Processing math: 65%
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

考虑土拱效应及中主应力影响的桩间挡板土压力计算方法

尤静霖, 王士杰, 王昊岚

尤静霖,王士杰,王昊岚. 考虑土拱效应及中主应力影响的桩间挡板土压力计算方法[J]. 水文地质工程地质,2022,49(5): 90-95. DOI: 10.16030/j.cnki.issn.1000-3665.202201032
引用本文: 尤静霖,王士杰,王昊岚. 考虑土拱效应及中主应力影响的桩间挡板土压力计算方法[J]. 水文地质工程地质,2022,49(5): 90-95. DOI: 10.16030/j.cnki.issn.1000-3665.202201032
YOU Jinglin, WANG Shijie, WANG Haolan. A calculation method of earth pressure on sheeting between two piles considering soil arching effect and intermediate principal stress[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 90-95. DOI: 10.16030/j.cnki.issn.1000-3665.202201032
Citation: YOU Jinglin, WANG Shijie, WANG Haolan. A calculation method of earth pressure on sheeting between two piles considering soil arching effect and intermediate principal stress[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 90-95. DOI: 10.16030/j.cnki.issn.1000-3665.202201032

考虑土拱效应及中主应力影响的桩间挡板土压力计算方法

基金项目: 河北省建设科技研究指导性计划项目(2016-236)
详细信息
    作者简介:

    尤静霖(1997-),女,硕士研究生,主要从事边坡稳定性分析与滑坡防治研究。E-mail:Yoojiln@163.com

    通讯作者:

    王士杰(1963-),男,博士,教授,博士研究生导师,主要从事岩土工程教学与科研工作。E-mail:wshj_wshj@163.com

  • 中图分类号: TU432

A calculation method of earth pressure on sheeting between two piles considering soil arching effect and intermediate principal stress

  • 摘要: 基于M-C强度准则的经典土压力理论,因未考虑土拱效应及中主应力的影响,导致土压力理论计算值较实际值明显偏大。在该方面,现有研究成果亦不能同时考虑二者的影响。为考虑土拱效应、中主应力和土体黏聚力等对桩间挡板土压力的综合影响,借助统一强度理论,对桩间土拱强度进行分析,给出了桩间挡板土压力计算的新方法。另外,基于Lode参数与应变类型的关系,提出了统一强度指标φt的实用计算方法。结合工程实例,将计算结果与已有相关研究成果和现行规范确定的土压力进行了对比分析。结果表明,采用该方法,不同中主应力系数b值条件下,计算所得总主动土压力约为经典朗肯理论土压力的1/3~1/2,与实测土压力分布规律基本吻合。研究成果对桩板支挡结构的优化设计、降低工程造价,具有重要理论指导意义和工程实用价值。
    Abstract: The classical theories of earth pressure are based on the M-C strength criterion, which do not consider the influence of soil arching effect and intermediate principal stress on earth pressure, so the theoretical earth pressures are significantly larger than the actual values. In this respect, the existing research results also cannot consider the impact of both. In order to consider the comprehensive effect of soil arching effect, intermediate principal stress and soil cohesion on the earth pressure on the sheeting between two piles, the unified strength theory is used to analyze the strength of soil arching between piles, and a new method for calculating the earth pressure on the sheeting between piles is derived. In addition, based on the relationship between the Lode parameters and strain types, a practical calculation method of the unified strength index φt is proposed. Finally, combined with an engineering example, the calculated results are compared with the existing research results and the earth pressure determined by using the current code. The results indicate that the total active earth pressure calculated with this method is about 1/3~1/2 of that calculated by the traditional Rankine theory under the condition of different b values, and it is in accordance with the distribution law of the measured earth pressure. The research results are of important theoretical significance and practical value for the optimal design of pile-sheet retaining and the reduction of engineering cost.
  • 在我国地质结构复杂的山区,特别是西南地区,广泛分布不良地质体[1]。桩板墙支护因其结构合理、支护效果好和易于施工等优点,在山区水利水电、工业与民用建筑、道路交通等工程的边坡防护中有着十分广泛的应用。保证边坡工程支护设计的安全与经济,关键是要正确地计算出桩板支挡结构上的土压力。现行规范对土压力的计算均是基于M-C强度准则的库仑与朗肯土压力理论[2],这一传统算法存在两个明显不足之处:一是未考虑中主应力σ2的影响,导致传统的朗肯土压力理论计算值偏大,最大可偏大约 50%[3];二是忽略了桩间土拱效应的存在,同样会使得经典理论计算值较实际土压力大很多[4]。因此,在边坡支挡结构设计时,如仍采用现行理论与方法进行计算,势必造成较大的浪费。迄今为止,我国的岩土工作者在该方面已做了不少有益的研究。如:从不同角度就中主应力对土压力的影响进行的广泛探讨,并借助统一强度理论,推导了考虑中主应力影响的土压力计算公式[3,5-6];分别采用数值分析、室内模型试验等手段对桩间土拱效应进行的深入研究,并提出了考虑土拱效应的桩间挡板土压力计算方法[4,7-11]。本文旨在提出一种可同时考虑中主应力与土拱效应影响的桩间挡板土压力计算方法。通过将统一强度理论引入桩间土拱强度分析,进而利用极限平衡理论,推导出桩间挡板上土压力的计算公式,并结合工程实例加以验证分析,以期为桩板支挡结构的优化设计提供参考与借鉴。

