ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构

柴寿喜, 张琳, 魏丽, 田萌萌

柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.20212026
引用本文: 柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.20212026
CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.20212026
Citation: CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.20212026

冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构

基金项目: 天津市科技计划项目(20YDTPJC00930);天津市科技支撑重点项目(19YFZCSF00820)
详细信息
    作者简介:

    柴寿喜(1962-),男,博士,教授,主要从事盐渍土改性固化研究。E-mail:chaishouxi@163.com

    通讯作者:

    张琳(1996-),女,硕士研究生,主要从事盐渍土加筋固化研究。E-mail:17839166834@163.com

  • 中图分类号: TU411.6;TU411.92

Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles

  • 摘要: 冬季冻结与春季融化引起北方滨海盐渍土的工程性质劣化。为研究纤维加筋对固化土的抗压性能、抗冻融性能与微观结构变化,开展了石灰固化盐渍土和纤维与石灰加筋固化盐渍土的冻融试验、无侧限抗压试验、扫描电镜试验、核磁共振试验和压汞试验,系统分析冻融后纤维加筋固化盐渍土的抗压强度与孔隙特征间的相关性、抗冻融性能及其变化规律。结果表明:随冻融次数增加,石灰固化土和纤维与石灰加筋固化土的抗压强度、孔隙体积、孔隙率均呈阶段性变化,即冻融1~3次、冻融4~7次、冻融8~10次、冻融11~15次共4个阶段。随冻融次数增加,破坏应变增大。相同冻融次数下,2种土的破坏应变均随压实度的增大而增大,且纤维与石灰加筋固化土的抗压强度、破坏应变均大于石灰固化土,孔隙率则反之。加筋土越密实,筋土摩擦作用越强,土的抗压性能越好;纤维在土中随机分布与交织分布,对土起到了空间约束作用,提高了加筋土的抗冻融性能。研究成果可为北方盐渍土的工程利用提供理论和技术指导。
    Abstract: Freezing in winter and thawing in spring lead to deterioration of the engineering property in the coastal saline soil in north China. In order to study the effect of the saline soil added lime (lime-soil) and saline soil added fiber and lime (fiber-lime-soil) on compressive capability, anti- freezing-thawing capability and microstructure, the freezing-thawing tests, unconfined compressive test, scanning electronic microscopy (SEM) test, nuclear magnetic resonance (NMR) test and mercury intrusion porosimetry (MIP) test are carried out, and the correlation between the compressive strength and microstructure characteristics, anti-freezing-thawing capability and its variation rules are systematically analyzed. The test results show that the compressive strength, pore volume and porosity of lime-soil and fiber-lime-soil under the freezing-thawing cycles are varied by four stages, that is, stage one (1−3 freezing-thawing cycles), stage two (4−7 freezing-thawing cycles), stage three (8−10 freezing-thawing cycles), stage four (11−15 freezing-thawing cycles). At the same freezing-thawing cycles, the failure strains of lime-soil and fiber-lime-soil increase with the increasing compactness, and the compressive strength and failure strain of fiber-lime-soil are greater than those of lime-soil, but the porosity is lower than that of lime-soil. The more the compactness is, the stronger the friction between fibers and particles, and the better the compressive properties. The interleaved fibers and randomly distributed fibers jointly limit the deformation of the soil and enhance the anti-freezing-thawing properties of the fiber-lime-soil. The results may provide the guidance in theory and technology for engineering utilization in saline soil areas in northern China.
  • 受北方滨海地区的自然与地质环境影响,盐渍土易发生冻胀与融沉、盐胀与溶陷工程危害,产生地基塌陷、路面起伏、开裂等一系列工程问题[1],针对此问题已有众多学者开展了研究工作。魏丽等[2]、姜宇波等[3]以石灰固化盐渍土的无侧限抗压试验与三轴压缩试验,证实增加石灰掺量可提高盐渍土的强度和水稳定性,且石灰固化土的强度可满足高速公路和一级公路底基层的强度要求。齐吉琳等[4]试验分析冻融土的物理性质、力学性质及变化机理,认为冻融改变了土的结构,其内部应力导致土骨架的膨胀与缩小。朱敏等[5]、吕前辉等[6]通过测试聚丙烯纤维加筋土的抗压强度、抗剪强度与变形性能,认为在最优含水率附近,纤维加筋土的抗压性能和抗剪性能最优。唐朝生等[7]、徐敏普等[8]分析纤维加筋的增强机理,发现纤维加筋显著提高了土的峰值强度,并提升了土的残余强度。陈诚等[9]以扫描电镜试验观察木质素纤维改良土,发现纤维在土中搭建了三维网架结构,使土的孔隙减小,增强了土颗粒间的联结力,降低了冻融对土的损伤。袁志辉等[10]通过核磁试验发现随干湿循环次数增加,土颗粒分散,颗粒间距增加,颗粒间连接方式由面/面转变为面/边、面/角接触,孔隙增多。安爱军等[11]、吕擎峰等[12]通过联合运用核磁共振与扫描电镜技术,分析固化前后土的孔隙变化及分布规律,固化后土呈蜂窝状、骨架状、海绵状等混合结构,颗粒间的胶结程度增强,孔隙连通性下降,有效抑制了土的胀缩。丁建文等[13]、张英等[14]采用压汞法研究固化土的孔隙变化,对比了固化土的孔隙结构、体积及分布特征。

