Processing math: 100%
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

粉煤灰基地聚物加固土的强度及抗冻融性能试验研究

陈忠清, 朱泽威, 吕越

陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质,2022,49(4): 100-108. DOI: 10.16030/j.cnki.issn.1000-3665.202111045
引用本文: 陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质,2022,49(4): 100-108. DOI: 10.16030/j.cnki.issn.1000-3665.202111045
CHEN Zhongqing, ZHU Zewei, LYU Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100-108. DOI: 10.16030/j.cnki.issn.1000-3665.202111045
Citation: CHEN Zhongqing, ZHU Zewei, LYU Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100-108. DOI: 10.16030/j.cnki.issn.1000-3665.202111045

粉煤灰基地聚物加固土的强度及抗冻融性能试验研究

基金项目: 浙江省自然科学基金项目(LY22D020001)
详细信息
    作者简介:

    陈忠清(1984-),男,博士,副教授,主要从事地基处理及固体废弃物资源化研究。E-mail:q_chen_yk@163.com

  • 中图分类号: TU411.6

Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil

  • 摘要: 粉煤灰基地聚物作为一种低碳胶凝材料,在地基处理中的应用越来越受到关注。但是目前关于碱激发胶凝材料加固土在冻融极端气候条件下的工程特性尚不清楚,有必要进一步开展冻融循环条件下加固土的强度、变形特征及其影响因素研究。通过室内试验研究了原材料硅铝比、碱激发剂模数及碱溶液浓度对粉煤灰基地聚物固化土的强度与抗冻融性能的影响及微观机理。结果表明:地聚物加固土的无侧限抗压强度在碱激发剂模数增大及碱溶液浓度减小条件下,表现出降低趋势,而与原材料硅铝比之间在1.15~1.35范围内呈现出正相关变化趋势,28 d地聚物加固土的无侧限抗压强度最高可达8.98 MPa;当硅铝比在1.25~1.35范围、碱溶液浓度为5.42~22.78 mol/L时,28 d地聚物加固土能够抵御1次以上冻融循环,最高可达6次;地聚物加固土表现出最佳的抗冻融性能与聚合反应生成的凝胶数量多且以富硅相为主相关,而表现出抗压强度高则与聚合反应生成的凝胶数量多且以富铝相为主相关。研究成果将为粉煤灰地基地聚物加固土配合比设计提供技术参考,促进碱激发胶凝材料在地基处理中的应用。
    Abstract: As a low-carbon cementitious material, the application of fly ash based geopolymer in ground improvement has attracted more and more attention. However, the engineering characteristics of the soil stabilized by alkali activated cementitious material under the freezing-thawing extreme climate conditions are not clear. It is necessary to further study the strength, deformation characteristics and their influencing factors of the improved soil under the freezing-thawing cycle. Several laboratory tests are carried out to investigate the effects of the ratio of silicon to aluminum in raw material (Si/Al), modulus of alkali-activator and alkali solution concentration on the unconfined compressive strength (UCS) and the freezing-thawing resistance of fly ash based geopolymer stabilized soil, and the corresponding micro mechanism. The results show that (1) the UCS of geopolymer stabilized soil decreases with the increasing alkali-activator modulus and the decreasing alkali solution concentration, while increases with the Si/Al value in the range of 1.15 to 1.35, and the unconfined compressive strength of 28 d geopolymer stabilized soil can reach 8.98 MPa. (2) When the Si/Al value changes from 1.25 to 1.35 and the alkali solution concentration is within the range of 5.42 to 22.78 mol/L, the 28 d geopolymer stabilized soil can resist more than one (up to 6) freezing-thawing cycle. (3) The best performance of the freezing-thawing resistance of fly ash based geopolymer stabilized soil is mainly related to large number of Si-rich aluminosilicate gel generated by polymerization, while the highest compressive strength is related to the amount of Al-rich aluminosilicate gel generated by polymerization. The research results will provide technical reference for the mix design of soil stabilization with fly ash based geopolymer, and promote the application of alkali activated cementitious material in ground improvement.
  • 法国学者Davidovits[1]在20世纪70年代提出一种新的无机硅铝酸盐胶凝材料——地聚物(geopolymer)。地聚物可利用粉煤灰、矿渣等富含硅铝的固体废弃物通过碱激发制备而成,且研究表明生产地聚物所产生的二氧化碳排放量一般比普通硅酸盐水泥低60%~80%[2]。与直接掺入粉煤灰改善土体力学性质的传统地基处理方法相比[3-4],将粉煤灰碱激发生成地聚物,作为普通硅酸盐水泥的替代物及其在软土地基处理中的应用受到越来越多的关注[5]

