地构造、地层分布和水文条件等控制;(3)海相层系至少存在4个岩溶型热储层,陆相地层局部偶夹1~2个砂砾岩型热储层,地下水多为SO4—Ca型微咸水。研究建议以中~下三叠统和中二叠统岩溶型热储为重点层系,尤其在川东和和川西地区二者勘探潜力较大,其次优选其他海相层系岩溶型热储进行勘探,而陆相碎屑岩热储层盖层、地下水补给和热源等条件较差,勘探潜力一般,开发风险高且需谨慎。该研究可为四川盆地地热勘探开发利用提供理论依据。
Abstract:The Sichuan Basin located in the intersection of the Tethys−Himalaya and Pacific domains is a multicycle sedimentary basin surrounded by orogenic belts. The geothermal resources are good, but with complex geological structures. Geothermal conditions and heat generation models are different in different tectonic zones in the basin, which seriously restrict the geothermal exploration, development and utilization of geothermal resources. In this paper, the distribution of geothermal resources, characteristics of geothermal fluids, heat flow and geothermal gradients in the Sichuan Basin are comprehensively analyzed by collecting the existing geothermal and petroleum exploration and development data. The geothermal reservoirs and caprocks, the burial depth and the resource conditions of different types of the basin-mountain structure areas in the Sichuan Basin are analyzed. The suggested exploration target for exploration and development are proposed in different tectonic units of the Sichuan Basin. The results show (1) the terrestrial heat flow values in the Sichuan Basin and its surrounding areas are from medium to low, and the geothermal gradient varies between 16 °C/km and 30 °C/km. The terrestrial heat source is obviously controlled by active faults and basement structure, and the hydrothermal systems are conductive and belong to the low-moderate temperature geothermal resources in the Sichuan Basin. (2) The distribution of geothermal resources in the Sichuan Basin is mainly controlled by basin structure, stratigraphic distribution and hydrologic conditions. (4) There are at least 4 karst-type geothermal reservoirs in the marine strata, and 1 − 2 glutenite-type geothermal reservoirs in clastic strata. Geothermal water is of SO4—Ca type and is brackish. The Middle-Lower Triassic and Middle Permian carbonate rocks are considered as the best marine reservoirs, especially in the eastern and western basin. Secondly, other marine karst-type geothermal reservoirs are selected for exploration. The continental clastic rocks should be cautious because their caprocks, groundwater recharge and heat source are worse than the geothermal conditions of the marine carbonate rocks. This study may provide important guidance for further promoting geothermal exploration, exploitation and utilization in the Sichuan Basin.
-
Keywords:
- geothermal geology /
- structures /
- geothermal resource /
- geothermal reservoir and cap /
- Sichuan Basin
-
涌水突泥灾害是威胁隧道施工安全最严重的地质灾害之一。开展隧址区涌水突泥致灾构造、富水特征和地下水循环过程研究是隧道涌水突泥灾害早期识别和涌水突泥灾害防范措施制定的基础[1-2]。断层类致灾构造是隧道涌水突泥致灾构造的主要类型[3] ,是涌水突泥灾害孕灾机制研究的重点之一。断裂的储水能力、物源补给能力是决定灾害威胁大小的重要因素,其中断裂的力学性质[4]、两盘的岩性组合[5]、断裂破碎带内物质组成[6]等方面会影响断裂带的导水、充水能力,物源补给能力与补给量、补给强度和持续性相关,因而断裂带构造裂隙水的补给、径流和排泄特征与断裂带致灾地质构造的规模和破坏性息息相关[7],是涌水突泥灾害孕灾机制研究的重点之一。
川藏铁路西藏波密段位于高山峡谷区,山高谷深,平均高差超过2000 m。海拔4000 m以上的高山区有冰川覆盖。区内发育多条大型河流,水量十分充沛。河流受高位发育的冰川融水和大气降水补给,水力梯度大,水流湍急。该段铁路处于嘉黎—察隅断裂带影响范围内,多条河流与断裂发育位置重合,存在地表水与断裂带空间沟通并形成高压涌水突泥致灾构造的可能性。但由于该区山体陡峭、植被茂盛、地层岩性多样、构造条件复杂,缺乏对断裂带的导水或充水能力、地表水与地下水之间的关联机制、地下水循环过程等方面的认识,难以直接获取证据来开展涌水突泥灾害风险评价。
针对以上问题,本文采用多期测流和对大气降水、冰川、地表水和地下水水化学、同位素特征以及水文地球化学过程的分析,开展了西藏波密冰川覆盖区大型河流的流量变化特征和地表水与构造裂隙水的转化关系研究,对铁路隧道高压涌水突泥灾害的早期识别和工程预案设计具有一定指导作用。
1. 研究区概况
1.1 自然地理
西藏波密县位于西藏东南部高山峡谷地貌区。高山区海拔4000~6000 m,最高点海拔6643 m;河谷区海拔2000~2300 m,相对高差2000~4000 m[8],地形高差大、岸坡陡峻。研究区属西藏东部温带山地湿润季风气候,年均气温8.7 ℃;1月气温最低,平均为−0.2 ℃;最高温度一般出现在7月,平均温度为16.4 ℃[9]。研究区降水充沛,多年平均降水量1276 mm,5—9月为雨季,占全年降水量的84.5%。