    目前,固化土的力学性能与微观结构研究成果较多,但针对冻融后纤维加筋固化盐渍土的抗压强度与孔隙特征之间的相关性、抗冻融性能及其变化规律还需要系统探索。据此,开展了冻融作用下的石灰固化盐渍土、纤维与石灰加筋固化盐渍土的无侧限抗压试验,以研究不同压实度条件下土的抗压性能和抗冻融性能;借助扫描电镜、核磁共振、压汞试验,研究冻融前后2种土的孔隙特征及变化规律;建立宏观力学指标与微观结构指标间的相关关系,以探寻纤维加筋对提高固化土的抗压性能和抗冻融性能的积极作用。研究成果可为北方盐渍土地区的工程建设提供技术指导。

    实验用土取自天津滨海新区独流减河东风大桥处。盐渍土的物理性质指标为:风干含水率2.8%,含盐量2.9%,液限29.6%,塑限17.6%,塑性指数12,最优含水率16.8%,最大干密度1.73 g/cm3

    熟石灰的主要成分为Ca(OH)2,质量分数为90%。选择石灰掺加量为干土质量的6%、8%和10%。

    聚丙烯纤维丝的物理力学指标为:密度0.91 g/cm3,直径20 µm,导热性极低,弹性模量3 500 MPa,抗拉强度500 MPa,断裂延伸率15%。

    纤维加筋长度为试样直径的1/3[15]。将盐渍土风干、碾碎,过1 mm筛。将土与聚丙烯纤维拌和均匀,额外掺加石灰质量分数为20%的水[16],加水后再次均匀拌和,装入密闭塑料袋,浸润24 h。制样前,掺入石灰,再次将混合料拌和均匀。

    制样筒内壁涂抹黏稠油脂,避免在脱模过程中破坏试样。采用双向静压法,分3层装入混合料。每次压实后用刮土刀将其表面菱形刮毛,以免出现薄弱面。在制样筒内静置试样10 min,缓慢推出。将试样放入恒温恒湿养护箱养护28 d。

    试样直径61.8 mm、高度125 mm;聚丙烯纤维长度19 mm、质量加筋率0.2%;以最优含水率和90%、93%和96%压实度制样。制备未冻融试样各1组、冻融试样各15组,每组6个试样。

    冻融试验前,将试样包裹2层保鲜膜,以免冻融过程中水分流失。

    天津市近50年气象资料显示,天津冬季最低气温−18℃,春季平均气温20 ℃。为此设定冻融试验的冻结温度−20 °C、融化温度20 °C;冻结12 h并融化12 h为1次冻融;冻融次数为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15。

    使用冻融试验箱(型号DR-2A)进行冻融试验、无侧限抗压试验仪(型号CBR-2)进行抗压试验,量力环系数31.424 N/0.01 mm,试验速率1 mm/min;使用Leica QWin5000图像处理软件分析土的微观结构图像;由核磁共振成像分析仪(型号MesoMR23-060H-I)完成核磁共振试验;使用全自动压汞仪(型号Auto Pore lv9500),获得土的孔径与孔隙数值。

    课题组的前期试验结果证实[17],6%是石灰掺量下限值,因此分别以石灰掺量6%、8%和10%固化盐渍土。图1为石灰掺量6%、8%和10%固化土的应力-应变曲线。

    图  1  3个石灰掺量固化盐渍土的应力-应变
    Figure  1.  Stress-strain curves of lime-soil with three lime content

    固化土的轴向应力均随石灰掺量增加而升高。应力达到峰值后,石灰掺量6%和8%的固化土抗压强度逐渐下降,且具有一定的残余强度;石灰掺量10%固化土的轴向应力达到峰值后急剧下降为零。石灰与土颗粒、水、CO2发生化学反应,在土中形成胶凝材料和较大团聚体,使得土的抗压强度与抗变形性能增强。适宜石灰掺量为8%。

    以石灰掺量8%、聚丙烯纤维长度19 mm、质量加筋率0.2%为条件,制备石灰固化盐渍土和纤维与石灰加筋固化盐渍土。图2为压实度90%、93%和96%的石灰固化土和纤维与石灰加筋固化土的抗压强度随冻融次数变化曲线。纤维与石灰加筋固化土的抗压强度均大于石灰固化土,掺加纤维提高了土的抗压强度。冻融1~3次,石灰固化土和纤维与石灰加筋固化土的抗压强度降幅最大;冻融4~7次,降幅减小;冻融8~10次,降幅趋缓;冻融11~15次,抗压强度逐渐稳定。

    图  2  2种土在3个压实度下抗压强度随冻融次数的变化
    Figure  2.  Unconfined compressive strength of lime-soil and fiber-lime-soil in three compactness vs freezing-thawing cycle

    3个压实度石灰固化土和纤维与石灰加筋固化土的抗压强度下降率(与未冻融土的抗压强度相比)如图3所示。

    图  3  2种固化土的抗压强度随冻融次数的下降率
    Figure  3.  Decrease rate of the compressive strength of lime-soil and fiber-lime-soil with freezing-thawing cycle

