ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

泥炭质土K0固结不同开挖路径应力-应变关系研究

阮永芬, 潘继强, 胡经魁, 闫明, 郭宇航

阮永芬,潘继强,胡经魁,等. 泥炭质土K0固结不同开挖路径应力-应变关系研究[J]. 水文地质工程地质,2023,50(2): 112-121. DOI: 10.16030/j.cnki.issn.1000-3665.202206007
引用本文: 阮永芬,潘继强,胡经魁,等. 泥炭质土K0固结不同开挖路径应力-应变关系研究[J]. 水文地质工程地质,2023,50(2): 112-121. DOI: 10.16030/j.cnki.issn.1000-3665.202206007
RUAN Yongfen, PAN Jiqiang, HU Jingkui, et al. An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 112-121. DOI: 10.16030/j.cnki.issn.1000-3665.202206007
Citation: RUAN Yongfen, PAN Jiqiang, HU Jingkui, et al. An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 112-121. DOI: 10.16030/j.cnki.issn.1000-3665.202206007

泥炭质土K0固结不同开挖路径应力-应变关系研究

基金项目: 中铁二十局集团第五工程有限公司科研计划项目(CR2005-5-JS-2021-009)
详细信息
    作者简介:

    阮永芬(1964-),女,博士,教授,主要从事岩土工程研究。E-mail:rryy64@163.com

  • 中图分类号: TU411.3

An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation

  • 摘要:

    基坑开挖过程中不同部位的土体会因不同的卸荷力学行为而表现出动态的破坏特性。为研究基坑土体开挖过程中复杂的卸荷应力路径,利用TSZ-1S应力控制式三轴仪分别对湖相沉积的泥炭质土进行固结不排水及K0固结下的加、卸荷试验,并按侧向、轴向、轴侧向同时卸荷等不同卸荷条件制定试验方案,模拟基坑开挖过程中不同部位土体卸荷路径下的应力-应变曲线、卸荷剪切破坏时的强度及初始切线模量等的变化规律。试验结果表明:土体的应力-应变特性与应力路径密切相关,各路径下应力-应变曲线都近似呈双曲线型;卸荷剪切破坏时强度明显低于加荷破坏。对不同卸荷路径下初始切线模量(Ei)的研究发现,Ei受侧向卸荷影响较大,卸荷后Ei有所提高,轴向卸荷对其影响较小。对各应力-应变曲线进行归一化处理,构建了考虑不同归一化因子的归一化方程,以该方程为基础对不同应力路径下的泥炭质土进行归一化处理,并对结果进行了验证,效果良好。本研究可为泥炭质土场地上基坑在不同卸荷路径下的变形参数和本构关系的研究提供参考。

    Abstract:

    In the process of foundation pit excavation, the soil mass in different parts shows dynamic destruction characteristics due to diverse unloading mechanics. In order to study the complex unloading stress path in the foundation excavation, the TSZ-1S stress control triaxial compression apparatus is used to carry out the loading and unloading tests of the lacustrine sedimentary peat soil under the conditions of consolidation undrained and K0 consolidation, respectively, and the test scheme is formulated according to different unloading conditions such as lateral, axial and axial lateral meantime unloading, so as to simulate the stress-strain curves of soil under different unloading paths in the foundation excavation and the variation laws of strength and initial tangent modulus under unloading shear failure. The test results show that the stress-strain characteristics of soil are closely related to the stress path, and the stress-strain curves under each path are approximately hyperbolic. The strength of unloading shear failure is significantly lower than that of loading failure. The study of initial tangent modulus Ei under different unloading paths shows that Ei is greatly affected by lateral unloading, Ei increases after unloading, and axial unloading has little effect on it. The stress-strain curves are normalized, and the normalization equation of peat soil considering different normalization factors is constructed. Based on this equation, the peat soil under different stress paths is normalized, and the results are verified. The results of this work can provide reference for the study of deformation parameters and constitutive relations of foundation pits on peat soil sites under different unloading paths.