研究区整体属于雅鲁藏布江最大支流帕隆藏布流域。帕隆藏布发源于西藏八宿县阿扎贡拉山,自南东向北西穿过研究区,在林芝地区墨脱县甘登乡附近汇入雅鲁藏布江,年均流量约为3.12×1011 m3。隧址位于帕隆藏布右岸,共分布13条NE向大型河流和多条较小规模的河流[10],自沟顶冰川覆盖区至沟口高差一般大于2000 m,平均坡度260‰,水量大,水流湍急(图1)。
帕隆藏布两岸海拔4000 m以上的高山区有冰川覆盖,面积约324.72 km2。受热辐射和降水量变化影响[11-12],近30年来冰川面积减少了58.2%,整体处于退缩状态[9, 11-12],冰川融水量较大且逐年增加。冰川融水径流汇入沟中,为河流的重要补给项。
1.2 地质背景
研究区位于喜马拉雅东构造结东北部,一级构造单元属冈底斯—喜马拉雅造山系。主要断裂为NW向的嘉黎—察隅断裂,属全新世活动断裂[13]。小型断裂为张性和压扭性NE向断裂,其中古乡—随弄断裂、比通曲断裂、鸭容曲—索通断裂和赛隆卡曲断裂分别与古乡沟、比通曲、龙冲曲和赛隆卡曲的发育位置重合[14]。
研究区出露的基岩包括中—元古代念青唐古拉岩群片麻岩夹大理岩、燕山期侵入岩、变质岩、泥盆纪、石炭纪碎屑岩、碳酸盐岩和变质岩。出露的松散岩土体主要为更新世冰积碎石、全新世冲洪积碎石类土、泥石流堆积物等,主要分布于帕隆藏布河谷、冲沟低海拔处(图1)。
区内地下水类型分为松散岩类孔隙水和基岩裂隙水两大类。松散岩类孔隙水分布在帕隆藏布河谷、冲沟的河漫滩、阶地中,呈带状分布。基岩裂隙水分为风化裂隙水和构造裂隙水。风化裂隙水分布于花岗岩、片麻岩、石英岩等硬质岩的风化层;构造裂隙水呈带状或脉状分布于断裂带中,其补径排条件和赋存特征是本文讨论的主要内容。
2. 研究方法与数据获取
在研究区各河流近沟口位置选择水流较平稳、断面形状较规则的位置进行流量测定。共完成了3期测流工作:在2019年8月22—25日和2020年9月8—10日分别开展了雨季流量测定,在2020年4月22—25日开展了旱季流量测定,见图2。
在坎戈曲流域实施水文地质勘察钻孔1眼,孔深200 m,目的是对断裂带地下水赋存和径流特征进行研究。在该钻孔进行3个落程的抽水试验,获取了水文地质参数。
2019年8月和2020年4月,采集地表水样品各13件,采集当季降水样品各1件(2019年8月为降雨样品,2020年4月为降雪样品),采集冰川样品1件,采集泉点样品3件,结合水文地质勘察钻孔,采集埋深170 m地下水样品1件(图1)。采集样品时,使用意大利HANNA公司生产的多参数水质分析仪现场测试水样的温度、pH值、氧化还原电位(Eh)、溶解性总固体(TDS)等参数。对采集的样品进行全分析、δ2H、δ18O、氚同位素(3H)分析,利用14C同位素测定钻孔ZK01地下水样品的年龄。用于阳离子和微量元素分析的水样加入HNO3,使pH降到2以下,其余样品不加保护液。所有样品装瓶后均不留空气,拧紧瓶盖后用封口胶封闭送检。
水样全分析在自然资源部地下水矿泉水及环境监测中心完成。阳离子和阴离子测试分别采用ICP-AES(iCAP 6300, Thermo)和DX-120(Dionex)型离子色谱仪,执行DZ/T0064-1993和GB8538-2016标准,测试结果阴阳离子平衡相对误差小于±5%。δ2H、δ18O、3H测试在自然资源部地下水科学与工程重点实验室完成。δ2H和δ18O的测试利用波长扫描-光腔衰荡光谱仪(Picarro L2130i),测试精度分别为±1‰和±0.1‰。3H分析由超低本底液体闪烁谱仪(1220 Quantulus)计数测定,测试精度为±0.5TU。14C测年在美国Beta实验室利用加速器质谱(AMS)完成,测量精度为0.123%。
3. 结果与讨论
3.1 主要河流流量特征
在实际测定流量的17条主要河流中,2019年雨季河流流量为0.17×104~55.67×104 m3/d,平均值为17.96×104 m3/d,离散系数0.98,流量最大的是赛隆卡曲,最小的是优易沟。有5条河水流量超过30×104 m3/d,分别为扎隆沟、古乡沟、龙冲曲、茶隆隆巴曲和赛隆卡曲。
2020年雨季河流流量为0.10×104~40.68×104 m3/d,最大的为古乡沟,最小的为巴卡沟,平均值为15.03×104 m3/d,离散系数0.87,略小于2019年夏季。有4处流量超过30×104 m3/d,分别为古乡沟、龙冲曲、茶隆隆巴曲和赛隆卡曲。另外,比通曲流量超过了20×104 m3/d。
2020年旱季河流流量为0.10×104~23.86×104 m3/d,最大的为茶隆隆巴曲,最小为坎戈曲;平均值为5.72×104 m3/d,仅为2019年和2020年雨季的1/3左右。其中茶隆隆巴曲(23.86×104 m3/d)、赛隆卡曲(22.31×104 m3/d)和龙冲曲(10.36×104 m3/d)的河水流量超过10×104 m3/d,古乡沟(6.68×104 m3/d)、角隆曲(5.63×104 m3/d)和比通曲(4.30×104 m3/d)流量也较大。
对比连续两个雨季和一个旱季各河流流量变化,可以发现研究区河流流量在雨季和旱季差别明显。雨季河流流量与旱季河流流量之比为1.31~12.20。其中嘎朗沟、瓦普沟、达打隆巴等河流的流域面积和流量较小,但丰枯期流量差别较大;面积和流量较大的河流(如比通曲、龙冲曲、赛隆卡曲等与断裂复合发育的河流)的流量波动相对较小(图2),说明这些流域内的地质条件具有较强的地表水流量调蓄能力。
2019年8月和2020年9月的流量平均相差1.32倍。当日照、气温和降水量等气象条件相似时,地表水体得到的补给总量差别不大,说明气象条件对河流流量具有较强的影响。
3.2 水化学特征
地表水、地下水、冰川和降水的水化学指标统计分析见表1。雨、旱两季河流和地下水的pH值均为7.33~8.05,基本为中性偏碱性水;大气降水略偏酸性;冰川的pH值为7.45,基本呈中性。地表水各指标的变异系数范围为0.02~0.90,同一指标在2019年8月和2020年4月的变异系数相差不大,说明研究区河流的水化学指标随季节整体等幅变动。地下水各点中,既包括浅层地下水,又包括钻孔揭露的深层断裂带水,变异系数明显大于地表水,说明不同深度地下水循环过程存在差异。2019年雨季降水(雪)主要离子浓度小于2020年旱季,2019年8月和2020年4月溶解性总固体(TDS)分别为10.63 mg/L和30.07 mg/L,Ca2+浓度分别为1.07 mg/L和4.15 mg/L,
${\rm{SO}}_4^{2-} $ 浓度分别为1.41 mg/L和4.33 mg/L。受溶滤作用长期影响,冰川样品各指标浓度明显高于降水浓度。表 1 水样主要水化学指标值Table 1. Concentration statistics of the main hydrochemical indexes of water samples样品分类 项目 pH TDS K+ Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^- $ /(mg·L−1) 地表水—
2020年
4月最大值 7.99 551.00 5.16 2.84 147.40 23.07 1.75 353.50 158.50 最小值 7.33 84.00 1.29 0.85 21.95 1.88 1.40 15.19 53.84 平均值 7.57 248.53 2.65 1.53 62.65 7.79 1.69 118.35 85.86 标准差 0.18 143.92 1.08 0.58 37.50 5.21 0.13 102.28 27.91 中位数 7.57 210.00 2.24 1.36 46.16 6.65 1.75 90.23 83.75 变异系数 0.02 0.58 0.41 0.38 0.60 0.67 0.08 0.86 0.33 地表水—
2019年