    国外在21世纪初最早开始了碱激发胶凝材料加固不同类型地基的试验研究。比如:Cristelo等[6]进行了低钙粉煤灰基地质聚合物加固砂质黏土地基的室内配比和现场试验研究,证实了地质聚合物在软土地基加固领域(尤其是高压喷射注浆法)的良好应用前景,并得到地聚物加固土养护28 d的强度低于水泥土的强度,但90 d强度超过水泥土的强度,且仅达到养护365 d强度的40%~60%。Cristelo等[7]进一步研究得到碱激发条件下低钙粉煤灰对软土地基的长时期加固有利,而高钙粉煤灰则有利于软土地基加固土的短期强度增长。Sargent等[8]、Teing等[9]、Al-Rkaby[10]、Corrêa-Silva等[11]分别开展了碱激发胶凝材料加固软弱冲积土、残积土、砂土及黏性土的试验研究,均表现出明显的加固效果。Corrêa-Silva等[12]进一步研究了磨粒高炉炉渣碱激发胶凝材料固化软弱冲积土的应力应变行为,得到加固土的前期固结压力明显增大,并表现出典型的水泥土应力应变关系特征。

    近些年国内学者也陆续开展了碱激发胶凝材料加固地基的相关研究。比如:孙秀丽等[13]通过碱激发粉煤灰和矿粉固化疏浚淤泥,常温养护下28 d的抗压强度达到12 MPa。王东星等[14]开展了养护龄期、激发剂类型及掺量多种因素影响下碱激发F级低钙粉煤灰固化淤泥的抗压强度、化学组分及微观特征等研究。俞家人等[15]分析了矿渣碱激发胶凝材料固化软黏土过程中碱激发剂模数和掺量对固化效果的影响。吴俊等[16]利用矿渣−粉煤灰基地质聚合物固化淤泥质黏土,分析了硅铝原材料之比、固体激发剂与原材料比及水灰比对固化土抗压强度的影响。王伟齐等[17]以电石渣和原状灰为原料,在聚羧酸硅酸钠、硫酸钠及三乙醇胺复合碱激发条件下开展了固化海相软土的试验研究。可以看到,现有的国内外研究侧重于不同类型碱激发胶凝材料加固不同软弱地基的效果,以及加固土的化学与力学行为特征,而关于冻融循环条件下碱激发胶凝材料加固土的行为特征及其影响因素研究还鲜有报道。

    目前已有少量关于地聚物混凝土抗冻融性能的研究报道,得到矿渣基地聚物混凝土可以抵抗超过300次的快速冻融循环[18],掺50%矿渣的低钙粉煤灰基地聚物混凝土可以抵抗225次的快速冻融循环[19],并指出地聚物混凝土的抗冻融性能与原材料的硅铝比[20-21]、钠铝比[20-21]、模数[22]等因素有关。为充分把握碱激发胶凝材料加固土在冻融极端气候条件下的工程特性,有必要进一步开展冻融循环条件下碱激发胶凝材料加固土的强度、变形等变化特征及其影响因素研究。本文以低钙粉煤灰为主要原料,以氢氧化钠和硅酸钠为碱激发剂制备地聚物,进行黏性土加固的室内试验研究,分析不同原材料硅铝比、碱激发剂模数及碱溶液浓度对地聚物加固黏性土的无侧限抗压强度(UCS)与抗冻融性能的影响,并基于扫描电镜(SEM)、X射线能谱(EDS)和红外光谱(FTIR)等测试手段进行微观影响机理的分析。研究将为粉煤灰基地聚物在地基处理实际应用过程中配合比的合理设计提供技术参考。

    试验用土为取自浙江绍兴某建筑工地的黏性土,取样深度为5 m,其基本物理性质指标如表1所示,颗粒级配曲线及XRD结果分别如如图1图2(a)所示。土的化学组分测试结果显示,其主要化学成分含量为:SiO2为63.40%,Al2O3为18.11%,CaO为2.29%,Fe2O3为7.79%,MgO为2.37%,TiO2为1.11%。

    表  1  试验用土的主要物理性质指标
    Table  1.  Main physical properties of the test soil
    天然含水率w/%液限wL/%塑限wP/%液性指数IL塑性指数IP
    43.045.022.50.9122.5
    下载: 导出CSV 
    | 显示表格
    图  1  试验材料的级配曲线
    Figure  1.  Grain size curves of the test materials
    图  2  粉煤灰及试验用土的XRD图
    Figure  2.  XRD results of the fly ash and test soil