  • 多孔结构是一种内部具有大量联通孔隙的结构,主要由单一粒径的轻质粗骨料及其表面包裹的水泥浆体组成,粗骨料之间堆积接触,并通过包裹其表面的水泥浆体实现各粗骨料间的相互胶结,使相互独立的粗骨料彼此具有一定的连接强度,进而组成整体具有一定力学强度的材料结构[12]。材料内部通常存在能够满足植物在其内部生长的孔隙,因此在工程方面是河湖岸坡、公路护坡的理想材料结构[3]。近年来,我国地质灾害频发,人类工程对环境的扰动增强,在造成直接经济损失的同时,也破坏了原有的生态环境,仅依靠自然力量修复往往过于漫长,故生态修复工程十分必要。多孔结构作为将传统混凝土与现代生态环保理念二者相结合的新型材料结构,在生态修复方面相较于其他传统的建筑材料有明显的优势[4],但依然存在强度低、制备不规范、对不同种类植物缺乏针对性等各种问题限制其应用[5]。因此,针对多孔结构性能改良的研究意义重大。

    多孔结构的正式概念首先于20世纪90年代由日本提出,日本于2001年编制了《多孔植被混凝土河川护岸工法》[6],开启了多孔结构的大规模运用。目前,欧美国家对多孔结构的研究主要针对其环境友好的特性,如探究植物与多孔结构的相容性,通过在其孔隙中构建植物根系网络,以达到防止水土流失,实现生态修复的目的[7];利用多孔结构密度小、吸附能力强的特点,探究其应用于固碳的可行性[8];研究土壤与多孔结构中骨料的热能传递,探究传递机理对植物的影响[9]。总体来讲,欧美国家的研究方向多集中于骨料-土壤-植物间的耦合作用,以求最大化发挥多孔结构在生态环境保护方面的作用。

    我国的多孔结构研究起步虽晚,但仍有一定成果,并于2003年首次运用多孔结构进行生态修复。目前,我国的多孔结构研究主要集中在分析多孔结构的力学强度特征,分析以不同材料及制备方法下所生产的多孔结构的差异性,探究制备多孔结构的最佳材料配比[1012],以及特殊工况下多孔结构的抗变形抗侵蚀能力[13],较少考虑其在生态环境保护方面与土壤植物的相互作用,就整体情况来看,我国的多孔结构研究与国外仍然有一定差距,并存在制备材料最佳配比不够准确、与植物相容性差等问题有待解决。

    水土条件改变是导致生态系统退化的一大原因[14],对于应用于库岸边坡及绿化的多孔结构,强度、孔隙率、透水性能是十分重要的指标[15]。具有一定强度的多孔结构可以抵御外界的破坏,如岸边的水力冲刷和波浪侵蚀,从而保护其内部结构,达到护坡效果的同时为植物的生长提供一个较为稳定的环境,而能否在库岸为植物提供较为稳定的生长环境影响着库岸土壤的生态适应能力[16];孔隙率及透水性能是植物能否依附于多孔结构生长的关键,联通孔隙率决定着植物根系能否穿过多孔结构扎根于下部土壤。为探究影响多孔结构性能的主要因素以及其对多孔结构的影响程度,文章设计了单因素试验,探究骨料粒径、水灰比、胶凝材料体积对多孔结构性能的影响[1719]。并在试验结果的基础上,针对上述3个因素进行响应面试验,最终确定多孔结构最优化配合比,使该配比下的多孔结构同时满足力学条件与供植物生长的植生性能,从而为实际工程应用提供有效的参考和建议。

    本次制备的多孔结构是采用火山石作为粗骨料,以水泥、粉煤灰、拌合水等材料作为胶凝浆体包裹而成的特殊多孔骨架,其中粗骨料采用轻质多孔的火山石,并根据粒径大小,在以往成果的基础上将其划分为9.5~16.0 mm、16.0~19.0 mm、19.0~26.5 mm、26.5~31.5 mm 4个等级[20];采用强度等级为P.O42.5的普通硅酸盐水泥和二级粉煤灰作为胶凝材料,减水剂采用聚羧酸高性能减水剂。在不添加骨料的情况下,仅以胶凝材料拌合而成的试块28 d抗压强度为43.9 MPa。基于前期抗压强度试验结果及相关文献[21],将水灰比、胶凝材料体积含量、骨料粒径分别作为自变量的多孔结构单因素试验设计如表13所示。