    桩板墙属于长条形支挡结构,作用于其上的土压力可简化为平面应变问题。应捷等[6]基于统一强度理论,考虑σ2的影响,引入中间主应力参数m,给出了统一强度理论的黏聚力ct和内摩擦角φt的表达式:

    sinφt=b(1m)+(2+b+bm)sinφ02+b+bsinφ0 (1)
    ct=2(b+1)c0cosφ02+b+bsinφ01cosφt (2)

    并定义:

    σ2=m2(σ1+σ3) (3)

    式中:b——中主应力系数;

    c0φ0——土体的黏聚力和内摩擦角。

    m的数值可根据分析或试验适当地选取,文中并未给出具体的m值。

    由文献[12]可知,考虑中间主应力影响的Lode参数的定义表达式为:

    μσ = σ2(σ1+σ3)/2(σ1σ3)/2 (4)

    μσ决定了土体发生应变的类型,在平面应变条件下μσ=0,即σ2=(σ1+σ3)/2,将其代入式(3),则m=1、式(1)可简化为:

    sinφt=2(1+b)sinφ02+b(1+sinφ0) (5)

    利用式(2)和式(5)即可确定统一强度理论的土体黏聚力ct和内摩擦角φt

    由于桩板墙的桩与桩间挡板两者刚度相差很大,对其后土体的约束作用存在明显差异,在滑坡推力作用下,墙后土体的不均匀或相对位移将在墙后土体中形成图1所示的土拱效应。工程实践中,为保证桩间土拱效应的形成,应使桩间距在合理范围之内。综合已有研究成果[13-14]:当桩间距介于3~5倍桩宽或5~8 m时,在滑坡推力(均布线荷载q)作用下,桩间土会产生土拱效应,此时,面侧挡板受到的土压力基本上不受桩背土压力影响。因滑坡推力q为均布线荷载,故合理拱轴线为一抛物线[15],拱体单元任一截面上剪力、弯矩均为零,建立其力学计算模型如图2所示。设:f为土拱矢高/m;L为土拱跨度/m;Fx为拱脚的水平反力/kN;Fy为拱脚竖直反力/kN;N为拱顶截面上的轴力/kN;q为滑坡推力线荷载/(kN·m−1),则其合理拱轴线方程为:

    图  1  桩板墙土拱效应示意图
    Figure  1.  Soil-arch effect model between sheet pile walls
    图  2  土拱受力简图
    Figure  2.  Stress sketch of soil-arch effect
    y=4fL2x2 (6)

    据已有研究成果[8-9]可知:影响桩板墙后土拱效应的因素除桩间距、桩径及深度外,还有土体类别及其力学性质等。早期的研究均假定土拱效应自桩顶以下均匀一致,不考虑土拱效应随深度的变化[11,16]。近期研究表明[9-11]:土拱效应沿深度方向呈逐渐减小的规律,故可近似假定水平土拱矢高自桩顶向下呈倒三角形分布,如图3所示。

    图  3  板后土拱随深度变化示意图
    Figure  3.  Sketch of soil arch change with depth behind slab

    板后形成土拱区域为AOBFDE,该空间曲面即为潜在塌落面。在均布荷载作用下,距桩顶任意深度z处的截面(AOB)土拱均为抛物线,O(O)为抛物线顶点,OD为抛物线顶点连线,OD与竖直方向的夹角为α,抛物线矢高f为:

    f=(Hz)tanαtanα=a/H (7)