    粉煤灰(FA)来源于浙江绍兴市某热电厂,为N级低钙粉煤灰[23],其主要化学组分测试结果显示:SiO2为46.11%,Al2O3为38.17%,CaO为4.30%,Fe2O3为3.83%,MgO为0.12%,TiO2为1.98%。粉煤灰的颗粒粒径分布如图1所示,XRD测试结果如图2(b)所示。

    试验采用的碱激发剂由市售工业水玻璃和氢氧化钠溶液配制而成,其中水玻璃中SiO2质量分数为29.84%、Na2O为13.36%,水玻璃模数(SiO2/Na2O摩尔比)为2.11,氢氧化钠为分析纯,纯度为95%~99%。

    无侧限抗压强度试验采用UTM5000型60 t电子伺服万能材料试验机,微观分析采用JSM-6360 LV型扫描电子显微镜,物相分析采用Empyrean型X射线衍射仪,官能团和元素成键分析采用NEXUS型傅里叶变换红外光谱仪。

    试验所用粉煤灰中的二氧化硅质量分数为46.11%、氧化铝为38.17%;所用水玻璃中的的二氧化硅质量分数为29.99%、氧化钠为13.75%。通过水玻璃调整原材料的硅铝比(Si/Al),通过固体氢氧化钠调整碱激发剂的模数(M),通过添加水调整地聚物混合物的水固比(L/S),计算公式如下:

    n(Si)=m1×0.4611+m2×0.299960 (1a)
    n(Al)=2×m1×0.3817102 (1b)
    Si/Al=n(Si)n(Al)=n(SiO2)2n(Al2O3) (1c)
    M=n(SiO2)n(Na2O) (2a)
    M=m2×0.2999/60m2×0.1375/62+m3/(2×40) (2b)
    L/S=m2×(10.29990.1375)+m4m1+m2×(0.2999+0.1375)+m3 (3)

    式中:m1——粉煤灰的质量;

    m2——水玻璃的质量;

    m3——固体氢氧化钠的质量;

    m4——外加水的质量。

    试验配比方案如表2所示。A表示粉煤灰与碱激发剂质量比,B表示水玻璃溶液与氢氧化钠溶液质量比,C表示氢氧化钠溶液的浓度,粉煤灰与湿土质量之比(F/S)均为20%。

    表  2  试验分组
    Table  2.  Test groups
    组号Si/AlML/SC/(mol·L−1AB
    A11.151.00.34.662.170.67
    A21.151.20.33.252.250.71
    A31.151.40.32.202.320.75
    A41.151.60.31.402.380.78
    A51.151.80.30.762.420.80
    B11.201.00.37.421.900.97
    B21.201.20.35.091.971.05
    B31.201.40.33.572.071.15
    B41.201.60.32.272.121.23
    B51.201.80.31.252.181.29
    C11.251.00.311.001.691.29
    C21.251.20.38.101.781.46
    C31.251.40.35.421.861.65
    C41.251.60.33.501.931.80
    C51.251.80.31.921.981.94
    D11.301.00.315.891.521.64
    D21.301.20.311.531.621.95
    D31.301.40.38.091.702.26
    D41.301.60.35.281.762.56
    D51.301.80.32.941.812.86
    E11.351.00.322.781.382.02
    E21.351.20.317.051.482.51
    E31.351.40.312.231.563.04
    E41.351.60.38.131.623.61
    E51.351.80.34.611.674.23
    下载: 导出CSV 
    | 显示表格

    (1)将氢氧化钠固体、水玻璃、水根据试验计算配比在烧杯中混合,使用磁力搅拌器搅拌至溶液澄清备用。

    (2)将烘干后的黏性土粉碎,加水搅拌8~10 min,制成含水率为43%的重塑土,然后依次加入粉煤灰、碱激发剂,并搅拌15min至充分混合。

    (3)将搅拌后的地聚物加固土分3层填入70.7 mm×70.7 mm×70.7 mm模具中并压实,用刮刀挂去表面土后将模具用铝箔包裹置于烘箱中养护24 h,养护温度为80 °C[24]

    (4)将试样脱模,放入密封袋,并在标准养护温度下养护28 d。

    参照规范ASTMD 560—03[25]开展地聚物加固土的冻融循环试验,具体试验过程为:

    (1)将养护28 d的加固土试样放置在湿毛巾上24 h,每12 h调换试样方向,充分吸水后放入冰箱(−15 °C)中24 h。

    (2)冻期结束后用不锈钢刷刷去试样表面碎屑,称量碎屑质量。

    (3)加水漫过湿毛巾,将1次冻期后的试样放置在密闭容器中融化24 h,每12 h调换试样方向,融化阶段结束后进入下一次冻期。

    (4)冻融1次为1个循环,达到12次循环或试样质量损失超5%时停止试验。

    同样参照规范ASTMD 560—03进行地聚物加固土的吸水量测试,分别得到标准养护下的吸水量和毛细水吸水量。

    不同试验条件下地聚物加固土养护28 d的无侧限抗压强度如图3所示。从图3可以看出,在Si/Al相同条件下,地聚物加固土的强度总体上表现出随着碱激发剂模数的增大(意味着碱溶液浓度减小)而降低;在Si/Al=1.35条件下,当M>1时,地聚物加固土的强度明显较大。在M相同条件下,地聚物加固土的强度总体上表现出随着Si/Al的增大而升高,且当Si/Al>1.30时强度快速增长;当M=1.2时,碱溶液浓度为17.05 mol/L的地聚物加固土(E2组)强度最高,达到8.98 MPa,而当碱溶液浓度再提高至22.78 mol/L时(E1组),强度发生下降。

    图  3  地聚物加固土28 d无侧限抗压强度变化曲线
    Figure  3.  Variations of the unconfined compressive strength of geopolymer stabilized soil after 28 days of curing

    地聚物加固土的冻融循环次数如表3所示,其中不同Si/Al条件下吸水量与冻融循环数随模数变化曲线如图4所示。

    表  3  地聚物加固土的冻融循环次数
    Table  3.  Freezing-thawing cycles of different groups
    组号C1C2C3D1D2D3E1E2E3
    冻融循环次数222332643
    注:其余试验组的冻融循环次数均小于2次。
    下载: 导出CSV 
    | 显示表格
    图  4  吸水量与冻融循环数随模数变化曲线
    Figure  4.  Variations of water absorption and freezing-thawing cycles with modulus

    表3图4可以发现:(1)标准养护条件下的吸水质量远小于冻融条件下的毛细水吸水质量;(2)不同硅铝比呈现出随着水玻璃掺量增多吸水量减少的规律;(3)C、D、E组试样在前3个模数(1.0,1.2,1.4)的毛细水质量相差不大,后2个模数吸水质量增多,较为不同的是E组模数为1.0时吸水质量最少;(4)比较吸水量与冻融循环次数曲线,毛细吸水量与冻融循环数具备良好的相关性,呈毛细水吸水量增多抗冻融循环数下降规律。

    B1组(A=1.90)与强度最优的E2组(A=1.48)地聚物加固土的XRD结果如图5所示。由图5可以看出:(1)在20°~30°的2θ之间B1、E2上弥散的凸起说明物相的无定形状态,加固土样品特征峰多为土中的石英(Quartz),新生成物质主要为方钠石(Sodalite),是由莫来石(Mullite)在碱性环境下反应生成的[26];(2)在不同水玻璃模数与碱溶液浓度条件下,地聚物加固土的XRD结果基本一致。

    图  5  地聚物加固土的XRD图
    Figure  5.  XRD results of geopolymer stabilized soil

    B1组(A=1.90)、E1(A=1.38)与E2组(A=1.48)地聚物加固土的SEM结果如图6所示。从图6可以看出,B1组加固土中存在较多分散的土颗粒及形态完整的球状粉煤灰颗粒。E1、E2组加固土中地聚物凝胶明显多于B1组。由此可得,随着碱激发剂掺量的增大,提高了加固土中地聚物凝胶的生成量,使得粉煤灰、土颗粒在凝胶的作用下胶结,分散的颗粒(土、粉煤灰)减少,团聚体增多,以及团聚体体积增大。

    图  6  地聚物加固土的SEM图
    Figure  6.  SEM results of geopolymer stabilized soil

    B1组(A=1.90,C=7.42 mol/L)、E1组(A=1.38,C=22.78 mol/L)与E2组(A=1.48,C=17.05 mol/L)地聚物加固土中凝胶中的元素占比情况如图7所示。从图7可以看出,B1组比E2组掺入的水玻璃量更少,但其凝胶中硅铝元素比(2.56)却比E2组(2.07)更大,说明B1组粉煤灰溶出的铝元素明显少于E2;与E2组水玻璃掺量相同的E1组凝胶中硅铝比为2.16,也稍大于E2的硅铝比。可见,E组生成了富铝相凝胶,而B1组和E1组则生成了富硅相凝胶。B1组由于氢氧化钠溶液的浓度较低,使得地聚反应环境的pH较低,硅铝玻璃体的Si-O-Si、Si-O-Al解聚量少,导致生成低聚状态的[SiO4]四面体和[AlO4]较少;E1组则由于氢氧化钠溶液浓度过高,影响了铝元素的溶出[27]