    随冻融次数增加,抗压强度的下降率增大,下降率的变化规律与抗压强度变化规律一致。纤维与石灰加筋固化土的下降率低于石灰固化土,其抗冻融性能优于石灰固化土。

    在冻融作用下,孔隙水经历了水-冰-水的循环过程,土颗粒之间的粘结作用降低,试样内部孔隙增多并出现微裂隙,导致试样结构破坏,强度大幅下降[18]。纤维在土中随机分布与交织分布,纤维与土的摩擦作用和纤维对土的空间约束作用限制了土的冻胀变形破坏程度。

    冻融0,1,2,5,7,10,12,15次,压实度90%、93%和96%的石灰固化土和纤维与石灰加筋固化土的轴向应力-轴向应变曲线见图4

    图  4  不同冻融次数时2种土在3种压实度下的轴向应力-轴向应变
    Figure  4.  Axial stress-axial strain curves of lime-soil and fiber-lime-soil in three compactness of different freezing-thawing cycles

    对比图4,冻融作用下,压实度90%、93%和96%石灰固化土、纤维与石灰加筋固化土的轴向应力-轴向应变的变化规律基本一致。

    随应变增加,2种土的应力增大,应力达峰值后,试样发生不同程度的破坏;应变继续增加,峰值应力下降,最后逐渐平缓。纤维与石灰加筋固化土的应力均大于石灰固化土,残余强度降幅较小。这表明,掺加纤维提高了冻融土的韧性。压实度96%纤维与石灰加筋固化土的抗变形性能最好,压实度90%石灰固化土的最差。

    相同冻融次数,随压实度增大,2种土的峰值强度增加,轴向应力-轴向应变曲线的斜率增大,纤维与石灰加筋固化土的峰值应力大于石灰固化土。压实度越大,土颗粒与纤维的摩擦力和联结力越大。纤维加筋有效约束了土颗粒位移,限制了土的变形,减弱了冻融对土的劣化作用。

    相同压实度,随冻融次数增加,石灰固化土的峰值应力减小,冻融降低了土的强度,使得土逐渐趋于塑性破坏,水分不断迁移,土颗粒的排列方式被破坏,降低了土的抗变形性能。冻融前期,强度下降明显;冻融后期,土颗粒间的联结达到新的平衡状态,此时土的变形破坏程度减弱。

    冻融0,1,2,5,7,10,12,15次2种土试样的抗压破坏形态如图5所示。随冻融次数增加,土的强度减弱,破坏程度增加。未冻融石灰固化土出现贯通裂隙,破坏程度较为严重;冻融1~3次,试样裂隙增多,边角掉落碎渣,强度大幅下降;冻融4~7次,裂隙变宽,试样有部分碎渣掉落,强度降幅减小;冻融8~10次,试样掉落碎渣明显增多,强度缓慢下降;冻融11~15次,试样多贯通裂隙,裂隙处片状剥落增多,完整性较差。

    图  5  不同冻融次数石灰固化土和纤维与石灰加筋固化土试样的抗压破坏形态
    Figure  5.  Failure patterns of the lime-soil and fiber-lime-soil under different freezing-thawing cycles

    纤维与石灰加筋固化土裂隙较窄且数量较少,破裂面呈现“裂而不断”及表面“起皮”现象,边角完整性较好。这表明掺加纤维减少了裂隙数量,减小了裂隙宽度,改变了裂隙发展方向,降低了裂隙贯通率,弱化了土的冻融破坏作用,提升了土的强度与抗变形性能。

    对比石灰固化土和纤维与石灰加筋固化土试验结果,掺入纤维后,土的冻融损伤减弱,抗变形性能提高。石灰固化土和纤维与石灰加筋固化土的扫描电镜微观形貌如图6所示。

    图  6  石灰固化土和纤维与石灰加筋固化土的扫描电镜影像
    Figure  6.  SEM images of the lime-soiland the fiber-lime-soil

    未冻融的土颗粒间的胶结与整体性较好,冻融1~3次,孔隙开始发育,整体性变差;冻融4~7次后,孔隙明显增大,贯通孔隙增加;冻融8~10次,碎渣增多,破坏程度较大;冻融11~15次,裂隙明显增多且增宽。说明随冻融次数增加,试样微观上破坏增强;宏观上表现为冻融对力学性质的劣化影响,即冻融次数增加,试样的抗压强度降低,裂缝逐渐增大。

    纤维深埋于土中,表面粘附有石灰固化土团粒,周围被土颗粒包裹、挤压,可有效阻止土颗粒位移与变形,因此提高了石灰固化土的力学性能,增强了土的强度与稳定性。纤维在土中呈纤维交织和筋土摩擦2种分布形式。加筋土受外力作用时,纤维的空间约束作用和筋土摩擦作用使土中的裂隙很难发育,且对裂隙的扩展起到抑制作用。

    冻融0,1,2,5,7,10,12,15次、3个压实度石灰固化土、纤维与石灰加筋固化土孔隙半径与孔隙体积占比之间的变化曲线如图7所示。

    图  7  3种压实度石灰固化土和纤维与石灰加筋固化土的孔隙半径与孔隙体积占比
    Figure  7.  Pore radius vs pore volume of the lime-soil and the fiber-lime-soil with three compactness under some freezing-thawing cycles