8月最大值 8.05 196.17 4.39 1.30 56.20 8.69 0.20 80.31 173.20 最小值 7.48 37.09 0.40 0.47 8.62 0.98 0.05 4.29 27.83 平均值 7.83 96.18 1.64 0.72 26.20 3.46 0.09 25.15 64.26 标准差 0.19 55.89 1.15 0.22 16.10 2.26 0.04 22.53 41.16 中位数 7.90 83.82 1.45 0.69 22.30 3.06 0.08 21.67 52.57 变异系数 0.02 0.58 0.70 0.31 0.61 0.65 0.45 0.90 0.64 地下水 最大值 7.69 1325.00 6.28 3.30 340.00 23.04 2.79 848.60 191.40 最小值 7.50 176.00 4.69 1.02 48.23 3.51 1.75 32.03 122.60 平均值 7.58 612.50 5.62 1.94 158.11 14.59 2.18 332.11 142.25 标准差 0.08 462.82 0.58 0.86 118.45 8.55 0.45 336.14 28.48 中位数 7.57 474.50 5.76 1.73 122.11 15.90 2.10 223.91 127.50 变异系数 0.01 0.76 0.10 0.44 0.75 0.59 0.21 1.01 0.20 降水及
冰川最大值 7.45 67.37 0.55 5.24 12.57 1.59 1.75 8.50 53.78 最小值 6.38 10.63 0.39 0.10 1.07 0.08 1.40 1.41 6.52 平均值 6.80 36.02 0.49 1.85 5.93 1.06 1.52 4.75 31.07 标准差 0.47 23.54 0.07 2.40 4.86 0.69 0.16 2.91 19.34 中位数 6.56 30.07 0.54 0.21 4.15 1.51 1.40 4.33 32.90 变异系数 0.07 0.65 0.15 1.30 0.82 0.65 0.11 0.61 0.62 对比4种分类下各指标值的平均浓度,除Na++K+和Cl−外,各种离子浓度和TDS(溶解性总固体)都表现出地下水>地表水(2020年4月)>地表水(2019年8月)>降水及冰川。地表水在雨季与旱季离子指标存在差异的原因有两点:其一是雨季降水量较大,产生了稀释作用;其二是雨季地下水与含水介质之间反应时间有限[15]。
河水中主要阳离子为Ca2+和Mg2+,主要阴离子为
${\rm{HCO}}_3^- $ 和${\rm{SO}}_4^{2-} $ 。与河水相似,地下水的水化学类型主要为HCO3·SO4—Ca型,说明地下水与河水存在关联关系。大气降水的水化学类型为HCO3·SO4—Ca(2019年8月)和HCO3—Ca·Mg(2020年4月)型,冰川的水化学类型为HCO3—Ca型(图3)。大气降水及冰川水化学类型与地表水和地下水水化学组分存在差异,地下水和河水主要组分受岩石风化溶滤作用影响(图4),水化学组分主要来自于水—岩相互作用[16-17]。地下水和地表水中主要阴离子为
${\rm{SO}}_4^{2-} $ 和${\rm{HCO}}_3^- $ ,而降水(雪、雨水)、冰川等补给源中的${\rm{SO}}_4^{2-} $ 和${\rm{HCO}}_3^- $ 浓度不高,说明在河水和地下水径流过程中,${\rm{SO}}_4^{2-} $ 和${\rm{HCO}}_3^- $ 发生了富集。有研究表明,青藏高原冰川径流中的${\rm{HCO}}_3^- $ 主要来自方解石的风化[18],${\rm{SO}}_4^{2-} $ 主要来自黄铁矿氧化或石膏溶解[15,19]。图5(a)表明研究区内大理岩、灰岩的方解石溶解贡献了水中的${\rm{HCO}}_3^- $ ,图5(b)说明石膏溶解贡献了水中的${\rm{SO}}_4^{2-} $ 。研究区${\rm{SO}}_4^{2-} $ 的浓度远大于Fe,因此铁的硫化矿物的氧化作用对${\rm{SO}}_4^{2-} $ 的贡献小于石膏溶解。地表水和地下水中铁和锰的浓度较高,质量浓度范围分别为0.014~9.400 mg/L和0.006~0.343 mg/L,平均值分别为0.719 mg/L和0.032 mg/L。降水样品中铁和锰的浓度低。降水样品中铁低于0.001 mg/L,2019年8月降水中锰浓度为0.003 mg/L,2020年4月降水中未检出锰。在排除人类活动影响的前提下,地下水和河水中的铁和锰主要来源于水岩作用。沿嘉黎—察隅断裂带发育挤压破碎带,带内见糜棱岩、断层角砾岩、断层泥,含褐铁矿和锰质矿物[20]。通常还原环境有利于沉积物中Fe和Mn氧化物的溶解释放[21],易溶的高价Fe和Mn氧化物会还原成溶解性更强的离子态Fe2+和Mn2+,提升水中铁和锰的浓度[22-23];酸性环境更利于离子态Fe和Mn的富集[24]。通过图6可以看出,地表水和地下水分布在Fe2+和Fe(OH)3的界线附近,略偏向Fe2+区域;Mn主要以Mn2+的形式存在。
研究区各条河水中铁和锰浓度存在较大差异,见图7。河水中Fe浓度较高的有古乡沟(9.400 mg/L)、来曲(1.822 mg/L)、龙冲曲(2.058 mg/L)和比通曲(1.381mg/L)和茶隆隆巴曲(0.896 mg/L),明显大于其他河水。河水中Mn浓度较大的有古乡沟(0.343 mg/L)、比通曲(0.083 mg/L)和龙冲曲(0.151 mg/L)。古乡沟、比通曲和龙冲曲等与断裂复合发育的地表水体的Fe和Mn质量浓度较高。
由此可以推断,大气降水和冰川融水补给地表水后,一部分转化为断裂带地下水,在还原环境下铁锰矿物溶解进入水中,使得地下水中的铁和锰浓度升高。当断裂带与地表水流复合发育,断裂带地下水循环时间长,与含水介质充分相互作用,铁锰浓度高;非断裂影响地区含水介质中铁锰浓度低。地下水最终排泄进入各地表水流中,并与地表水发生混合,汇入帕隆藏布。
3.3 同位素特征
研究区水体氢氧同位素分析测试结果见图8。所有水点均位于全球大气降水线(GMWL)和青藏高原东部大气降水线附近(青藏高原东部LMWL)[25],说明降水是研究区各类型水体的主要补给来源[26-27]。地下水与2020年4月地表水点高度重合,说明地下水与地表水水力联系紧密。一般来说,在其他环境条件一定时,气温越低,δD和δ18O的值越小[28]。冰川形成时期气温低于现在的气温,图8中冰川点的δD、δ18O值相比于降水点更小。地表水和地下水是由冰川融水和大气降水共同补给形成的,δD和δ18O值位于在二者之间。
2020年4月气温低于2019年8月,但图8出现2020年4月各点的δD和δ18O的值大于2019年8月的异常现象,这可能是由于河水补给源比例不同造成的。为证明这一推测,选择龙冲曲作为典型流域,利用δD和δ18O计算雨季和旱季大气降水和冰川融水对地表水补给量的比重(图9),可以看出2019年8月冰川补给量占比为58.3%,2020年4月占比为38.5%。河水中冰川和大气降水的补给比例不同,造成不同时期地表水中δD和δ18O的值不同。由此可以看出,雨季冰川融水补给比例大于旱季。
利用氚同位素和14C同位素对地下水循环速率进行半定量分析(表2)。YGA10、YGA28和YGA34泉水样品的氚含量为3.9~6.2TU,根据Clark等[29]的氚方法定年解释,YGA10、YGA28泉水接受现代地下水补给,地下水年龄5~10 a;泉水YGA34接受现代地下水补给并混有少量1952年以前补给的地下水。3个泉点地下水循环时间短,更新速率较快,循环深度浅。
表 2 样品年代半定量对应表Table 2. Half quantitive corresponding table between content and age样品类型及编号 氚含量/TU 半定量年龄* 分类 泉-YGA10 6.2±0.9 5~10 a 浅循环地下水 泉-YGA28 4.1±0.8 5~10 a 浅循环地下水 泉-YGA34 3.9±0.8 1952年前补给与
5~10 a补给混合水浅循环地下水 钻孔样品 2.9±0.7 4640 a 中深循环地下水 地表水-YGA01 5.9±0.9 − 河水与地下水混合 地表水-YGB17 7.0±0.9 − 河水与地下水混合 地表水-YGB30 8.5±1.2 − 河水与地下水混合 注:*钻孔样品为14C测定的表现年龄。 在钻孔ZK01中约132 m埋深处采集了裂隙地下水,测得氚含量为2.9 TU,说明地下水的补给时间早于1952年。14C同位素测试得出该水样的表征年龄为4640 a。相比于YGA10、YGA28和YGA34泉水样品,钻孔中裂隙地下水的循环深度较大,更新速率较慢,属于中深循环的地下水。