    表  1  水灰比单因素试验设计
    Table  1.  Single factor test design of water cement ratio
    序号 水灰比 胶凝材料
    体积占比/%
    骨料
    /(kg·m−3
    水泥
    /( kg·m−3
    粉煤灰
    /( kg·m−3
    拌合水
    /( kg·m−3
    减水剂质
    量分数/%
    1 0.25 20 720 274.8 68.7 85.9 0.1
    2 0.30 20 720 253.9 63.5 95.2 0.1
    3 0.35 20 720 234.5 58.6 102.6 0.1
    4 0.40 20 720 218.6 54.7 109.3 0.1
    下载: 导出CSV 
    | 显示表格
    表  2  胶凝材料体积含量单因素试验设计
    Table  2.  Single factor test design of volume content of cementitious material
    序号 水灰比 胶凝材料
    体积占比/%
    骨料/
    (kg·m−3
    水泥/
    (kg·m−3
    粉煤灰/
    (kg·m−3
    拌合水/
    (kg·m−3
    减水剂质
    量分数/%
    1 0.35 15 720 190.8 47.7 83.5 0.1
    2 0.35 20 720 244.5 61.1 107.0 0.1
    3 0.35 25 720 293.2 73.3 128.3 0.1
    4 0.35 30 720 340.1 85.0 148.8 0.1
    下载: 导出CSV 
    | 显示表格
    表  3  骨料粒径区间单因素试验设计
    Table  3.  Single factor test design of aggregate particle size interval
    序号 水灰比 胶凝材料
    体积占比%
    骨料
    /(kg·m−3
    骨料粒径
    /mm
    水泥
    /(kg·m−3
    粉煤灰
    /(kg·m−3
    拌合水
    /(kg·m−3
    减水剂质
    量分数/%
    1 0.35 20% 796 9.5~16.0 254.5 63.6 111.3 0.1
    2 0.35 20% 762 16.0~19.0 244.5 61.1 107.0 0.1
    3 0.35 20% 720 19.0~26.5 234.5 58.6 102.6 0.1
    4 0.35 20% 683 26.5~31.5 226.7 56.7 99.2 0.1
    下载: 导出CSV 
    | 显示表格

    对于多孔构件的制备,由于水泥浆体的用量较少,传统的碎石骨料为了让水泥浆体充分的包裹住骨料,常常采用裹浆法进行制备,但是由于本次采用的是轻质骨料,浆体对于骨料过重且黏稠,无法对骨料进行很好的包裹,会出现浆骨分离的现象,所以经过多次试验,最终采取造壳法进行制备。每组试验配比分别制备3个试件,制备过程如图1所示。

    图  1  试件制备
    Figure  1.  Specimen preparation

    试件制备完成后,对养护到期的轻质多孔结构分别测定其孔隙率与透水系数,测定结束后将试块保留继续进行抗压强度测试。抗压强度测试过程见图2,试验仪器为微机控制电液伺服压力试验机,加载方向垂直试件接触面,加载速率0.2 MPa/s,试验结果精确至0.01 MPa。在测试前,为保证接触面平整及试件整体受力均匀,采用M5砂浆对试件的上下表面进行“封浆”处理,使试件上下受压表面平整光滑,“封浆”时的砂浆厚度应小于5 mm,以尽可能减小砂浆渗入试件内部导致试件强度及结构变化所带来的影响,试验结果取该组配比下3个试件的平均值。试件为边长10 cm的正方体,如图2(b)所示。

    图  2  抗压强度测试
    Figure  2.  Compressive strength tests

    轻质多孔结构单因素试验变量分别为水灰比、胶凝材料体积含量以及骨料粒径,不同变量下试验结果分别如表46所示;按试验所测定的基本性能划分,抗压强度、孔隙率及透水系数结果如图35所示。