    2种固化土的孔隙半径集中在 0.01~10 μm。可按孔隙半径划分4类孔隙:微孔隙(0 μm<d≤1 μm)、小孔隙(1 μm<d≤3 μm)、中孔隙(3 μm<d≤10 μm)、大孔隙(10 μm<d≤100 μm)。

    石灰固化土和纤维与石灰加筋固化土的孔隙半径与孔隙体积占比曲线呈3峰分布:随冻融次数增加,波峰持续向右移动,主峰(波峰1)向下移动,次峰(波峰2和波峰3)向上移动。说明微孔隙和小孔隙减少,中孔隙和大孔隙增加,大孔隙增加幅度小于中孔隙。孔隙体积占比(百分比)见表1

    表  1  不同冻融次数3个压实度2种土的孔隙体积占比
    Table  1.  Volume proportion of the lime-soil and fiber-lime-soil in three compactness under some freezing-thawing cycles /%
    孔隙
    类型

    冻融

    次数
    压实度90%压实度93%压实度96%
    石灰土加筋土石灰土加筋土石灰土加筋土


    063.9457.6476.7272.1682.5084.28
    162.0154.5271.7069.8978.9383.61
    257.5654.4470.2368.2476.2780.57
    553.0048.5065.7463.9372.3876.24
    752.8146.0262.2860.6267.1272.38
    1054.8954.2865.7061.1866.3567.56
    1256.3152.4164.2262.5866.9066.85
    1555.4951.4264.1359.2966.9965.27


    016.4615.9413.1514.5210.899.85
    118.5718.7815.8016.3812.6610.54
    222.1320.0717.0818.0314.4612.44
    523.1423.2219.9520.5817.2415.16
    725.1624.0321.0821.7919.7118.17
    1023.6723.3521.0823.2721.2620.02
    1223.2823.7521.1022.0020.6419.86
    1523.7224.2220.9623.1720.8720.18


    013.3414.687.839.014.754.05
    114.8617.0310.0210.486.204.33
    216.1617.0010.3511.047.095.43
    518.3018.6811.9412.448.406.86
    719.9719.8613.6514.0510.699.61
    1017.3217.1711.5813.1210.4110.09
    1216.5817.6612.2712.6710.1110.07
    1516.5318.1311.8313.979.8810.69


    06.2611.742.294.311.861.82
    14.579.682.493.252.221.52
    24.158.502.342.702.191.56
    55.569.612.363.041.971.75
    74.0610.102.993.542.492.65
    104.125.211.642.421.972.34
    123.836.182.422.762.353.22
    154.266.233.083.562.263.86
    下载: 导出CSV 
    | 显示表格

    试样以微孔隙为主,存在部分中孔隙和较少大孔隙。冻融1~3次,微孔隙和小孔隙较快减少,中孔隙和大孔隙较快增加;冻融4~7次,微孔隙和小孔隙缓慢减少,中孔隙和大孔隙缓慢增加;冻融8~10次,微孔隙和小孔隙较慢增加,中孔隙和大孔隙较快减少;冻融11~15次,孔隙变幅平缓。

    压实度增大,微孔隙体积占比增加,大孔隙体积占比减小,孔隙体积占比整体变幅减慢。压实度相同,随冻融次数增加,强度逐渐减小,微孔隙和小孔隙体积逐渐减小,中孔隙和大孔隙体积均增大,且大孔隙体积占比增幅最小。不同冻融次数,压实度增大孔隙体积减少;相同冻融次数,纤维与石灰加筋固化土的孔隙体积占比均小于石灰固化土,表明掺加纤维有助于减少孔隙体积,孔隙变化规律与力学特征变化规律相吻合。

    原因是,冻融破坏了土颗粒的排列形式,使试样裂隙扩张或贯通。小孔隙不断扩展,逐渐转化为中孔隙和大孔隙。压实度较大,土颗粒联结紧密,阻碍土中水的迁移,有效抑制了冻胀[19]

    冻融0,1,2,5,7,10,15次石灰固化土、纤维与石灰加筋固化土的孔隙分布特征如图8图9所示。试样的孔隙直径为0.005~100 μm。图8(a)和图9(a)中,d≤0.1 μm的孔隙体积累计曲线较陡,该区间孔隙较多;0.1 μm<d≤10 μm的孔隙体积累积曲线较平缓,该部分孔隙较少;10 μm<d≤100 μm的孔隙体积累计曲线最平缓,>10 μm的孔隙更少。冻融15次石灰固化土孔隙总体积达0.17 mL/g,为最大值。

    图  8  不同冻融次数石灰固化土孔隙分布特征
    Figure  8.  Pore distribution characteristics of the lime-soil under different freezing-thawing cycles
    图  9  不同冻融次数纤维与石灰加筋固化土孔隙分布特征
    Figure  9.  Pore distribution characteristics of the fiber-lime-soil under different freezing-thawing cycles

    鉴于某孔径孔隙体积曲线有4个明显区间,据此将孔隙划分4类:微孔隙(0.005 μm<d≤0.04 μm)、小孔隙(0.04 μm<d≤0.5 μm)、中孔隙(0.5 μm<d≤10 μm)、大孔隙(10 μm<d≤100 μm)。