YGA01(古乡沟)、YGB17(比通曲)和YGB30(龙冲曲)河水样品的氚含量为5.9~8.5 TU,高于泉点氚含量,但低于现代降雨中的氚含量(一般为101~102 TU[29]),说明河水中存在混入地下水的现象。对比地表水、泉和钻孔采集水样的年龄,可以推断,与断裂复合发育的地表水中有地下水的混合,其中以现代地下水为主。
3.4 冰川融水-大气降水-地下水-地表水转化过程
基于冰川融水、大气降水、河水和地下水等不同水体水化学和同位素组分的差异,分析研究区多种水体的转化过程。研究发现,西藏波密冰川覆盖区大型河流的补给受气象条件控制,径流过程中河水与地下水的转化过程受与河流复合发育的断裂控制。
区内河流发源于帕隆藏布右岸海拔4000 m以上的冰川覆盖区,河水和地下水水体δD和δ18O值均落在区域大气降水线附近,显示其主要接受冰川融水和大气降水补给。在雨季,河水的δD和δ18O的值偏向冰川,而在旱季河水的δD和δ18O的值偏向大气降水,说明河水补给来源的比例在旱季和雨季存在差异。旱季大气降水补给量占比大,雨季冰川融水补给量占优。这可能是由于旱季属全年气温较低的时期,冰川融水量小。因而大气降水占总补给量的比例超过60%。雨季集中在气温较高的时期,冰川融水量激增,对河水补给的贡献超过大气降水,约占58.3%。
河水通常在高海拔处接受补给,因而河水和地下水相对排泄基准面(帕隆藏布)具有较高的水头。河水沿各沟谷自北西向南东方向径流,断裂带地下水在河谷附近或以泉的形式、或以线状排泄的方式排泄,最终汇入帕隆藏布。
河流自高位补给到汇入帕隆藏布的径流过程中,存在2种不同的水体转化过程类型(图10)。
第一种类型是古乡沟、龙冲曲、比通曲和赛隆卡曲等与断裂复合发育的河流。研究区内所有河流2019年雨季与2020年旱季流量之比为1.71~11.15,2020年雨季与2020年旱季流量之比为1.31~12.20。而与断裂复合发育的河流2019年雨季与2020年旱季流量之比为2.50~7.28,2020年雨季与2020年旱季流量之比为1.61~6.09,明显小于全区河流的同类流量比值。说明以上几条河流的流量较为稳定。其原因为:在气温、降水量一定的前提下,断裂带地下水对河水持续补给,减小了河水流量在雨季和旱季的变化幅度。
与断裂复合发育的河流流域内岩体完整性差,利于地表水入渗。地下水接受河水持续的补给,方向基本与地形坡度保持一致。地下水与含水介质发生水岩作用较为充分,TDS值升高,方解石的风化和石膏的溶解使水中
${\rm{SO}}_4^{2-} $ 和${\rm{HCO}}_3^- $ 富集,水化学类型由补给源的HCO3—Ca(Mg)型逐渐变为HCO3·SO4—Ca型。裂隙含水介质的还原环境也使地下水中铁、锰浓度升高。大部分地下水循环深度小,年龄为5~10 a,更新速率快,与河流存在密切的水力联系和相互转化。少部分地下水沿断裂向深部径流,地下水年龄在4000 a以上。即便在断裂带渗透性较好的条件下,参与中深循环的地下水更新速率也较慢,水岩作用较充分,TDS值明显高于河水和浅层循环地下水。地下水与地表水混合后汇入帕隆藏布。
第二种类型是非断裂影响区的河流。基岩风化裂隙水接受河水渗漏补给。风化裂隙发育深度有限,地下水对河水的补给量和水量调节能力小于第一种类型,河水在雨季和旱季流量比值大。较弱的还原环境不利于地下水中铁、锰溶解,地下水中铁、锰浓度低。地下水年龄5~10 a,循环深度浅。临近排泄基准面的河水水化学类型为HCO3—Ca型和HCO3·SO4—Ca型,说明混入了少量浅循环的地下水。
从工程建设防灾减灾的角度考虑,第一种类型的河流,由于水量大且较为稳定,水头高,断裂带地下水与地表水存在较好的水力联系,因而在施工过程中产生高压涌水突泥灾害的风险较大。在施工过程中,应充分予以关注,充分考虑复杂地质构造的致灾风险。
4. 结论
(1)西藏波密冰川覆盖区河水主要接受冰川融水和大气降水补给。雨季河水的 δ 18O和 δ D值小于旱季,说明河水雨季和旱季的补给源结构不同。在雨季冰川融水为主要补给源,旱季以大气降水补给为主。
(2)河水成分及来源与断裂有密切关系。根据河水与断裂空间展布关系,河流流域内水体径流过程可分为2种类型。其一是古乡沟、比通曲、龙冲曲等与断裂带复合发育的河流,可补给断裂带裂隙地下水。浅层循环断裂带水年龄5~10 a,循环速率快;中深层断裂带水年龄超过4000 a,循环速率慢,水岩作用较充分。由于持续接受地下水补给,年内河水流量波动较小。其二是非断裂影响区内的河流,河水可补给风化裂隙地下水。地下水循环快,与河水交换较频繁,水岩作用程度弱。年内流量波动较大。河水与地下水混合后,排泄至帕隆藏布。
(3)研究区河水补给区海拔高,河水流量大,且与断裂带地下水存在较好的水力联系,在地下工程建设过程中,与断裂带复合发育的古乡沟、比通曲、龙冲曲存在高压涌水突泥灾害风险,应予以高度关注。
-
表 1 四川盆地构造区内地热储层统计表
Table 1 Geothermal reservoirs for the tectonic units of the Sichuan Basin
构造区 各区地热储层数/处 合计/处 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 上侏罗统~下白垩统 — 5 2 — — — 7 中~下侏罗统 — 1 — — 1 1 3 上三叠统 — 3 1 — 2 — 6 中~下三叠统 2 8 7 3 81 1 102 中二叠统 — 1 12 6 1 — 20 奥陶系 — — — 1 4 — 5 寒武系 — — 4 — — — 4 震旦系 3 — 5 — — — 8 表 2 四川盆地地热资源分布统计表
Table 2 Distribution of geothermal resources in the Sichuan Basin
构造分区 温泉点/个 百分比/% 钻井/个 百分比/% 合计/个 百分比/% Ⅰ 2 5.88 4 3.31 6 3.87 Ⅱ — 0.00 16 13.22 16 10.32 Ⅲ 11 32.35 20 16.53 31 20.00 Ⅳ 5 14.71 7 5.79 12 7.74 Ⅴ 16 47.06 73 60.33 89 57.42 Ⅵ — 0.00 1 0.83 1 0.65 小计 34 100.00 121 100.00 155 100.00 表 3 四川盆地地热点资源统计
Table 3 Recoverable pumpage and flow rate of the geothermal wells and hot springs in the Sichuan Basin
可开采量/流量
/( m3·d−1)地热井
/个地热露头
/个[0,300) 26 20 [300,1000) 26 6 [1000,2000) 29 4 [2000,3000] 30 3 >3000 10 1 表 4 四川盆地地热水温度统计
Table 4 Temperature of the geothermal wells and hot springs in the Sichuan Basin
温度/℃ 分类 地热井/个 地热露头/个 <25 冷水 2 2 [25,40) 低温温水 29 21 [40,60) 低温温热水 66 9 [60,90) 低温热水 14 — [90,150) 中温热水 1 — 表 5 四川盆地地热温泉水TDS统计表
Table 5 TDS of geothermal hot spring in the Sichuan Basin
温泉 TDS/(g·L−1) 温泉 TDS/(g·L−1) 文锦江 93.90~96.70 榮海井 141.94 天赐温泉 3.87~3.97 澄江温泉 2.01 罗浮山 14.32~14.73 静观温泉 1.51 香颂湖 18.60~24.30 融侨温泉 2.66 望丛 9.22 南山温泉 3.03 灵池 81.71~91.08 鹿角温泉 2.76 女基井 230.60 东温泉 2.86~2.99 -
[1] ZHANG Lei,CHEN Shuai,ZHANG Chun. Geothermal power generation in China:Status and prospects[J]. Energy Science & Engineering,2019,7:1428 − 1450.