    表  4  水灰比单因素试验结果
    Table  4.  Results of single factor test of water cement ratio
    序号 水灰比 抗压强度/MPa 孔隙率/% 透水系数
    /(cm·s−1
    7 d 28 d 全孔隙率 有效孔隙率
    1 0.25 0.28 0.32 40 36 2.90
    2 0.30 0.58 0.62 42 37 3.03
    3 0.35 0.95 1.10 43 37 3.19
    4 0.40 0.74 0.82 44 39 3.23
    下载: 导出CSV 
    | 显示表格
    图  4  不同因素下的孔隙率变化
    Figure  4.  Porosity changes under different factors
    表  5  胶凝材料体积含量单因素试验结果
    Table  5.  Results of single factor test of volume content of cementitious materials
    序号 胶凝材料
    体积含量/%
    抗压强度/MPa 孔隙率/% 透水系数
    /(cm·s−1
    7 d 28 d 全孔隙率 有效孔隙率
    1 15 0.69 0.79 45 41 3.52
    2 20 1.02 1.12 40 36 3.11
    3 25 1.78 1.90 38 32 2.15
    4 30 2.20 2.37 34 27 0.06
    下载: 导出CSV 
    | 显示表格
    表  6  骨料粒径区间单因素试验结果
    Table  6.  Results of single factor test of aggregate particle size range
    序号 骨料粒径
    /mm
    抗压强度/MPa 孔隙率/% 透水系数
    /(cm·s−1
    7 d 28 d 全孔隙率 有效孔隙率
    1 9.5~16.0 1.55 1.81 42 35 2.83
    2 16.0~19.0 1.22 1.24 41 37 2.98
    3 19.0~26.5 1.02 1.15 40 38 3.22
    4 26.5~31.5 0.64 0.72 45 39 3.24
    下载: 导出CSV 
    | 显示表格
    图  3  不同因素下的抗压强度变化
    Figure  3.  Changes of compressive strength under different factors
    图  5  不同因素下的透水系数变化
    Figure  5.  Changes of permeation coefficient under different factors

    抗压强度为多孔结构的基本力学性质,其值决定了多孔结构能否在抵抗外界作用力时维持自身形态,保证其内部的稳定。如图3所示,多孔结构的抗压强度随着养护龄期的增加而逐渐增强,而在同一养护龄期下,水灰比从0.25提高至0.35时,抗压强度逐渐增大,当水灰比为0.35时,28 d龄期的混凝土抗压强度达到最大值1.10MPa,这与先前研究成果相一致[22],但当水灰比继续上升至0.4时,抗压强度反而略有减小;此外,多孔结构抗压强度随骨料粒径减小或胶凝浆体的增多而增大。

    孔隙率包括全孔隙率与有效孔隙率,对材料本身的透水性和植生性能十分重要。如图4所示,不同水灰比和骨料粒径下的多孔结构孔隙率及有效孔隙率并无较大差别,相关试样全孔隙率为40%~45%,有效孔隙率为35%~39%,两者相差约6%,说明在多孔结构存在约6%的封闭孔隙,这部分孔隙不能为后续植物生长所用,为无效孔隙;而随着胶凝材料体积含量的增加,多孔结构单位体积内的孔隙率及有效孔隙率明显降低,全孔隙率从46%降至33%,而有效孔隙率则从41%降至27%。

    透水系数(permeation coefficient)是衡量多孔结构排水能力的指标,多孔结构骨料粗大,排水能力较好,具有很好的透水性能,文章参考《大孔混凝土的透水性及其测定方法》[23]采用实验室自制的常水头仪器对多孔结构试块的透水系数进行测定[24]。试验结果如图5所示,可以发现多孔结构透水系数随水灰比与骨料粒径的增大而略微增大,随胶凝浆体增多显著降低。当胶凝浆体体积含量为15%~25%时,透水系数范围为2.15~3.52 cm/s,而当胶凝浆体体积含量为30%时,透水系数仅为0.03 cm/s,此时多孔结构已经基本失去透水性能。