    随冻融次数增加,石灰固化土和纤维与石灰加筋固化土的孔径均增大,峰值和峰宽总体呈下降趋势。微孔隙曲线形状和位置变化较小,小孔隙、中孔隙和大孔隙曲线的峰值和峰宽变化较大,表明冻融对微孔隙影响较小,对大孔隙影响较大,对小孔隙和中孔隙影响最大。

    随冻融次数增加,固化土的孔隙直径增大,孔隙总体积增加。冻融前后纤维与石灰加筋固化土进汞曲线的间隔距离小于石灰固化土,表明纤维加筋有效抑制了孔径增大和孔隙增加,改变了土的孔隙分布特征。随冻融次数增加,孔隙数量增多,经过反复冻融,小孔隙和中孔隙连通形成大孔隙,宏观上表现为土的强度下降,抗变形性能降低,这一结论与抗压试验得出的结果相吻合。

    冻融0,1,2,5,7,10,15次石灰固化土、纤维与石灰加筋固化土的孔隙指标见表2

    表  2  冻融前后石灰固化土和纤维与石灰加筋固化土的孔隙指标
    Table  2.  Pore indices of the lime-soil and fiber-lime-soil before and after freezing-thawing cycles
    冻融
    次数
    石灰固化土纤维与石灰加筋固化土
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    022.1680.02526.790.020.8170.02325.390.0
    123.1620.02628.205.321.2570.02426.584.7
    223.2740.02728.877.821.3900.02627.086.7
    523.4950.02929.9811.921.5000.02727.759.3
    723.6680.03030.7314.721.5310.02828.2511.3
    1024.7620.03231.7718.622.1520.02929.0514.4
    1525.4130.03534.5228.922.9880.03030.8921.7
    下载: 导出CSV 
    | 显示表格

    随冻融次数增加,土的孔隙率增加,孔隙率的增长率增大。冻融作用下纤维与石灰加筋固化土的孔隙面积、平均直径、孔隙率及孔隙率的增长率均小于石灰固化土。

    冻融1~3次,孔隙率快速增大;冻融4~7次,孔隙率较慢增加;冻融8~10次,孔隙率缓慢增大;冻融11~15次,孔隙率快速增加。

    随冻融次数增加,孔径和孔隙体积逐渐增大,孔隙更容易连通,土的结构损伤越来越严重[20]。宏观上表现为明显的变形破坏,裂隙逐渐增大,贯穿整个试样。冻融作用下,小孔隙逐渐扩展为大孔隙,且有新孔隙形成,孔隙率增大,土的抗变形性能降低。纤维与石灰加筋固化土孔隙率的增长率小于石灰固化土,表明纤维约束了大孔隙和裂隙的产生,减弱了冻融对土的结构破坏。

    (1)随冻融次数增加,石灰固化土和纤维与石灰加筋固化土的抗压强度、孔隙体积、孔隙率均呈4个阶段变化:冻融1~3次,强度降幅最大,微孔隙和小孔隙较快减少,中孔隙和大孔隙较快增加,孔隙率快速增大;冻融4~7次,强度降幅减小,微孔隙和小孔隙缓慢减少,中孔隙和大孔隙较慢增加,孔隙率较慢增加;冻融8~10次,强度降幅趋缓,微孔隙和小孔隙缓慢增加,中孔隙和大孔隙较快减少,孔隙率缓慢增大;冻融11~15次,强度和孔隙变化逐渐稳定,孔隙率快速增加。

    (2)在任意冻融次数下,纤维与石灰加筋固化土的抗压强度均大于石灰固化土。随机分布与交织分布的纤维发挥着筋土摩擦与空间约束作用,增强了土的抗压强度和抗冻融性能,并提高了土的残余强度。

    (3)随冻融次数增加,各孔隙组的占比发生变化。微孔隙和小孔隙体积占比减小,中孔隙和大孔隙体积占比增加。随压实度增大,微孔隙和小孔隙体积占比增加,大孔隙体积占比减小,其中大孔隙增加幅度小于中孔隙。

    (4)纤维加筋抑制了土的孔径和孔隙体积的增加。纤维加筋使得土的孔隙面积、平均直径、孔隙率及孔隙率的增长率减小,减弱了冻融对土结构的破坏,并减小了土中裂隙的数量与宽度。

  • 图  1   3个石灰掺量固化盐渍土的应力-应变

    Figure  1.   Stress-strain curves of lime-soil with three lime content

    图  2   2种土在3个压实度下抗压强度随冻融次数的变化

    Figure  2.   Unconfined compressive strength of lime-soil and fiber-lime-soil in three compactness vs freezing-thawing cycle

    图  3   2种固化土的抗压强度随冻融次数的下降率

    Figure  3.   Decrease rate of the compressive strength of lime-soil and fiber-lime-soil with freezing-thawing cycle

    图  4   不同冻融次数时2种土在3种压实度下的轴向应力-轴向应变

    Figure  4.   Axial stress-axial strain curves of lime-soil and fiber-lime-soil in three compactness of different freezing-thawing cycles