[2] 李悦,关锌. 我国地热资源开发利用优势对比分析[J]. 水文地质工程地质,2011,38(6):139 − 141. [LI Yue,GUAN Xin. Comparative analysis on the advantages of geothermal resources development and utilization in China[J]. Hydrogeology & Engineering Geology,2011,38(6):139 − 141. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2011.06.027 LI Yue, GUAN Xin. Comparative analysis on the advantages of geothermal resources development and utilization in China[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 139-141. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2011.06.027
[3] 王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2020.07.002 WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2020.07.002
[4] 刘育平. 地热资源的低碳排放效益分析[J]. 水文地质工程地质,2013,40(6):134 − 138. [LIU Yuping. Analysis of low carbon emission efficiency of geothermal resources[J]. Hydrogeology & Engineering Geology,2013,40(6):134 − 138. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.06.013 LIU Yuping. Analysis of low carbon emission efficiency of geothermal resources[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 134-138. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.06.013
[5] ZHAO Xingang,WAN Guan. Current situation and prospect of China’s geothermal resources[J]. Renewable and Sustainable Energy Reviews,2014,32:651 − 661. DOI: 10.1016/j.rser.2014.01.057
[6] 崔希林. 四川盆地中西部温泉成因模式研究[D]. 成都: 成都理工大学 CUI Xilin. Study on genetic model of hot springs in central and western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, . (in Chinese with English abstract)
[7] 肖汉全. 川南地下热水资源研究及其开发利用[J]. 四川地质学报,2009,29(2):180 − 183. [XIAO Hanquan. On utilization of geothermal resources in South Sichuan[J]. Acta Geologica Sichuan,2009,29(2):180 − 183. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2009.02.015 XIAO Hanquan. On utilization of geothermal resources in South Sichuan[J]. Acta Geologica Sichuan, 2009, 29(2): 180-183. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2009.02.015
[8] 罗敏,任蕊,袁伟. 四川地热资源类型、分布及成因模式[J]. 四川地质学报,2016,36(1):47 − 50. [LUO Min,REN Rui,YUAN Wei. Type,distribution and genesis of geothermal resource in Sichuan[J]. Acta Geologica Sichuan,2016,36(1):47 − 50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2016.01.010 LUO Min, REN Rui, YUAN Wei. Type, distribution and genesis of geothermal resource in Sichuan[J]. Acta Geologica Sichuan, 2016, 36(1): 47-50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2016.01.010
[9] 肖琼,沈立成,杨雷,等. 重庆北温泉地热水碳硫同位素特征研究[J]. 水文地质工程地质,2013,40(4):127 − 133. [XIAO Qiong,SHEN Licheng,YANG Lei,et al. Environmental significance of carbon and sulfur isotopes of the North hot spring in Chongqing[J]. Hydrogeology & Engineering Geology,2013,40(4):127 − 133. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.04.026 XIAO Qiong, SHEN Licheng, YANG Lei, et al. Environmental significance of carbon and sulfur isotopes of the North hot spring in Chongqing[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 127-133. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.04.026
[10] 赵佳怡,张薇,张汉雄,等. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质,2019,46(4):81 − 89. [ZHAO Jiayi,ZHANG Wei,ZHANG Hanxiong,et al. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology,2019,46(4):81 − 89. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2019.04.11 ZHAO Jiayi, ZHANG Wei, ZHANG Hanxiong, et al. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 81-89. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2019.04.11
[11] 李明辉,袁建飞,黄从俊,等. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质,2020,47(6):36 − 46. [LI Minghui,YUAN Jianfei,HUANG Congjun,et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’an in East Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(6):36 − 46. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202008038 LI Minghui, YUAN Jianfei, HUANG Congjun, et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang'an in East Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 36-46. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202008038
[12] 阚艳伶,王成锋,陈怡西. 四川盆地中西部红层区地热资源赋存规律研究[J]. 地下水,2019,41(2):35 − 39. [KAN Yanling,WANG Chengfeng,CHEN Yixi. Study on the occurrence law of geothermal resources in red beds in the central and western Sichuan Basin[J]. Ground Water,2019,41(2):35 − 39. (in Chinese) KAN Yanling, WANG Chengfeng, CHEN Yixi. Study on the occurrence law of geothermal resources in red beds in the central and western Sichuan Basin[J]. Ground Water, 2019, 41(2): 35-39. (in Chinese)
[13] 拓明明. 四川盆地东部重庆主城区附近盆地—背斜出露型地下热水特征及成因机制[D]. 北京: 中国地质大学(北京), 2020 TA Mingming. Characteristics and genetic mechanism of basin − anticline exposed geothermal water near the main city of Chongqing in the east of Sichuan Basin[D]. Beijing: China University of Geosciences, 2020. (in Chinese with English abstract)
[14] 罗志立,龙学明. 龙门山造山带崛起和川西陆前盆地沉降[J]. 四川地质学报,1992,12(1):1 − 17. [LUO Zhili,LONG Xueming. The uplifting of the Longmenshan orogenic zone and the subsidence of the West Sichuan foreland basin[J]. Acta Geologica Sichuan,1992,12(1):1 − 17. (in Chinese with English abstract) LUO Zhili, LONG Xueming. The uplifting of the Longmenshan orogenic zone and the subsidence of the West Sichuan foreland basin[J]. Acta Geologica Sichuan, 1992, 12(1): 1-17. (in Chinese with English abstract)
[15] 刘树根. 龙门山冲断带与川西前陆盆地的形成演化[M]. 成都: 成都科技大学出版社, 1993 LIU Shugen. The formation and evolution of Longmenshan Thrust Zone and Western Sichuan Foreland Basin, Sichuan, China[M]. Chengdu: Chengdu University of Science and Technology Press, 1993. (in Chinese )
[16] 毛琼,邹光富,张洪茂,等. 四川盆地动力学演化与油气前景探讨[J]. 天然气工业,2006,26(11):7 − 10. [MAO Qiong,ZOU Guangfu,ZHANG Hongmao,et al. Discussion on geodynamic evolution and oil/gas prospect of the Sichuan Basin[J]. Natural Gas Industry,2006,26(11):7 − 10. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0976.2006.11.003 MAO Qiong, ZOU Guangfu, ZHANG Hongmao, et al. Discussion on geodynamic evolution and oil/gas prospect of the Sichuan Basin[J]. Natural Gas Industry, 2006, 26(11): 7-10. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0976.2006.11.003