    水灰比对抗压强度的影响如图3(a)所示,抗压强度随水灰比的增加先增大后减小。这主要是因为当水灰比较小的时候,包裹不均匀,浆体较干会导致水化不完全;当水灰比为0.35时,骨料表面均匀包裹混凝土,结构整体稳定性较高;当水灰比大于0.35时,浆体过稀,流动度较高,对骨料的包裹厚度较薄,且浆体会沉积在试块底部,导致试块整体抗压强度降低,因此,水灰比在0.35左右较为适宜。

    图3(b)所示,骨料粒径越小,多孔构件抗压强度越高。是因为当骨料粒径越小的时候,粗骨料之间的接触点就会越多,多孔结构就越接近实心[25]。然而当骨料粒径偏小时,孔隙就会过于细小,导致后续为植被提供生长环境的土壤浆体难以贯入孔隙。综合考虑抗压强度和土壤浆体贯入2 个因素,结合先前的制样经验[26],多孔结构的制备选取粒径2 cm左右的骨料比较合适。

    图3(c)中可以看出,随着胶凝浆体的增多,多孔骨架的抗压强度上升,但是过多的浆体会导致浆体下沉,导致骨架上下面不连通,透水性差,所以选择胶凝浆体体积占比为15%~25%较为适宜。

    不同水灰比和不同骨料粒径的孔隙率及有效孔隙率并无较大差别[27]。而在不同胶凝材料体积含量下,2 种孔隙率变化幅度较大,说明胶凝材料体积含量才是控制多孔结构孔隙率最关键的影响因素。如图4(c)所示,随着胶凝材料体积含量的增加,单位体积内的多孔结构孔隙率及有效孔隙率明显降低。

    多孔结构中的孔隙中可由三部分组成:联通孔隙、半联通孔隙和封闭孔隙,其中前两者构成了有效孔隙,三者一起构成了全孔隙空间。有效孔隙可进入空气和水,且具有一定连通性的有效孔隙可供植物扎根生长,对多孔结构的植生性能至关重要,为了能够为后续植物生长提供足够的有效孔隙,多孔结构必须存在足够的有效孔隙空间,一般来讲,全孔隙率在20%~30%即可满足工程应用条件,且常用20%~30%的孔隙率作为配合比设计基础,并以此为依据确定胶凝材料体积含量,但这并不适合于轻质骨料多孔结构。当轻质多孔结构的有效孔隙率为25%~30%左右时,胶凝材料体积含量约为30%,但这时因为胶凝材料体积含量过高,使结构孔隙窄小,结构致密,且浆体因过多会下沉,导致结构底部封闭,不能满足工程应用的透水性能[28]。故为了兼顾植生性能和透水性能的双重条件,应控制胶凝体积掺量为15%~25%,最好不要超过25%。

    对以上所有试件的全孔隙率及对应的有效孔隙率进行统计分析,发现两者之间存在良好的二次函数关系,如图6所示,这与先前研究成果相一致[29]。基于此,我们建立了有效孔隙率与全孔隙率预测模型,模型回归关系式如下,其中Pe为有效孔隙率,Pt为全孔隙率。

    图  6  有效孔隙率与全孔隙率的关系
    Figure  6.  Relationship between effective porosity and total porosity
    $$ {P}_{\mathrm{e}}=-0.040\;39{{P}_{\mathrm{t}}}^{2}+4.284\;9{P}_{\mathrm{t}}-71.065\;5 $$ (1)

    图5(a)中可以看出,随着水灰比的增大,透水系数轻微增大,这是因为在水灰比增大的同时,胶凝浆体的流动度增大从而导致浆体对骨料的包裹厚度变薄,单位厚度透水面积增大。而当骨料粒径增大的同时,堆积形成的孔隙也较大,所以透水系数也相应地有所增加。透水系数随胶凝浆体增加而显著降低,当胶凝材料体积含量为30%左右时,多孔结构底部由于浆体沉降封死已失去透水性能。综上,胶凝材料体积含量应在25%以下。

    在胶凝材料体积含量不超过25%时,如图7所示,有效孔隙率与透水系数呈现较强的相关性,基于此建立了有效孔隙率与透水系数预测模型,其中P为透水系数,模型拟合公式如下所示:

    图  7  有效孔隙率与透水系数的关系
    Figure  7.  Relationship between effective porosity and permeability coefficient
    $$ P=0.0916{P}_{\mathrm{e}}-0.3354({R}^{2}=0.946) $$ (2)

