ISSN 1000-3665 CN 11-2202/P

    砂井载荷浸水试验在深层黄土湿陷性评价中的应用

    Application of sand-well load immersion test to deep loess collapsibility evaluation

    • 摘要: 针对深层湿陷性黄土自重湿陷量室内试验结果不准确、测试黄土地基湿陷量的原位试验方法少等不足,基于已有的砂井浸水试验,提出了新的现场试验方法——砂井载荷浸水试验方法。其核心是井底地层在试验压力作用下沉降稳定后,利用井中砂砾石的强透水性,将水直接导入井底湿陷性黄土地层及砂井周围土体,使其快速浸水饱和,以此来测定砂井井底地层的湿陷量和砂井周围黄土的自重湿陷量。通过2组砂井载荷浸水试验,测试了不同压力和浸水条件下不同深度地层的湿陷变形,对比分析了砂井载荷浸水试验和临近场地大型试坑浸水试验,结果表明砂井载荷浸水试验的判定结果与试坑浸水试验一致,说明砂井载荷浸水试验是可行的。砂井载荷浸水试验具有周期短、费用低、场地条件要求低、用水量小等优点,适用于深层黄土湿陷性的研究,对黄土地区(尤其是深层黄土)工程的湿陷性评价有一定的参考意义。

       

      Abstract: Because of the inaccuracy of laboratory test results of self-weight collapsibility of deep collapsible loess and the lack of in-situ test methods for testing loess foundation collapsibility, a new field test method, the sand-well load immersion test method, is proposed based on the existing sand-well immersion test. The core is that after the loess under the sand well has settled stably under the action of test pressure, the collapsible loess under the bottom of the sand well and around the sand well can be quickly saturated due to the strong permeability of sand and gravel in the well, therefore the collapsibility of the loess under the bottom of the sand well and the self-weight collapsibility of the loess around the sand well can be measured. Through two sets of sand-well load immersion tests, the collapsible deformation of different depth strata under different pressure and immersion conditions is tested, and the sand-well load immersion test and the large test pit immersion test adjacent to the site are compared and analyzed. The results show that the judgment results of the sand-well load immersion test are consistent with the test pit immersion test, indicating that the sand-well load immersion test is feasible. In addition, the sand-well load immersion test has the advantages of short cycle, low cost, low site condition requirements, small water consumption, etc. The sand-well load immersion test is suitable for the study of collapsibility of deep loess. The results are of a certain reference significance for the collapsibility evaluation of loess engineering in the loess area (especially deep loess).

       

    /

    返回文章
    返回