    式中:a——坡顶拱高/m;

    H——抗滑桩悬臂段高度/m。

    由拱脚及拱顶截面的强度条件可得坡顶拱高为:

    a=(1+sinφt)L8cosφt (8)

    由几何关系可知:

    A=Lh+2fL3 (9)
    S = L21+16f2L2+L28fln(4fL+1+16f2L2) (10)

    式中:S——土拱轴线弧长/m;

    A——水平微元层上下断面面积/m2

    L——桩间净距/m;

    h——桩截面高度/m。

    (1)将土压力计算简化为平面应变问题。

    (2) 墙后土体为均匀的各向同性体。

    (3)滑坡推力在水平方向均匀分布。

    (4)不计桩侧摩阻力,将其作为安全储备,只考虑桩承拱作用。

    (5)墙后边坡填土表面水平,挡板垂直。

    根据图3的假定,图4给出了板后土拱受力分析示意图。在距坡顶下深度z处取一水平土体微元层dz,忽略薄层土体拱高沿其厚度上的变化。

    图  4  板后土拱受力分析示意图
    Figure  4.  Stress analysis of soil arch behind slab

    当墙后微元层土体达到极限平衡状态时,其应力圆应与抗剪强度包线相切,如图5所示。

    图  5  统一强度理论的极限应力圆
    Figure  5.  Limit stress circles for the unified strength theory

    此时,强度条件为基于统一强度理论的抗剪强度表达式[5]

    τ2δ+(σzσy2)2σz+σy2+ctcotφt=sinφt (11)
    τδ=cδ+σytanδ,τφ=ct+σytanφt (12)

    式中:σz——微元层竖向应力;

    σy——拱内土体传递给挡板的水平土压力;

    τδτφ——填土与挡土板的摩擦应力、土体自身的 摩擦应力;

    cδδ——土体与挡土板间的黏聚力和外摩擦角。

    图5极限应力圆的纵轴向左平移ctcotφt,得到一新坐标系,在该坐标系下结合式(12)可得:

    σz = σz+ctcotφtσy = σy+ctcotφtτδ = σytanδτδτφ = σytanφt} (13)

    σy=λσz (14)

    式中:λ——土的侧压力系数。

    将式(13)(14)代入式(11),整理后得:

    (4tan2δ+cos2φt)λ22(1+sin2φt)λ+cos2φ=0 (15)

    式(15)是一元二次方程,其解的判别式为:

    Δ = 16(sin2φttan2δcos2φt) (16)

    δ\Delta \geqslant 0,故式(15)一定有实数解,即:

    \lambda = \frac{{1 + {{\sin }^2}{\varphi _{\text{t}}} \pm 2\sqrt {{{\sin }^2}{\varphi _{\text{t}}} - {{\tan }^2}\delta {{\cos }^2}{\varphi _{\text{t}}}} }}{{4{{\tan }^2}\delta + {{\cos }^2}{\varphi _{\text{t}}}}} (17)

    式(17)即为本文给出的基于统一强度理论的主、被动土压力系数表达式。

    假设坡顶作用均布荷载q0图4),基于统一强度理论、极限平衡理论,结合水平层分析法,则水平微元层竖向静力平衡方程为:

    {T_{\delta}} + {T_{{\varphi}}} + A\left( {{\sigma _{\textit{z}}} + {\text{d}}{\sigma _{\textit{z}}}} \right) = A{\sigma _{\textit{z}}} + {\text{d}}W (18)
    {T_{{\varphi}}} = S{\tau _{{\varphi }}}{\text{d}}{\textit{z}}\text{;}{T_{\delta}}{\text{ = }}L{\tau _{\delta}}{\text{d}}{\textit{z}}
    {\text{d}}W = \gamma A{\text{d}}{\textit{z}}

    式中:dW——水平微元层自重/kN;

    \gamma ——土体重度/(kN·m−3)。

    将式(7)(8)(9)(10)(17)代入式(18),并令:

    B = \frac{{\lambda \left( {S\tan {\varphi _{\text{t}}} + L\tan \delta } \right)}}{A} (19)

    则,式(18)可简化为:

    \frac{{{\text{d}}\sigma _{\textit{z}}' }}{{{\text{d}}{\textit{z}}}} + B\sigma _{\textit{z}}' = \gamma (20)

    将坡顶处边界条件z=0时{\sigma _{\textit{z}}} = {q_0}代入微分方程式(20),求解得:

    \sigma _{\textit{z}}' = {{\rm{e}}^{ - B{\textit{z}}}}\left( {\frac{\gamma }{B}{{\rm{e}}^{B{\textit{z}}}} + {q_0} + {c_{\text{t}}}\cot {\varphi _{\text{t}}} - \frac{\gamma }{B}} \right) (21)

    因此有:

    \left. {\begin{array}{*{20}{c}} {\sigma _y' = \lambda \sigma _{\textit{z}}' = \lambda \left[ {\dfrac{\gamma }{B} + \left( {{q_0} + {c_{\text{t}}} \cdot \cot {\varphi _{\text{t}}} - \dfrac{\gamma }{B}} \right){{\rm{e}}^{ - B{\textit{z}}}}} \right]} \\ {{\sigma _y} = \sigma _y' - {c_{\text{t}}} \cdot \cot {\varphi _{\text{t}}}} \end{array}} \right\} (22)

    由式(22)即可确定桩间挡板土压力沿墙高的分布。

    以昌都市某桩板墙为例,采用本文方法对挡板土压力进行计算,并将计算结果与经典朗肯土压力理论、文献[4]方法等的计算结果进行对比分析。该工程桩板墙全长约170 m,坡高为14.1 m,土质边坡,坡顶较为平坦,支护桩截面1.5 m×2.0 m,桩长20 m,嵌入段长度10.0 m,挡板高10 m,桩间净距L =3.5 m,墙顶以上杂填土厚度7.24 m,将该范围内的土重视为均布超载q0 =134 kPa,取挡板与土体间的摩擦角、黏聚力为\delta {\text{ = }}{\varphi _{\text{t}}}/3{c_{\delta}} = {c_{\text{t}}}/3,桩长范围内各土层主要物理力学参数如表1所示。

    表  1  土层主要物理力学参数
    Table  1.  Main physical and mechanical parameters of different soil layers
    序号土层名称土层
    厚度/m
    重度/
    (kN·m−3
    黏聚力/
    kPa
    内摩擦
    角/(°)
    杂填土3.2618.56.013.0
    含碎石粉质黏土5.5019.522.017.0
    1松散碎石2.0020.08.022.0
    2稍密碎石4.0020.55.025.0
    1稍密卵石4.5021.028.0
    2中密卵石0.7421.532.0
    下载: 导出CSV 
    | 显示表格

    经不同方法计算所得土压力沿板高的分布以及挡板所受总的主动土压力分别见图6表2。图表中采用本文方法的计算结果系在同时考虑土拱效应及中主应力影响基础上、不同b值条件下的理论计算值,而文献[4]方法仅考虑了土拱效应。

    图  6  挡板土压力值随深度变化曲线
    Figure  6.  Changes of earth pressure of the retaining plate with depth
    表  2  不同方法计算所得挡板总主动土压力
    Table  2.  Total active earth pressure of baffle calculated with different methods
    计算方法总主动土压力/(kN·m−1
    朗肯理论1038.46
    文献[4]方法808.37
    本文方法(b = 0)537.62
    本文方法(b = 0.25)479.69
    本文方法(b = 0.5)438.62
    本文方法(b = 0.75)407.97
    本文方法(b = 1.0)384.19
    下载: 导出CSV 
    | 显示表格

    因板高范围内共有3层不同土质的土层,在土压力计算时,分层界面上下分别采用相应土层的{c_{\text{t}}}{\varphi _{\text{t}}}值,故土压力强度沿板高的分布均为折线型。

    采用传统朗肯土压力理论计算土压力,其理论计算值较实际值明显偏大。究其主要原因,一是朗肯理论假设墙背光滑,无法考虑土体与墙背间的摩擦效应对土压力的影响;二是朗肯理论未考虑中主应力及土拱效应的影响。从本文实例计算结果来看:文献[4]方法假定土体黏聚力为零,考虑了桩间土拱效应对挡板土压力的影响,计算所得挡板总主动土压力为朗肯土压力的78%;采用本文方法同时考虑了土体与挡板背侧的摩擦效应、以及中主应力和土拱效应等对挡板土压力的综合影响,在0~1之间选取不同的b值分别计算,所得挡板总主动土压力为朗肯土压力的37%~52%,挡板同一高度处的土压力强度及总的土压力均随b值的增大而减小,且所得土压力理论计算值与文献[17]经模型试验揭示的“挡板实测最大土压力为朗肯主动土压力的1/3~1/2”的规律是一致的。