    可见透水系数随着有效孔隙率增大而逐渐增大。因此,在制备多孔结构的时候,既要注意孔隙率,也要重视有效孔隙率,即选择合适的胶凝材料体积含量显得尤为重要。结合前述孔隙率的研究,为了多孔结构拥有足够的植生空间并具备良好的透水性能,胶凝体积含量应控制在25%以下,这与先前结论一致。

    为了获取满足植物生长且具有一定强度的多孔结构,前期的单因素试验中,选取合适范围,采用响应面对不同骨料粒径(X1),水灰比(X2),胶凝材料体积含量(X3)的多孔构件配比进行进一步的优化分析[30]。选取轻质骨料粒径、水灰比、胶凝材料体积含量作为自变量,选取范围如表7所示:

    表  7  自变量因素水平表
    Table  7.  Independent variable factor level
    自变量 代号 自变量水平
    −1 0 1
    骨料粒径/mm X1 16.0~19.0 19.0~26.5 26.5~35.0
    水灰比 X2 0.30 0.35 0.40
    胶凝材料体积含量/% X3 15 20 25
    下载: 导出CSV 
    | 显示表格

    通过前面的单因素试验确定采用抗压强度作为响应量,优化多孔结构配合比设计,在满足植生性能和透水性能的条件下,采用Box-Bohnken响应面法进行3因素3水平的响应面试验,优化多孔结构的配比方案。

    通过采用不同的骨料粒径(X1)、水灰比(X2)、胶凝浆体体积(X3)作为自变量,抗压强度作为响应量进行优化分析,建立28 d抗压强度(Y1)与X1X2X3之间的多元二次回归曲线,并检测其显著性,然后利用回归方程得出具有更高强度的优化后的配合比设计,同时验证其孔隙特征和透水性能是否满足条件。

    试验结果如表8所示,发现抗压强度与这三者存在明显的回归关系,并建立了回归方程,如式(3)所示。此外,我们希望通过这些回归方程可以量化不同因变量对响应量的影响规律并对不同胶凝材料体积含量下的多孔构件力学性能(28 d抗压强度)进行预测。

    表  8  响应面试验结果
    Table  8.  Results of response surface test
    编号 X1 X2 X3 Y1/MPa
    1 −1 −1 0 1.24
    2 1 −1 0 0.90
    3 −1 1 0 1.24
    4 1 1 0 0.90
    5 −1 0 −1 0.83
    6 1 0 −1 0.69
    7 −1 0 1 1.35
    8 1 0 1 0.92
    9 0 −1 −1 0.75
    10 0 1 −1 0.85
    11 0 −1 1 1.27
    12 0 1 1 1.28
    13 0 0 0 1.27
    14 0 0 0 1.33
    15 0 0 0 1.21
    16 0 0 0 1.26
    17 0 0 0 1.36
    下载: 导出CSV 
    | 显示表格
    $$\begin{split} {Y_1}=&1.29-0.166\;9X_1+0.013X_2+0.207X_3-\\ &0.003\;8X_1X_2-0.096\;5X_1X_3-0.021\;5X_2X_3-\\ &0.170\;7X_1^2- 0.040\;7X_2^2-0.191\;5X_3^2 \end{split}$$ (3)

    对该回归方程中的因素进行方差分析,结果如表9所示,从表中可以看出一次项X1X3对28 d抗压强度影响及其显著,交互项X1X3和二次项X12X32对其影响显著,其他因素的影响不显著,且影响28 d抗压强度的因素强弱顺序为:X3>X1>X2,此结果亦与先前的研究结论一致。此次模型的P<0.0001,回归模型达到了极显著的水平,失拟项(P=0.6078>0.05)不显著,变异系数为4.99%(<10%),说明该响应面模型具有较好的稳定性,非试验因素对其影响不显著。模型相关系数为0.9670,说明试验中有96.7%的结果可以通过模型拟合进行揭示。矫正后的$R^2_{{\mathrm{Adj}}} $为0.9247AP信噪比为17.352,该值大于4说明可取,该模型可用于分析预测并作为多孔结构力学强度设计参照标准。