[17] 李智武,刘树根,陈洪德,等. 川西坳陷复合-联合构造及其对油气的控制[J]. 石油勘探与开发,2011,38(5):538 − 551. [LI Zhiwu,LIU Shugen,CHEN Hongde,et al. Structural superimposition and conjunction and its effects on hydrocarbon accumulation in the Western Sichuan Depression[J]. Petroleum Exploration and Development,2011,38(5):538 − 551. (in Chinese with English abstract) DOI: 10.1016/S1876-3804(11)60054-2 LI Zhiwu, LIU Shugen, CHEN Hongde, et al. Structural superimposition and conjunction and its effects on hydrocarbon accumulation in the Western Sichuan Depression[J]. Petroleum Exploration and Development, 2011, 38(5): 538-551. (in Chinese with English abstract) DOI: 10.1016/S1876-3804(11)60054-2
[18] 贾承造,李本亮,雷永良,等. 环青藏高原盆山体系构造与中国中西部天然气大气区[J]. 中国科学:地球科学,2013,43(10):1621 − 1631. [JIA Chengzao,LI Benliang,LEI Yongliang,et al. Basin-mountain system structure around Qinghai−Tibet Plateau and natural gas atmospheric area in central and Western China[J]. Scientia Sinica (Terrae),2013,43(10):1621 − 1631. (in Chinese) DOI: 10.1360/zd-2013-43-10-1621 JIA Chengzao, LI Benliang, LEI Yongliang, et al. Basin-mountain system structure around Qinghai-Tibet Plateau and natural gas atmospheric area in central and Western China[J]. Scientia Sinica (Terrae), 2013, 43(10): 1621-1631. (in Chinese) DOI: 10.1360/zd-2013-43-10-1621
[19] 何登发, 李英强, 黄涵宇. 四川多旋回叠合盆地的形成演化与油气聚集[M]. 北京: 科学出版社, 2020 HE Dengfa, LI Yingqiang, HUANG Hanyu. Formation, evolution and oil and gas accumulation of Sichuan multi-cycle superimposed basin[M]. Beijing: Science Press, 2020. (in Chinese)
[20] 刘树根,邓宾,孙玮,等. 四川盆地:周缘活动主控下形成的叠合盆地[J]. 地质科学,2018,53(1):308 − 326. [LIU Shugen,DENG Bin,SUN Wei,et al. Sichuan Basin:A superimposed sedimentary basin mainly controlled by its peripheric tectonics[J]. Chinese Journal of Geology,2018,53(1):308 − 326. (in Chinese with English abstract) LIU Shugen, DENG Bin, SUN Wei, et al. Sichuan Basin: a superimposed sedimentary basin mainly controlled by its peripheric tectonics[J]. Chinese Journal of Geology, 2018, 53(1). 308-326. (in Chinese with English abstract)
[21] 魏国齐,杨威,刘满仓,等. 四川盆地大气田分布、主控因素与勘探方向[J]. 天然气工业,2019,39(6):1 − 12. [WEI Guoqi,YANG Wei,LIU Mancang,et al. Distribution rules,main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry,2019,39(6):1 − 12. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2019.06.001 WEI Guoqi, YANG Wei, LIU Mancang, et al. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 1-12. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2019.06.001
[22] 童崇光. 四川盆地构造演化与油气聚集[M]. 北京: 地质出版社, 1992 TONG Chongguang. Tectonic evolution and oil and gas accumulation in Sichuan Basin[M]. Beijing: Geological Publishing House, 1992. (in Chinese)
[23] 郭正吾, 邓康龄, 韩永辉, 等. 四川盆地形成与演化[M]. 北京: 地质出版社, 1996 GUO Zhengwu, DENG Kangling, HAN Yonghui, et al. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996. (in Chinese)
[24] 徐艳秋. 四川盆地西部边缘地下热水水化学特征及成因研究[D]. 北京: 中国地质大学(北京). XU Yanqiu. Study on hydrochemical characteristics and genesis of underground hot water in the western margin of Sichuan Basin[D]. Beijing: China University of Geosciences. (in Chinese with English abstract)
[25] 李晓,舒勤峰. 四川屏山灯盏窝温泉地球化学特征及成因[J]. 地质灾害与环境保护,2017,28(4):64 − 68. [LI Xiao,SHU Qinfeng. Hydrochemistry and origin of hot spring in Dengzanwo Pingshan Sichuan[J]. Journal of Geological Hazards and Environment Preservation,2017,28(4):64 − 68. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2017.04.014 LI Xiao, SHU Qinfeng. Hydrochemistry and origin of hot spring in Dengzanwo Pingshan Sichuan[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(4): 64-68. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2017.04.014
[26] 张彦普. 重庆市东温泉地热地质特征及成因模式探讨[J]. 地下水,2018,40(1):36 − 39. [ZHANG Yanpu. Discussion about the geothermal geologlcal characteristics and genetic model of east temperature in Chongqing City[J]. Ground Water,2018,40(1):36 − 39. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-1184.2018.01.014 ZHANG Yanpu. Discussion about the geothermal geologlcal characteristics and genetic model of east temperature in Chongqing city[J]. Ground Water, 2018, 40(1): 36-39. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-1184.2018.01.014
[27] 郭娟. 四川盆地东北部盐泉、咸泉和卤水水文地球化学特征及演化[D]. 北京: 中国地质大学(北京) GUO Juan. Hydrogeochemical characteristics and evolution of salt springs, salty springs and brine in northeast Sichuan Basin[D]. Beijing: China University of Geosciences. (in Chinese with English abstract)
[28] 林耀庭. 论四川盆地三叠系地下水水文地质条件[J]. 盐湖研究,2006,14(1):1 − 8. [LIN Yaoting. On the hydrogeological conditions of groundwater in the Triassic system of Sichuan Basin[J]. Journal of Salt Lake Research,2006,14(1):1 − 8. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-858X.2006.01.001 LIN Yaoting. On the hydrogeological conditions of groundwater in the Triassic system of Sichuan Basin[J]. Journal of Salt Lake Research, 2006, 14(1): 1-8. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-858X.2006.01.001
[29] 冯玉梅,王华,涂林玲,等. 四川雅安周公2井地热水环境同位素的初步研究[J]. 中国岩溶,2002,21(1):51 − 54. [FENG Yumei,WANG Hua,TU Linling,et al. Preliminary study on environmental isotopes in hot mineral water from No. 2 Zhougong Well in Ya’an City,Sichuan Province[J]. Carsologica Sinica,2002,21(1):51 − 54. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4810.2002.01.010 FENG Yumei, WANG Hua, TU Linling, et al. Preliminary study on environmental isotopes in hot mineral water from no. 2 Zhougong well in Ya'an city, Sichuan Province[J]. Carsologica Sinica, 2002, 21(1): 51-54. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4810.2002.01.010
[30] 倪高倩,张恒,韦玉婷,等. 四川地热流体水文地球化学及同位素特征简析[J]. 新能源进展,2016,4(3):184 − 194. [NI Gaoqian,ZHANG Heng,WEI Yuting,et al. Hydrogeochemical and isotope characteristics of geothermal fluid in Sichuan[J]. Advances in New and Renewable Energy,2016,4(3):184 − 194. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-560X.2016.03.004 NI Gaoqian, ZHANG Heng, WEI Yuting, et al. Hydrogeochemical and isotope characteristics of geothermal fluid in Sichuan[J]. Advances in New and Renewable Energy, 2016, 4(3): 184-194. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-560X.2016.03.004