    (1)基于统一强度理论,对桩间土拱强度进行分析,给出了桩间挡板上土压力的计算公式,可同时考虑土体黏聚力、中主应力和土拱效应等对挡板土压力的综合影响,从理论上来讲,较已有相关研究成果和现行规范方法更趋完善。

    (2)采用本文方法,计算所得土压力与前人经模型试验实测的主动土压力分布规律基本吻合。

    (3)考虑深度对土拱效应的影响,即随深度增加桩间水平土拱拱高逐渐减小至零,由此而得到的土压力理论计算值更为接近实际;不考虑土拱效应沿深度方向的变化,将会导致挡板土压力理论计算值偏于保守。

    (4)中主应力系数b对土压力的计算值有较为显著的影响,合理确定b值至关重要,无当地经验时可采用真三轴试验对其进行确定。

  • 图  1   桩板墙土拱效应示意图

    Figure  1.   Soil-arch effect model between sheet pile walls

    图  2   土拱受力简图

    Figure  2.   Stress sketch of soil-arch effect

    图  3   板后土拱随深度变化示意图

    Figure  3.   Sketch of soil arch change with depth behind slab

    图  4   板后土拱受力分析示意图

    Figure  4.   Stress analysis of soil arch behind slab

    图  5   统一强度理论的极限应力圆

    Figure  5.   Limit stress circles for the unified strength theory

    图  6   挡板土压力值随深度变化曲线

    Figure  6.   Changes of earth pressure of the retaining plate with depth

    表  1   土层主要物理力学参数

    Table  1   Main physical and mechanical parameters of different soil layers

    序号土层名称土层
    厚度/m
    重度/
    (kN·m−3
    黏聚力/
    kPa
    内摩擦
    角/(°)
    杂填土3.2618.56.013.0
    含碎石粉质黏土5.5019.522.017.0
    1松散碎石2.0020.08.022.0
    2稍密碎石4.0020.55.025.0
    1稍密卵石4.5021.028.0
    2中密卵石0.7421.532.0
    下载: 导出CSV

    表  2   不同方法计算所得挡板总主动土压力

    Table  2   Total active earth pressure of baffle calculated with different methods

    计算方法总主动土压力/(kN·m−1
    朗肯理论1038.46
    文献[4]方法808.37
    本文方法(b = 0)537.62
    本文方法(b = 0.25)479.69
    本文方法(b = 0.5)438.62
    本文方法(b = 0.75)407.97
    本文方法(b = 1.0)384.19
    下载: 导出CSV
  • [1] 向俐蓉,陈伟志,郭在旭,等. 大型滑坡抗滑桩-桩板结构受力变形研究[J]. 水文地质工程地质,2021,48(2):125 − 131. [XIANG Lirong,CHEN Weizhi,GUO Zaixu,et al. A study of the deformation of anti-slide pile and pile-plate structure in large landslide[J]. Hydrogeology & Engineering Geology,2021,48(2):125 − 131. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201911032

    XIANG Lirong, CHEN Weizhi, GUO Zaixu, et al. A study of the deformation of anti-slide pile and pile-plate structure in large landslide[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 125-131. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201911032

    [2] 王佳宇,曹文贵,王雨波,等. 基于圆弧主应力迹线的黏性土主动土压力分析[J]. 水文地质工程地质,2021,48(6):81 − 88. [WANG Jiayu,CAO Wengui,WANG Yubo,et al. An analysis of active earth pressure of cohesive soil based on the layering of principal stress traces[J]. Hydrogeology & Engineering Geology,2021,48(6):81 − 88. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103006

    WANG Jiayu, CAO Wengui, WANG Yubo, et al. An analysis of active earth pressure of cohesive soil based on the layering of principal stress traces[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 81-88. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103006

    [3] 张健, 胡瑞林, 刘海斌, 等. 基于统一强度理论朗肯土压力的计算研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3169 − 3176

    ZHANG Jian, HU Ruilin, LIU Haibin, et al. Calculation study of Rankine earth pressure based on unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup 1): 3169 − 3176. (in Chinese with English abstract)

    [4] 刘力生, 吴曙光. 基于土拱效应的悬臂式抗滑桩桩间挡板土压力计算[J]. 岩土工程学报, 2015, 37(增刊2): 153 − 157.