    图  7  地聚物加固土中凝胶的EDS图谱
    Figure  7.  EDS results of gel in geopolymer stabilized soil

    地聚物加固土(E2组)、粉煤灰(FA)及粉煤灰地聚物(FG)[28](强度最优组,其碱溶液浓度为10 mol/L)的FTIR结果如图8所示。

    图  8  地聚物加固土、地聚物及原材料的FTIR结果
    Figure  8.  FTIR results of geopolymer stabilized soil, geopolymer and test materials

    图8(a)(b)可以看出,520 ~778 cm−1段的3个吸收峰只在含土的试样组中,主要由Al-O-Al、Si-O-Al引起;粉煤灰在1104 cm−1的Si-O-Si、Si-O-Al伸缩振动峰来自其无定形铝硅玻璃体[29];粉煤灰的振动峰1104 cm−1移至粉煤灰地聚物的1030 cm−1。地聚物曲线特征峰从粉煤灰的1104 cm−1向1030 cm−1的低波数偏移主要是形成了一种新的富铝凝胶相[30]。硅铝玻璃体的Si-O-Si、Si-O-Al解聚生成低聚状态的[SiO4]四面体和[AlO4]四面体,再发生缩聚反应。

    图8(c)(d)可以看出,不同组地聚物加固土与试验用土的FTIR结果曲线主要区别在1000~1200 cm−1段的波峰位置;E2组地聚物加固土的特征峰更接近粉煤灰地聚物的特征峰1030 cm−1,表现出强度最高,此时凝胶中的硅铝比越接近于2,铝溶出量越多;B1组和E1组地聚物加固土的特征峰则更偏向土的特征峰984 cm−1,表现出强度相对较低,地聚物凝胶的生成量较少,此时地聚物凝胶中的硅铝比大于2,铝溶出量相对较低。但从冻融循环试验的结果来看,过高的氢氧化钠溶液浓度(22.78 mol/L)生成的富硅相凝胶有利于增强体系的抗冻融能力。

    (1)随着碱激发剂模数增大,碱溶液浓度减小,地聚物加固土的强度总体上表现出降低趋势,而在模数一定条件下,原材料硅铝比在1.15~1.35范围内越大,地聚物加固土强度越大,28 d地聚物加固土的无侧限抗压强度最高可达8.98 MPa。

    (2)当硅铝比在1.25~1.35范围时,碱溶液浓度为5.42~22.78 mol/L的地聚物加固土能够抵御1次以上冻融循环,最高为6次,且相同硅铝比条件下抗冻融能力相近。

    (3)碱溶液浓度低于7.42 mol/L时,pH环境不足以裂解更多的Al-O,导致低强度,硅铝比低于1.25时,地聚物凝胶生成量不足,地聚物加固土内部团聚体较少,结构松散,在冻融过程中易吸入更多的毛细水后,并在冻胀作用下裂解。

    (4)在硅铝比同为1.35条件下,碱溶液浓度达到17.05 mol/L时生成富铝相凝胶,对地聚物加固土强度的提升帮助更大,而当碱溶液浓度达到22.78 mol/L时则生成富硅相凝胶,地聚物加固土强度有所下降,但通过降低加固土的吸水量,有助于提升加固土的抗冻融循环能力。

  • 图  1   试验材料的级配曲线

    Figure  1.   Grain size curves of the test materials

    图  2   粉煤灰及试验用土的XRD图

    Figure  2.   XRD results of the fly ash and test soil

    图  3   地聚物加固土28 d无侧限抗压强度变化曲线

    Figure  3.   Variations of the unconfined compressive strength of geopolymer stabilized soil after 28 days of curing

    图  4   吸水量与冻融循环数随模数变化曲线

    Figure  4.   Variations of water absorption and freezing-thawing cycles with modulus

    图  5   地聚物加固土的XRD图

    Figure  5.   XRD results of geopolymer stabilized soil

    图  6   地聚物加固土的SEM图

    Figure  6.   SEM results of geopolymer stabilized soil

    图  7   地聚物加固土中凝胶的EDS图谱

    Figure  7.   EDS results of gel in geopolymer stabilized soil

    图  8   地聚物加固土、地聚物及原材料的FTIR结果

    Figure  8.   FTIR results of geopolymer stabilized soil, geopolymer and test materials