    图  5   不同冻融次数石灰固化土和纤维与石灰加筋固化土试样的抗压破坏形态

    Figure  5.   Failure patterns of the lime-soil and fiber-lime-soil under different freezing-thawing cycles

    图  6   石灰固化土和纤维与石灰加筋固化土的扫描电镜影像

    Figure  6.   SEM images of the lime-soiland the fiber-lime-soil

    图  7   3种压实度石灰固化土和纤维与石灰加筋固化土的孔隙半径与孔隙体积占比

    Figure  7.   Pore radius vs pore volume of the lime-soil and the fiber-lime-soil with three compactness under some freezing-thawing cycles

    图  8   不同冻融次数石灰固化土孔隙分布特征

    Figure  8.   Pore distribution characteristics of the lime-soil under different freezing-thawing cycles

    图  9   不同冻融次数纤维与石灰加筋固化土孔隙分布特征

    Figure  9.   Pore distribution characteristics of the fiber-lime-soil under different freezing-thawing cycles

    表  1   不同冻融次数3个压实度2种土的孔隙体积占比

    Table  1   Volume proportion of the lime-soil and fiber-lime-soil in three compactness under some freezing-thawing cycles /%

    孔隙
    类型

    冻融

    次数
    压实度90%压实度93%压实度96%
    石灰土加筋土石灰土加筋土石灰土加筋土


    063.9457.6476.7272.1682.5084.28
    162.0154.5271.7069.8978.9383.61
    257.5654.4470.2368.2476.2780.57
    553.0048.5065.7463.9372.3876.24
    752.8146.0262.2860.6267.1272.38
    1054.8954.2865.7061.1866.3567.56
    1256.3152.4164.2262.5866.9066.85
    1555.4951.4264.1359.2966.9965.27


    016.4615.9413.1514.5210.899.85
    118.5718.7815.8016.3812.6610.54
    222.1320.0717.0818.0314.4612.44
    523.1423.2219.9520.5817.2415.16
    725.1624.0321.0821.7919.7118.17
    1023.6723.3521.0823.2721.2620.02
    1223.2823.7521.1022.0020.6419.86
    1523.7224.2220.9623.1720.8720.18


    013.3414.687.839.014.754.05
    114.8617.0310.0210.486.204.33
    216.1617.0010.3511.047.095.43
    518.3018.6811.9412.448.406.86
    719.9719.8613.6514.0510.699.61
    1017.3217.1711.5813.1210.4110.09
    1216.5817.6612.2712.6710.1110.07
    1516.5318.1311.8313.979.8810.69


    06.2611.742.294.311.861.82
    14.579.682.493.252.221.52
    24.158.502.342.702.191.56
    55.569.612.363.041.971.75
    74.0610.102.993.542.492.65
    104.125.211.642.421.972.34
    123.836.182.422.762.353.22
    154.266.233.083.562.263.86
    下载: 导出CSV

    表  2   冻融前后石灰固化土和纤维与石灰加筋固化土的孔隙指标

    Table  2   Pore indices of the lime-soil and fiber-lime-soil before and after freezing-thawing cycles

    冻融
    次数
    石灰固化土纤维与石灰加筋固化土
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    022.1680.02526.790.020.8170.02325.390.0
    123.1620.02628.205.321.2570.02426.584.7
    223.2740.02728.877.821.3900.02627.086.7
    523.4950.02929.9811.921.5000.02727.759.3
    723.6680.03030.7314.721.5310.02828.2511.3
    1024.7620.03231.7718.622.1520.02929.0514.4
    1525.4130.03534.5228.922.9880.03030.8921.7
    下载: 导出CSV
  • [1] 魏玉涛,刘德玉,张伟,等. 荒漠-湿地生态系统区盐渍土特征及空间变异性[J]. 水文地质工程地质,2020,47(2):183 − 190. [WEI Yutao,LIU Deyu,ZHANG Wei,et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area,Gansu Province,China[J]. Hydrogeology & Engineering Geology,2020,47(2):183 − 190. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906021

    WEI Yutao, LIU Deyu, ZHANG Wei, et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area, Gansu Province, China[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 183-190. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906021

    [2] 魏丽. 纤维与石灰加筋固化滨海盐渍土的冻融损伤及力学性能退化研究[D]. 兰州: 兰州大学, 2021

    WEI Li. Fabric damage and mechanical degradation of coastal saline soil reinforced with fiber and lime under freeze-thaw cycling[D]. Lanzhou: Lanzhou University, 2021. (in Chinese with English abstract)

    [3] 姜宇波, 柴寿喜, 魏丽, 等. 四种因素对纤维加筋盐渍土抗压性能的影响[J]. 岩土力学, 2016, 37(增刊1): 233-239

    JIANG Yubo, CHAI Shouxi, WEI Li, et al. Effect of four factors on compressive property of fiber-saline soil[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 233-239. (in Chinese with English abstract)

    [4] 齐吉琳,程国栋,VERMEER P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展,2005,20(8):887 − 894. [QI Jilin,CHENG Guodong,VERMEER P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advance in Earth Sciences,2005,20(8):887 − 894. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-8166.2005.08.010

    QI Jilin, CHENG Guodong, P. A. VERMEER. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advance in Earth Sciences, 2005, 20(8): 887-894. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-8166.2005.08.010