    LIU Lisheng, WU Shuguang. Calculation of earth pressure on baffle of cantilever anti-slide piles based on soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup 2): 153 − 157. (in Chinese with English abstract)

    [5] 范文,沈珠江,俞茂宏. 基于统一强度理论的土压力极限上限分析[J]. 岩土工程学报,2005,27(10):1147 − 1153. [FAN Wen,SHEN Zhujiang,YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering,2005,27(10):1147 − 1153. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2005.10.007

    FAN Wen, SHEN Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2005.10.007

    [6] 应捷, 廖红建, 蒲武川. 平面应变状态下基于统一强度理论的土压力计算[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4315 − 4318

    YING Jie, LIAO Hongjian, PU Wuchuan. Earth pressure theory based on unified strength theory under plane strain state[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Sup 1): 4315 − 4318. (in Chinese with English abstract)

    [7] 张建云. 基于土拱效应的桩板墙与岩土体相互作用及其优化设计研究[D]. 西安: 长安大学, 2017

    ZHANG Jianyun. The interaction between sheet-pile wall and rock-soil body and its optimization research based on the soil arching effect[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)

    [8] 胡焕校,刘静,吴海涛,等. 抗滑桩桩后土拱效应特征的三维数值研究[J]. 工业建筑,2010,40(3):88 − 93. [HU Huanxiao,LIU Jing,WU Haitao,et al. Three-dimensional numerical analysis of soil arching effect surrounding anti-slide pile[J]. Industrial Construction,2010,40(3):88 − 93. (in Chinese with English abstract) DOI: 10.13204/j.gyjz2010.03.016

    HU Huanxiao, LIU Jing, WU Haitao, et al. Three-dimensional numerical analysis of soil arching effect surrounding anti-slide pile[J]. Industrial Construction, 2010, 40(3): 88-93. (in Chinese with English abstract) DOI: 10.13204/j.gyjz2010.03.016

    [9] 陈强,董桂城,王超,等. 基于透明土技术的桩后土拱效应特征分析[J]. 西南交通大学学报,2020,55(3):509 − 522. [CHEN Qiang,DONG Guicheng,WANG Chao,et al. Characteristics analysis of soil arching effect behind pile based on transparent soil technology[J]. Journal of Southwest Jiaotong University,2020,55(3):509 − 522. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.20190744

    CHEN Qiang, DONG Guicheng, WANG Chao, et al. Characteristics analysis of soil arching effect behind pile based on transparent soil technology[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 509-522. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.20190744

    [10] 李婷,肖世国. 考虑土拱效应的抗滑桩桩间挡土板压力计算方法[J]. 中国地质灾害与防治学报,2019,30(4):85 − 91. [LI Ting,XIAO Shiguo. Calculation method of earth pressure on retaining plates between adjacent stabilizing piles considering potential soil arching effect[J]. The Chinese Journal of Geological Hazard and Control,2019,30(4):85 − 91. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.04.12

    LI Ting, XIAO Shiguo. Calculation method of earth pressure on retaining plates between adjacent stabilizing piles considering potential soil arching effect[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(4): 85-91. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.04.12

    [11] 刘杰,吴昭云,路利民,等. 考虑三维土拱效应的桩间挡板土压力计算[J]. 中外公路,2020,40(5):17 − 21. [LIU Jie,WU Zhaoyun,LU Limin,et al. Calculation of earth pressure on baffle between two piles considering three-dimensional soil arching effect[J]. Journal of China & Foreign Highway,2020,40(5):17 − 21. (in Chinese) DOI: 10.14048/j.issn.1671-2579.2020.05.005

    LIU Jie, WU Zhaoyun, LU Limin, et al. Calculation of earth pressure on baffle between two piles considering three-dimensional soil arching effect[J]. Journal of China & Foreign Highway, 2020, 40(5): 17-21. (in Chinese) DOI: 10.14048/j.issn.1671-2579.2020.05.005