[31] 王海真,池英柳,赵宗举,等. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报,2013,34(5):833 − 842. [WANG Haizhen,CHI Yingliu,ZHAO Zongju,et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica,2013,34(5):833 − 842. (in Chinese with English abstract) DOI: 10.7623/syxb201305004 WANG Haizhen, CHI Yingliu, ZHAO Zongju, et al. Karst Reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842. (in Chinese with English abstract) DOI: 10.7623/syxb201305004
[32] 林怡,陈聪,山述娇,等. 四川盆地寒武系洗象池组储层基本特征及主控因素研究[J]. 石油实验地质,2017,39(5):610 − 617. [LIN Yi,CHEN Cong,SHAN Shujiao,et al. Reservoir characteristics and main controlling factors of the Cambrian Xixiangchi Formation in the Sichuan Basin[J]. Petroleum Geology & Experiment,2017,39(5):610 − 617. (in Chinese with English abstract) DOI: 10.11781/sysydz201705610 LIN Yi, CHEN Cong, SHAN Shujiao, et al. Reservoir characteristics and main controlling factors of the Cambrian Xixiangchi Formation in the Sichuan Basin[J]. Petroleum Geology & Experiment, 2017, 39(5): 610-617. (in Chinese with English abstract) DOI: 10.11781/sysydz201705610
[33] 徐明,朱传庆,田云涛,等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报,2011,54(4):1052 − 1060. [XU Ming,ZHU Chuanqing,TIAN Yuntao,et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophysics,2011,54(4):1052 − 1060. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5733.2011.04.020 XU Ming, ZHU Chuanqing, TIAN Yuntao, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5733.2011.04.020
[34] 汪集旸,黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地质科学,1988,23(2):196 − 204. [WANG Jiyang,HUANG Shaopeng. Compilation of heat flow data for continental area of China[J]. Chinese Journal of Geology,1988,23(2):196 − 204. (in Chinese with English abstract) WANG Jiyang, HUANG Shaopeng. Compilation of heat flow data for continental area of China[J]. Chinese Journal of Geology, 1988, 23(2): 196-204. (in Chinese with English abstract)
[35] 汪集旸,黄少鹏. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质,1990,12(4):351 − 363. [WANG Jiyang,HUANG Shaopeng. Compilation of geothermal flow data in Chinese mainland area (second edition)[J]. Seismology and Geology,1990,12(4):351 − 363. (in Chinese with English abstract) WANG Jiyang, HUANG Shaopeng. Compilation of geothermal flow data in Chinese mainland area (second edition)[J]. Seismology and Geology, 1990, 12(4): 351-363. (in Chinese with English abstract)
[36] 韩永辉,吴春生. 四川盆地地温梯度及几个深井的热流值[J]. 石油与天然气地质,1993,14(1):80 − 84. [HAN Yonghui,WU Chunsheng. Geothermal gradient and heat flow values of some deep wells in Sichuan Basin[J]. Oil & Gas Geology,1993,14(1):80 − 84. (in Chinese with English abstract) DOI: 10.11743/ogg19930111 HAN Yonghui, WU Chunsheng. Geothermal gradient and heat flow values of some deep wells in Sichuan Basin[J]. Oil & Gas Geology, 1993, 14(1): 80-84. (in Chinese with English abstract) DOI: 10.11743/ogg19930111
[37] 胡圣标,何丽娟,汪集旸. 中国大陆地区大地热流数据汇编(第三版)[J]. 地球物理学报,2001,44(5):611 − 626. [HU Shengbiao,HE Lijuan,WANG Jiyang. Compilation of heat flow data in the China continental area (third edition)[J]. Chinese Journal of Geophysics,2001,44(5):611 − 626. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2001.05.005 HU Shengbiao, HE Lijuan, WANG Jiyang. Compilation of heat flow data in the China continental area (3rd edition)[J]. Chinese Journal of Geophysics, 2001, 44(5): 611-626. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2001.05.005
[38] 朱传庆,邱楠生,江强,等. 川西坳陷鸭子河地区基于多种古温标的钻井热史恢复[J]. 地球物理学报,2015,58(10):3660 − 3670. [ZHU Chuanqing,QIU Nansheng,JIANG Qiang,et al. Thermal history reconstruction based on multiple paleo-thermal records of the Yazihe area,western Sichuan depression[J]. Chinese Journal of Geophysics,2015,58(10):3660 − 3670. (in Chinese with English abstract) DOI: 10.6038/cjg20151019 ZHU Chuanqing, QIU Nansheng, JIANG Qiang, et al. Thermal history reconstruction based on multiple paleo-thermal records of the Yazihe area, western Sichuan depression[J]. Chinese Journal of Geophysics, 2015, 58(10): 3660-3670. (in Chinese with English abstract) DOI: 10.6038/cjg20151019
[39] ZHU Chuanqing,HU Shengbiao,QIU Nansheng,et al. The thermal history of the Sichuan Basin,SW China:Evidence from the deep boreholes[J]. Science China Earth Sciences,2016,59(1):70 − 82. DOI: 10.1007/s11430-015-5116-4
[40] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng,GAO Peng,RAO Song,et al. Compilation of heat flow data in the continental area of China(fourth edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract) DOI: 10.6038/cjg20160815 JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910. (in Chinese with English abstract) DOI: 10.6038/cjg20160815
[41] 沈治安. 重庆南温泉热水水文地球化学特征及其成因[J]. 成都地质学院学报,1982,9(2):62 − 70. [SHEN Zhian. Hydrogeochemical characteristics and genesis of hot water in south hot springs of Chongqing[J]. Journal of Chengdu University of Technology (Science & Technology Edition),1982,9(2):62 − 70. (in Chinese) SHEN Zhian. Hydrogeochemical characteristics and genesis of hot water in south hot springs of Chongqing[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 1982, 9(2): 62-70. (in Chinese)
[42] 樊新庆. 重庆市观音峡背斜北段东翼地热地质环境特征与地热资源开发研究[D]. 成都: 成都理工大学 FAN Xinqing. Characteristics of geothermal geological environment and development of geothermal resources in the east wing of the northern section of Guanyinxia anticline in Chongqing[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
[43] 肖琼,王鹏,伍坤宇. 重庆三叠系碳酸盐岩热储热水水文地球化学特征[J]. 长江流域资源与环境,2015,24(8):1351 − 1357. [XIAO Qiong,WANG Peng,WU Kunyu. Hydrogeochemical feature of thermal groundwater in carbonate reservoir in Triassic in Chongqing[J]. Resources and Environment in the Yangtze Basin,2015,24(8):1351 − 1357. (in Chinese with English abstract) DOI: 10.11870/cjlyzyyhj201508013 XIAO Qiong, WANG Peng, WU Kunyu. Hydrogeochemical feature of thermal groundwater in carbonate reservoir in Triassic in Chongqing[J]. Resources and Environment in the Yangtze Basin, 2015, 24(8): 1351-1357. (in Chinese with English abstract) DOI: 10.11870/cjlyzyyhj201508013
[44] 陈茂勋,何银武. 成都大邑花水湾地热水的特征及其发现意义[J]. 四川地质学报,1996,16(2):142 − 146. [CHEN Maoxun,HE Yinwu. Nature of geothermal water resources in Huashuiwan,Dayi,Chengdu and the significance of its discovery[J]. Acta Geologica Sichuan,1996,16(2):142 − 146. (in Chinese with English abstract) CHEN Maoxun, HE Yinwu. Nature of geothermal water resources in huashuiwan, Dayi, Chengdu and the significance of its discovery[J]. Acta Geologica Sichuan, 1996, 16(2): 142-146. (in Chinese with English abstract)