    [5] 朱敏,倪万魁,李向宁,等. 黄土掺入聚丙烯纤维后的无侧限抗压强度和变形试验研究[J]. 科学技术与工程,2020,20(20):8337 − 8343. [ZHU Min,NI Wankui,LI Xiangning,et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering,2020,20(20):8337 − 8343. (in Chinese with English abstract)

    ZHU Min, NI Wankui, LI Xiangning, et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering, 2020, 20(20): 8337-8343. (in Chinese with English abstract)

    [6] 吕前辉,柴寿喜,李敏. 多因素影响下石灰固化盐渍土抗剪性能的试验研究[J]. 水文地质工程地质,2017,44(6):89 − 95. [LYU Qianhui,CHAI Shouxi,LI Min. An experimental study of the shear properties of the solidified saline soil with lime concerning under the influence of multiple factors[J]. Hydrogeology & Engineering Geology,2017,44(6):89 − 95. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.06.14

    LYU Qianhui, CHAI Shouxi, LI Min. An experimental study of the shear properties of the solidified saline soil with lime concerning under the influence of multiple factors[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 89-95. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.06.14

    [7] 唐朝生,施斌,顾凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报,2011,19(4):610 − 614. [TANG Chaosheng,SHI Bin,GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology,2011,19(4):610 − 614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.04.026

    TANG Chaosheng, SHI Bin, GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology, 2011, 19(4): 610-614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.04.026

    [8] 徐敏普,孙明瑞,常成. 冻融循环作用下秸秆纤维加筋土抗压强度试验研究[J]. 盐城工学院学报(自然科学版),2021,34(2):6 − 10. [XU Minpu,SUN Mingrui,CHANG Cheng. Experimental study on compressive strength of straw fiber-reinforced soil under freeze-thaw cycles[J]. Journal of Yancheng Institute of Technology (Natural Science Edition),2021,34(2):6 − 10. (in Chinese with English abstract)

    XU Minpu, SUN Mingrui, CHANG Cheng. Experimental study on compressive strength of straw fiber-reinforced soil under freeze-thaw cycles[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2021, 34(2): 6-10. (in Chinese with English abstract)

    [9] 陈诚, 郭伟, 任宇晓. 冻融循环条件下木质素纤维改良土性质研究及微观分析[J]. 岩土工程学报, 2020, 42(增刊2): 135 − 140

    CHEN Cheng, GUO Wei, REN Yuxiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup 2): 135 − 140. (in Chinese with English abstract)

    [10] 袁志辉,唐春,杨普济,等. 干湿循环下红土力学性质劣化的多尺度试验[J]. 水力发电学报,2022,41(2):79 − 91. [YUAN Zhihui,TANG Chun,YANG Puji,et al. Multi-scale experiment of mechanical property degradation of a laterite soil under dry-wet cycling[J]. Journal of Hydroelectric Engineering,2022,41(2):79 − 91. (in Chinese with English abstract) DOI: 10.11660/slfdxb.20220209

    YUAN Zhihui, TANG Chun, YANG Puji, et al. Multi-scale experiment of mechanical property degradation of a laterite soil under dry-wet cycling[J]. Journal of Hydroelectric Engineering, 2022, 41(2): 79-91. (in Chinese with English abstract) DOI: 10.11660/slfdxb.20220209

    [11] 安爱军, 廖靖云. 基于核磁共振和扫描电镜的蒙内铁路膨胀土改良细观结构研究[J]. 岩土工程学报, 2018, 40(增刊2): 152 − 156

    AN Aijun, LIAO Jingyun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa-Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 2): 152 − 156. (in Chinese with English abstract)

    [12] 吕擎峰,周刚,王生新,等. 固化盐渍土核磁共振微观特征[J]. 岩土力学,2019,40(1):245 − 249. [LYU Qingfeng,ZHOU Gang,WANG Shengxin,et al. Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance[J]. Rock and Soil Mechanics,2019,40(1):245 − 249. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2017.1152

    LYU Qingfeng, ZHOU Gang, WANG Shengxin, et al. Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2019, 40(1): 245-249. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2017.1152

    [13] 丁建文,洪振舜,刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学,2011,32(12):3591 − 3596. [DING Jianwen,HONG Zhenshun,LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics,2011,32(12):3591 − 3596. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.12.010

    DING Jianwen, HONG Zhenshun, LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3596. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.12.010

    [14] 张英,邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土,2015,37(1):169 − 174. [ZHANG Ying,BING Hui. Experimental study of the effect of freezing-thawing cycles on porosity characters of silty clay by using mercury intrusion porosimetry[J]. Journal of Glaciology and Geocryology,2015,37(1):169 − 174. (in Chinese with English abstract)

    ZHANG Ying, BING Hui. Experimental study of the effect of freezing-thawing cycles on porosity characters of silty clay by using mercury intrusion porosimetry[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 169-174. (in Chinese with English abstract)

    [15] 方秋阳,柴寿喜,李敏,等. 冻融循环对固化盐渍土的抗压强度与变形的影响[J]. 岩石力学与工程学报,2016,35(5):1041 − 1047. [FANG Qiuyang,CHAI Shouxi,LI Min,et al. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):1041 − 1047. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.1078