    [12] 王仲仁. Lode参数的物理实质及其对塑性流动的影响[J]. 固体力学学报,2006,27(3):277 − 282. [WANG Zhongren. Physical essence of lode parameter and its effect on plastic flow[J]. Acta MechanicaSolidaSinica,2006,27(3):277 − 282. (in Chinese with English abstract) DOI: 10.3969/j.issn.0254-7805.2006.03.010

    WANG Zhongren. Physical essence of lode parameter and its effect on plastic flow[J]. Acta MechanicaSolidaSinica, 2006, 27(3): 277-282. (in Chinese with English abstract) DOI: 10.3969/j.issn.0254-7805.2006.03.010

    [13] 国家铁路局. 铁路路基支挡结构设计规范: TB 10025—2019[S]. 北京: 中国铁道出版社, 2019

    National Railway Administration of the People’s Republic of China. Code for design of retaining structures of railway earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019. (in Chinese)

    [14] 重庆市建设委员会, 重庆市国土资源和房屋管理局. 地质灾害防治工程设计规范: DB 50/5029—2004[S]. 重庆: 重庆市建设委员会, 2004

    Construction Commission of Chongqing, Bureau of Land Resources and Housing Management of Chongqing Municipality. Design standard of geological disaster prevention and control: DB 50/5029—2004 [S]. Chongqing: Construction Commission of Chongqing, 2004. (in Chinese)

    [15] 魏德芳,赵继德. 三铰拱的合理拱轴线方程[J]. 曲阜师范大学学报(自然科学版),1994,20(3):80 − 83. [WEI Defang,ZHAO Jide. On appropriate asis equation of tri-hinge Arches[J]. Journal of Qufu Normal University (Natural Science),1994,20(3):80 − 83. (in Chinese with English abstract)

    WEI Defang, ZHAO Jide. On appropriate asis equation of tri-hinge Arches[J]. Journal of Qufu Normal University (Natural Science), 1994, 20(3): 80-83. (in Chinese with English abstract)

    [16] 焦赟,白千千. 基于土拱效应下的地震作用与抗滑桩桩间距关系分析[J]. 水文地质工程地质,2013,40(5):58 − 63. [JIAO Yun,BAI Qianqian. An analysis of the relationship between seismic action and pile spacing of anti-slide piles based on soil arch effect[J]. Hydrogeology & Engineering Geology,2013,40(5):58 − 63. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.05.009

    JIAO Yun, BAI Qianqian. An analysis of the relationship between seismic action and pile spacing of anti-slide piles based on soil arch effect[J]. Hydrogeology & Engineering Geology, 2013, 40(5): 58-63. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2013.05.009

    [17] 代军,胡岱文,吴曙光. 桩锚支挡结构体系挡板土压力试验研究[J]. 重庆建筑大学学报,2001,23(4):48 − 54. [DAI Jun,HU Daiwen,WU Shuguang. Experimental study of soil stress on the holding sheet of pile-anchor holding-block structure system[J]. Journal of Chongqing Jianzhu University,2001,23(4):48 − 54. (in Chinese with English abstract)

    DAI Jun, HU Daiwen, WU Shuguang. Experimental study of soil stress on the holding sheet of pile-anchor holding-block structure system[J]. Journal of Chongqing Jianzhu University, 2001, 23(4): 48-54. (in Chinese with English abstract)

  • 期刊类型引用(6)

    1. 刘志江. 基于卸荷拱原理的桩板墙后土压力影响因素分析. 吉林水利. 2025(01): 67-70+78 . 百度学术
    2. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
    3. 赵晓彦,刘溢,常经纬,陆秋. 碎石土边坡桩后土拱效应演变规律及影响因素颗粒流模拟研究. 工程地质学报. 2025(01): 356-366 . 百度学术
    4. 汤科,赵华,唐雪峰,程儒凇. 双排桩最优排距确定及桩间土压力计算方法. 水文地质工程地质. 2025(02): 104-113 . 本站查看
    5. 黄俊,胡绍萍,李朝阳,刘正兴. 抗滑桩桩宽及桩间距对土拱效应的影响数值模拟研究. 西部交通科技. 2024(03): 96-98 . 百度学术
    6. 张锦懋,吴欢,康永强. 基于桩后土拱效应的边坡支护桩间距分析. 水利科技与经济. 2024(06): 5-9+17 . 百度学术

    其他类型引用(2)

图(6)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-03-22
  • 网络出版日期:  2022-08-09
  • 发布日期:  2022-09-18

目录

/

返回文章
返回