    表  1   试验用土的主要物理性质指标

    Table  1   Main physical properties of the test soil

    天然含水率w/%液限wL/%塑限wP/%液性指数IL塑性指数IP
    43.045.022.50.9122.5
    下载: 导出CSV

    表  2   试验分组

    Table  2   Test groups

    组号Si/AlML/SC/(mol·L−1AB
    A11.151.00.34.662.170.67
    A21.151.20.33.252.250.71
    A31.151.40.32.202.320.75
    A41.151.60.31.402.380.78
    A51.151.80.30.762.420.80
    B11.201.00.37.421.900.97
    B21.201.20.35.091.971.05
    B31.201.40.33.572.071.15
    B41.201.60.32.272.121.23
    B51.201.80.31.252.181.29
    C11.251.00.311.001.691.29
    C21.251.20.38.101.781.46
    C31.251.40.35.421.861.65
    C41.251.60.33.501.931.80
    C51.251.80.31.921.981.94
    D11.301.00.315.891.521.64
    D21.301.20.311.531.621.95
    D31.301.40.38.091.702.26
    D41.301.60.35.281.762.56
    D51.301.80.32.941.812.86
    E11.351.00.322.781.382.02
    E21.351.20.317.051.482.51
    E31.351.40.312.231.563.04
    E41.351.60.38.131.623.61
    E51.351.80.34.611.674.23
    下载: 导出CSV

    表  3   地聚物加固土的冻融循环次数

    Table  3   Freezing-thawing cycles of different groups

    组号C1C2C3D1D2D3E1E2E3
    冻融循环次数222332643
    注:其余试验组的冻融循环次数均小于2次。
    下载: 导出CSV
  • [1] (法)约瑟夫·戴维德维斯. 地聚合物化学及应用[M]. 王克俭, 译. 北京: 国防工业出版社, 2011: 3 − 6

    DAVIDOVITS J. Geopolymer chemistry & applications[M]. WANG Kejian, trans. Beijing: National Defense Industry Press, 2011: 3 − 6. (in Chinese)

    [2]

    DUXSON P, PROVIS J L, LUKEY G C, et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cement and Concrete Research,2007,37(12):1590 − 1597. DOI: 10.1016/j.cemconres.2007.08.018

    [3] 刘之葵, 郭彤, 王剑. 粉煤灰和二灰对桂林红黏土力学性质的影响[J]. 水文地质工程地质,2017,44(3):86 − 92. [LIU Zhikui, GUO Tong, WANG Jian. Effect of the fly ash and lime fly ash on the mechanical properties of red clay in Guilin[J]. Hydrogeology & Engineering Geology,2017,44(3):86 − 92. (in Chinese with English abstract)

    LIU Zhikui, GUO Tong, WANG Jian. Effect of the fly ash and lime fly ash on the mechanical properties of red clay in Guilin[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 86-92. (in Chinese with English abstract)

    [4] 林彤. 粉煤灰加固软土地基的室内配方试验研究[J]. 水文地质工程地质, 2003, 30(增刊1): 76 − 78

    LIN Tong. Experimental study of formula indoor of fly ash improving soft foundation[J]. Hydrogeology & Engineering Geology, 2003, 30(Sup 1): 76 − 78. (in Chinese with English abstract)

    [5]

    NWONU D C. Exploring soil geopolymer technology in soft ground improvement: A brief excursion[J]. Arabian Journal of Geosciences,2021,14(6):1 − 20.

    [6]

    CRISTELO N, GLENDINNING S, TEIXEIRA PINTO A. Deep soft soil improvement by alkaline activation[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2011,164(2):73 − 82. DOI: 10.1680/grim.900032

    [7]

    CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilisation with alkaline activation[J]. Construction and Building Materials,2012,29:167 − 174. DOI: 10.1016/j.conbuildmat.2011.10.049

    [8]

    SARGENT P, HUGHES P N, ROUAINIA M, et al. The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils[J]. Engineering Geology,2013,152(1):96 − 108. DOI: 10.1016/j.enggeo.2012.10.013

    [9]

    TEING T T. Effects of alkali-activated waste binder in soil stabilization[J]. International Journal of GEOMATE,2019,17(59):82 − 89.