    FANG Qiuyang, CHAI Shouxi, LI Min, et al. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 1041-1047. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.1078

    [16] 柴寿喜. 固化滨海盐渍土的强度特性研究[D]. 兰州: 兰州大学, 2006

    CHAI Shouxi. Study on the special properties of strength of solidified saline soil in inshore[D]. Lanzhou: Lanzhou University, 2006. (in Chinese with English abstract)

    [17] 柴寿喜, 王晓燕, 王沛. 滨海盐渍土改性固化与加筋利用研究[M]. 天津: 天津大学出版社, 2011

    CHAI Shouxi, WANG Xiaoyan, WANG Pei. Study on modification curing and reinforcement utilization of coastal saline soil [M]. Tianjin: Tianjin University Press, 2011. (in Chinese)

    [18] 程良. 盐渍土强度体变特性及冻融循环对其结构性影响研究[D]. 西安: 西安理工大学, 2018

    CHENG Liang. Study on strength deformation characteristics of saline soil and the influence of freeze-thaw cycle on its structure[D]. Xi’an: Xi’an University of Technology, 2018. (in Chinese with English abstract)

    [19] 何攀,许强,刘佳良,等. 基于核磁共振与氮吸附技术的黄土含盐量对结合水膜厚度的影响研究[J]. 水文地质工程地质,2020,47(5):142 − 149. [HE Pan,XU Qiang,LIU Jialiang,et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology,2020,47(5):142 − 149. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201910002

    HE Pan, XU Qiang, LIU Jialiang, et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 142-149. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201910002

    [20] 秦泳,徐彬,郑一峰. 掺加硅藻土混凝土孔隙结构冻融破坏试验研究[J]. 路基工程,2020(5):43 − 48. [QIN Yong,XU Bin,ZHENG Yifeng. Experimental study on freezing and thawing failure test of diatomite doped concrete with pore structure[J]. Subgrade Engineering,2020(5):43 − 48. (in Chinese with English abstract) DOI: 10.13379/j.issn.1003-8825.202004005

    QIN Yong, XU Bin, ZHENG Yifeng. Experimental study on freezing and thawing failure test of diatomite doped concrete with pore structure[J]. Subgrade Engineering, 2020(5): 43-48. (in Chinese with English abstract) DOI: 10.13379/j.issn.1003-8825.202004005

  • 期刊类型引用(16)

    1. 周志尧,程银银,张喆,王紫,兰永军,李宏波. 固废材料复合固化盐渍土的力学性能. 中国粉体技术. 2025(01): 130-142 . 百度学术
    2. 李丽华,刘文,白玉霞,王翠英,李双琴. 椰壳纤维-石灰协同作用改良黏土性能试验研究. 水文地质工程地质. 2025(01): 130-140 . 本站查看
    3. 刘鑫,许伟能,黄光靖,兰恒星. 考虑分布效应的纤维加筋黄土室内大型直剪试验研究. 长江科学院院报. 2025(01): 144-151 . 百度学术
    4. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 . 百度学术
    5. 韩长玉,赵浩汀. 路基填筑短期内热棒高导热性影响. 吉林大学学报(地球科学版). 2024(02): 570-580 . 百度学术
    6. 李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 . 百度学术
    7. 季鹏. 聚丙烯纤维增强淤泥固化土的力学性能研究. 四川建材. 2024(08): 95-97 . 百度学术
    8. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 . 百度学术
    9. 王润泽,孙静,季雨航,刘宇轩. 冻融循环作用下二灰盐渍土无侧限抗压强度研究. 黑龙江大学工程学报(中英俄文). 2024(03): 78-87 . 百度学术
    10. 刘冉,张保良,李大鹏,邢国起. 含盐量、冻融和固化作用对盐碱地区盐渍土强度的影响研究综述. 江西建材. 2024(09): 6-10 . 百度学术
    11. 於德美,陈书杰,张峰,冯超,张恒春,王耀,付腾飞,黄霞. 纤维加筋固化土研究现状及展望. 材料导报. 2024(S2): 139-146 . 百度学术
    12. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 . 百度学术
    13. 王晗. 不同物理作用下河道堤防黏土力学特性及边坡稳定性研究. 水利建设与管理. 2023(05): 36-41+47 . 百度学术
    14. 申涛. 高速铁路盐渍土路基填料复掺改良试验研究. 路基工程. 2023(04): 32-36 . 百度学术
    15. 孙桂玉,胡任宇,田野,林昭阳. 聚丙烯纤维增强流态固化土的力学性能研究. 四川建材. 2023(11): 85-87 . 百度学术
    16. 张合勇,王雪冬,朱永东,王海鹏,漆利辉. 冻融循环作用下露天煤矿内排土场土体力学特征及强度劣化机理. 煤田地质与勘探. 2023(11): 119-131 . 百度学术

    其他类型引用(13)

图(9)  /  表(2)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  197
  • PDF下载量:  247
  • 被引次数: 29
出版历程
  • 收稿日期:  2021-12-12
  • 修回日期:  2022-01-21
  • 网络出版日期:  2022-08-09
  • 发布日期:  2022-09-18

目录

/

返回文章
返回