[45] 马天才,王冰杜,文举,等. 广元剑门关热矿泉水产出特征与成因探讨分析[J]. 中国西部科技,2009,8(14):1 − 3. [MA Tiancai,WANG Bingdu,WEN Ju,et al. The discussion and analysis about the output characteristic and cause of formation of the hot mineral water in Jian MenGuan GuangYuan[J]. Science and Technology of West China,2009,8(14):1 − 3. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-6396.2009.14.001 MA Tiancai, WANG Bingdu, WEN Ju, et al. The discussion and analysis about the output characteristic and cause of formation of the hot mineral water in Jian MenGuan GuangYuan[J]. Science and Technology of West China, 2009, 8(14): 1-3. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-6396.2009.14.001
[46] 曾敏. 重庆温泉分布与成因研究[D]. 成都: 成都理工大学 ZENG Min. Study on the distribution and causes of hot springs in Chongqing[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
[47] 肖琼,沈立成,杨雷. 地下热水的来源与补给机制分析—以重庆北温泉为例[J]. 重庆大学学报,2015,38(4):91 − 103. [XIAO Qiong,SHEN Licheng,YANG Lei. Analysis on origin and recharge mechanism of geothermal water −A case study of Beiwenquan hot spring in Chongqing,China[J]. Journal of Chongqing University,2015,38(4):91 − 103. (in Chinese with English abstract) DOI: 10.11835/j.issn.1000-582X.2015.04.014 XIAO Qiong, SHEN Licheng, YANG Lei. Analysis on origin and recharge mechanism of geothermal water: A case study of Beiwenquan hot spring in Chongqing, China[J]. Journal of Chongqing University, 2015, 38(4): 91-103. (in Chinese with English abstract) DOI: 10.11835/j.issn.1000-582X.2015.04.014
[48] 中国地质调查局. 水文地质手册[M]. 2版. 北京: 地质出版社, 2012 China Geological Survey. Handbook of hydrogeology[M]. 2nd ed. Beijing: Geological Publishing House, 2012. (in Chinese with English abstract)
[49] 朱克亮,赵斌. 四川安县罗浮山温泉热储层的初步研究[J]. 兴义民族师范学院学报,2013(3):19 − 22. [ZHU Keliang,ZHAO Bin. Preliminary study of an County Luofushan hot spring thermal reservoir in Sichuan Province[J]. Journal of Xingyi Normal University for Nationalities,2013(3):19 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0673.2013.03.006 ZHU Keliang, ZHAO Bin. Preliminary study of an County luofufhan hot spring thermal reservoir in Sichuan Province[J]. Journal of Xingyi Normal University for Nationalities, 2013(3): 19-22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0673.2013.03.006
[50] 刘民生. 四川盆地及盆周地区深部岩溶地下水的循环模式分析[J]. 地质灾害与环境保护,2004,15(2):49 − 51. [LIU Minsheng. Analysis of cyclic pattern of deep Karst groundwater in Sichuan basin and the surrounddings[J]. Journal of Geological Hazards and Environment Preservation,2004,15(2):49 − 51. (in Chinese with English abstract) LIU Minsheng. Analysis of cyclic pattern of deep Karst groundwater in Sichuan basin and the surrounddings[J]. Journal of Geological Hazards and Environment Preservation, 2004, 15(2):49-51.(in Chinese with English abstract)
[51] 曹琴. 川东高褶带三叠系深层卤水和温泉的水化学特征及成因[D]. 北京: 中国地质大学(北京) CAO Qin. Hydrochemical characteristics and genesis of Triassic deep brine and hot springs in the high fold belt of eastern Sichuan[D]. Beijing: China University of Geosciences. (in Chinese with English abstract)
[52] 罗祥康. 重庆市地下热水开发利用条件的初步研究[J]. 四川地质学报,1987,7(1):58 − 65. [LUO Xiangkang. Preliminary study on the development and utilization conditions of underground hot water in Chongqing[J]. Acta Geologica Sichuan,1987,7(1):58 − 65. (in Chinese) LUO Xiangkang. Preliminary study on the development and utilization conditions of underground hot water in Chongqing[J]. Acta Geologica Sichuan, 1987, 7(1): 58-65. (in Chinese)
[53] 罗祥康. 重庆市渝北区统景风景旅游区温泉的形成及其特征[J]. 中国岩溶,2000,19(2):159 − 163. [LUO Xiangkang. Formation and characteristics of the geothermal spring in tongjing scenic spot,North Chongqing District,Chongqing City[J]. Carsologica Sinica,2000,19(2):159 − 163. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4810.2000.02.010 LUO Xiangkang. Formation and characteristics of the geothermal spring in tongjing scenic spot, North Chongqing district, Chongqing city[J]. Carsologica Sinica, 2000, 19(2): 159-163. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4810.2000.02.010
[54] 李东升,刘东升. 重庆地热水资源热储构造与径流补给[J]. 河海大学学报(自然科学版),2011,39(4):372 − 376. [LI Dongsheng,LIU Dongsheng. Geothermal reservoir structure and runoff flow recharge of geothermal water resources in Chongqing City[J]. Journal of Hohai University (Natural Sciences),2011,39(4):372 − 376. (in Chinese with English abstract) DOI: 10.3876/j.issn.1000-1980.2011.04.004 LI Dongsheng, LIU Dongsheng. Geothermal Reservoir structure and runoff flow recharge of geothermal water resources in Chongqing City[J]. Journal of Hohai University (Natural Sciences), 2011, 39(4): 372-376. (in Chinese with English abstract) DOI: 10.3876/j.issn.1000-1980.2011.04.004
[55] 卢庆治,胡圣标,郭彤楼,等. 川东北地区异常高压形成的地温场背景[J]. 地球物理学报,2005,48(5):1110 − 1116. [LU Qingzhi,HU Shengbiao,GUO Tonglou,et al. The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan Basin[J]. Chinese Journal of Geophysics,2005,48(5):1110 − 1116. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2005.05.019 LU Qingzhi, HU Shengbiao, GUO Tonglou, et al. The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2005, 48(5): 1110-1116. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2005.05.019
[56] 杨怀辉,李忠惠. 从古热流值和剥蚀量的研究来判断地热的发育—以四川盆地川合100井为例[J]. 四川地质学报,2004,24(3):180 − 185. [YANG Huaihui,LI Zhonghui. Development of geothermal pool deduced from old thermal current values and denudation quantity:By the example of well 100 at chuanhe in Sichuan Basin[J]. Acta Geologica Sichuan,2004,24(3):180 − 185. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2004.03.013 YANG Huaihui, LI Zhonghui. Development of geothermal pool deduced from old thermal current values and denudation quantity—by the example of well 100 at chuanhe in Sichuan Basin[J]. Acta Geologica Sichuan, 2004, 24(3): 180-185. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2004.03.013
-
期刊类型引用(3)
1. 邵杰,滕超,陈喜庆,杨欣杰,曹军,朱宁,肖登,吕菲. 藏东川西交通廊道波密至林芝段重大工程水文地质条件及问题研究. 河北工程大学学报(自然科学版). 2023(02): 105-112 . 百度学术
2. 张春潮,李向全,马剑飞,付昌昌,白占学,余启明. 喜马拉雅东构造结地热资源赋存特征与开发利用潜力. 地质学报. 2023(08): 2728-2741 . 百度学术
3. 张田田,杨为民,万飞鹏. 浑河断裂带地质灾害发育特征及其成因机制. 吉林大学学报(地球科学版). 2022(01): 149-161 . 百度学术
其他类型引用(2)