    [10]

    AL-RKABY A H J. Evaluating shear strength of sand- ggbfs based geopolymer composite material[J]. Acta Polytechnica,2019,59(4):305 − 311. DOI: 10.14311/AP.2019.59.0305

    [11]

    CORRÊA-SILVA M, ARAÚJO N, CRISTELO N, et al. Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications[J]. Road Materials and Pavement Design,2019,20(8):1912 − 1926. DOI: 10.1080/14680629.2018.1473286

    [12]

    CORRÊA-SILVA M, MIRANDA T, ROUAINIA M, et al. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags[J]. Journal of Cleaner Production,2020,267:122017. DOI: 10.1016/j.jclepro.2020.122017

    [13] 孙秀丽, 童琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报,2017,57(6):622 − 628. [SUN Xiuli, TONG Qi, LIU Wenhua, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology,2017,57(6):622 − 628. (in Chinese with English abstract) DOI: 10.7511/dllgxb201706011

    SUN Xiuli, TONG Qi, LIU Wenhua, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628. (in Chinese with English abstract) DOI: 10.7511/dllgxb201706011

    [14] 王东星, 王宏伟, 邹维列, 等. 活性MgO-粉煤灰固化淤泥耐久性研究[J]. 岩土力学,2019,40(12):4675 − 4684. [WANG Dongxing, WANG Hongwei, ZOU Weilie, et al. Study of durability of dredged sludge solidified with reactive MgO-fly ash[J]. Rock and Soil Mechanics,2019,40(12):4675 − 4684. (in Chinese with English abstract)

    WANG Dongxing, WANG Hongwei, ZOU Weilie, et al. Study of durability of dredged sludge solidified with reactive MgO-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4675-4684. (in Chinese with English abstract)

    [15] 俞家人, 陈永辉, 陈庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报,2020,23(2):364 − 371. [YU Jiaren, CHEN Yonghui, CHEN Geng, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials,2020,23(2):364 − 371. (in Chinese with English abstract)

    YU Jiaren, CHEN Yonghui, CHEN Geng, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371. (in Chinese with English abstract)

    [16] 吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学,2021,42(3):647 − 655. [WU Jun, ZHENG Xiyao, YANG Aiwu, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics,2021,42(3):647 − 655. (in Chinese with English abstract)

    WU Jun, ZHENG Xiyao, YANG Aiwu, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese with English abstract)

    [17] 王伟齐, 孙红, 葛修润. 碱激发作用下海相软土固化研究[J]. 硅酸盐通报,2021,40(7):2248 − 2255. [WANG Weiqi, SUN Hong, GE Xiurun. Solidification of marine soft soil under alkali excitation[J]. Bulletin of the Chinese Ceramic Society,2021,40(7):2248 − 2255. (in Chinese with English abstract)

    WANG Weiqi, SUN Hong, GE Xiurun. Solidification of marine soft soil under alkali excitation[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2248-2255. (in Chinese with English abstract)

    [18]

    FU Y W, CAI L C, WU Y G. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction and Building Materials,2011,25(7):3144 − 3148. DOI: 10.1016/j.conbuildmat.2010.12.006

    [19]

    ZHAO R D, YUAN Y, CHENG Z Q, et al. Freeze-thaw resistance of Class F fly ash-based geopolymer concrete[J]. Construction and Building Materials,2019,222:474 − 483. DOI: 10.1016/j.conbuildmat.2019.06.166

    [20] 谢凌君. Si/Al、Na/Al对偏高岭土基地聚物抗冻及抗渗性能的影响[D]. 杭州: 浙江大学, 2018

    XIE Lingjun. The influence of Si/Al and Na/Al on freeze-thaw resistance and permeability of metakaolin based geopolymer[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)

    [21]

    TIAN L Y, HE D P, ZHAO J N, et al. Durability of geopolymers and geopolymer concretes: A review[J]. Reviews on Advanced Materials Science,2021,60(1):1 − 14. DOI: 10.1515/rams-2021-0002

    [22] 毛明杰, 李瑞文, 杨秋宁, 等. 冻融作用下粉煤灰地聚物混凝土性能劣化研究[J]. 非金属矿,2020,43(2):48 − 50. [MAO Mingjie, LI Ruiwen, YANG Qiuning, et al. Study on deterioration of fly ash geopolymer concrete under freeze-thaw[J]. Non-Metallic Mines,2020,43(2):48 − 50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8098.2020.02.013

    MAO Mingjie, LI Ruiwen, YANG Qiuning, et al. Study on deterioration of fly ash geopolymer concrete under freeze-thaw[J]. Non-Metallic Mines, 2020, 43(2): 48-50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8098.2020.02.013

    [23]

    American Society for Testing and Materials. Standard specification for fly ash: ASTMC 618— 19[S]. West Conshohocken: ASTM International, 2019.

    [24] 贾屹海. Na-粉煤灰地质聚合物制备与性能研究[D]. 北京: 中国矿业大学(北京), 2009

    JIA Yihai. Synthesis and characterization of fly-ash-based Na-geopolymer[D]. Beijing: China University of Mining & Technology, Beijing, 2009. (in Chinese with English abstract)

    [25]

    American Society for Testing and Materials. Standard test method for freezing and thawing of compacted cement soil mixtures: ASTMD 560—2003[S]. West Conshohocken: ASTM International, 2003.

    [26] 王华, 张强, 宋存义. 莫来石在粉煤灰碱性溶液中的反应行为[J]. 粉煤灰综合利用,2001,14(5):24 − 27. [WANG Hua, ZHANG Qiang, SONG Cunyi. Reaction behavior of mullite in alkaline solution of fly ash[J]. Fly Ash Comprehensive Utilization,2001,14(5):24 − 27. (in Chinese) DOI: 10.3969/j.issn.1005-8249.2001.05.011

    WANG Hua, ZHANG Qiang, SONG Cunyi. Reaction behavior of mullite in alkaline solution of fly ash[J]. Fly Ash Comprehensive Utilization, 2001, 14(5): 24-27. (in Chinese) DOI: 10.3969/j.issn.1005-8249.2001.05.011

    [27]

    REES C A, PROVIS J L, LUKEY G C, et al. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2007,23(17):9076 − 9082. DOI: 10.1021/la701185g

    [28] 魏威, 高彦斌, 陈忠清, 等. 室温碱激发低钙粉煤灰地质聚合物配比试验研究[J]. 硅酸盐通报,2020,39(12):3889 − 3896. [WEI Wei, GAO Yanbin, CHEN Zhongqing, et al. Experimental study on proportion of room temperature alkali-activated low-calcium fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society,2020,39(12):3889 − 3896. (in Chinese with English abstract)

    WEI Wei, GAO Yanbin, CHEN Zhongqing, et al. Experimental study on proportion of room temperature alkali-activated low-calcium fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3889-3896. (in Chinese with English abstract)

    [29] 侯云芬, 王栋民, 李俏, 等. 水玻璃性能对粉煤灰基矿物聚合物的影响[J]. 硅酸盐学报,2008,36(1):61 − 64. [HOU Yunfen, WANG Dongmin, LI Qiao, et al. Effect of water glass performance on fly ash-based geopolymers[J]. Journal of the Chinese Ceramic Society,2008,36(1):61 − 64. (in Chinese with English abstract) DOI: 10.3321/j.issn:0454-5648.2008.01.013

    HOU Yunfen, WANG Dongmin, LI Qiao, et al. Effect of water glass performance on fly ash-based geopolymers[J]. Journal of the Chinese Ceramic Society, 2008, 36(1): 61-64. (in Chinese with English abstract) DOI: 10.3321/j.issn:0454-5648.2008.01.013

    [30]

    FERNÁNDEZ-JIMÉNEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes[J]. Microporous and Mesoporous Materials,2006,91(1/2/3):111 − 119.

  • 期刊类型引用(7)

    1. 加瑞,楚振兴. 地质聚合物加固软土的研究现状与进展. 硅酸盐通报. 2025(02): 490-500 . 百度学术
    2. 王伯昕,高银龙,王清,刘佳奇. 冻融循环对季冻土区粉质黏土-混凝土界面剪切性能的影响. 吉林大学学报(地球科学版). 2024(05): 1592-1603 . 百度学术
    3. 王楠,王琼,叶为民,陈永贵,许龙,苏薇. 微生物加固技术研究进展. 水文地质工程地质. 2024(05): 231-244 . 本站查看
    4. 易富,姜珊,慕德慧,管茂成. 流态地聚物固化土强度特性及其强度预测. 水文地质工程地质. 2023(01): 60-68 . 本站查看
    5. 邓建红,陈昶,安然. 粉煤灰基地聚物固化盐渍土的工程特性与微观机制. 粉煤灰综合利用. 2023(01): 47-52 . 百度学术
    6. 张鹏,马露,张运菊,唐杰,袁小超,尹春林,陈万萍. 铬渣-粉煤灰基地质聚合物的制备及其性能研究. 绵阳师范学院学报. 2023(08): 58-63+85 . 百度学术
    7. 张鹏,马露,尹春林,袁小超,刘刚,张运菊. 纤维和烧结粉煤灰对地聚物力学性能的影响. 中国陶瓷. 2023(10): 56-62 . 百度学术

    其他类型引用(4)

图(8)  /  表(3)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  259
  • PDF下载量:  188
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-22
  • 网络出版日期:  2022-05-29
  • 发布日期:  2022-07-24

目录

/

返回文章
返回