    表  9  回归模型方差分析
    Table  9.  Regression model analysis of variance
    方差来源 平方和 自由度 均方 F P 显著性
    模型 0.8560 9 0.0952 31.3500 <0.0001 **
    X1 0.1907 1 0.1907 50.0400 <0.0001 **
    X2 0.0014 1 0.0014 0.3215 0.5221
    X3 0.3604 1 0.3604 77.0000 <0.0001 **
    X1X2 0.0001 1 0.0001 0.0126 0.9137
    X1X3 0.0204 1 0.0204 8.3700 0.0232 *
    X2X3 0.0019 1 0.0019 0.4153 0.5398
    X12 0.0960 1 0.0960 27.5700 0.0012 *
    X22 0.0154 1 0.0154 1.5700 0.2506
    X32 0.1460 1 0.1460 34.6700 0.0006 *
    残差 0.0212 7 0.0030
    失拟项 0.0072 3 0.0024 0.6820 0.6078
    纯误差 0.0141 4 0.0035
    总变异 0.8779 16
    R2 0.9670
    $R^2_{{\mathrm{Adj}}} $ 0.9247
    $R^2_{{\mathrm{pred}}} $ 0.8439
      注:表中**表示极显著差异;*表示显著差异;$R^2_{{\mathrm{Adj}}} $为修正决定系数;$R^2_{{\mathrm{pred}}}$为预测决定系数;空白表示该项不存在此类数据。
    下载: 导出CSV 
    | 显示表格

    采用Box-Bohnken响应面法分析交互作用并依回归方程,在此基础上绘制响应面图及等高线图,分析骨料粒径、水灰比和胶凝材料体积含量对28 d抗压强度的影响。当固定骨料粒径、水灰比和胶凝材料体积含量3 个因素中的1 个因素时,其他2 个因素间的交互作用可用响应面图和等高线图表示,结果见图810。响应面中曲面越陡,等高线越密集,影响越显著,2 个因素的等高线越接近椭圆说明两者的相互作用越强。

    图  8  骨料粒径与水灰比对抗压强度的交互影响
    Figure  8.  Interaction effects of aggregate size and water-cement ratio on compressive strength
    图  9  骨料粒径与胶凝材料体积含量对抗压强度的交互影响
    Figure  9.  Interaction effects of aggregate size and cement paste volume on compressive strength
    图  10  水灰比与胶凝浆体体积对抗压强度的交互影响
    Figure  10.  Interaction effects of water-cement ratio and cement paste volume on compressive strength

    图8表示在胶凝材料体积含量处于中心水平时,骨料粒径与水灰比的交互作用对多孔结构28 d抗压强度的影响。在胶凝材料体积含量固定的时候,随着骨料粒径的减小抗压强度增强,且响应面坡度陡峭,说明骨料粒径对于抗压强度影响较强。水灰比在0.30~0.40区间,曲线呈现出先增大后降低的弯曲趋势,峰值靠近0.35附近。

    图9表示在水灰比处于中心水平时,骨料粒径与胶凝材料体积含量的交互作用对多孔结构28 d抗压强度的影响。两者的交互影响对其抗压强度影响显著,响应面的坡度陡峭,趋势明显,且等高线呈现明显的椭圆形,P<0.05,说明2 个因素对抗压强度的影响很强。且在骨料粒径较小的时候,随着胶凝材料体积含量的增加,多孔结构的强度显著增强,趋势明显;在胶凝材料体积含量较多的时候,多孔结构抗压强度随着骨料粒径的减小而增强。

    图10表示当骨料粒径处于中心水平时,水灰比与胶凝材料体积含量的交互作用对多孔结构28 d抗压强度的影响。在水灰比处于中心水平0.35左右的时候,抗压强度随着胶凝浆体的增加而增强,当胶凝材料体积含量在20%~25%时,抗压强度呈现出弯曲的趋势,并在胶凝材料体积含量为23%左右时达到最大峰值,抗压强度在水灰比处于0.30~0.40范围内,呈现出先增大后减小的趋势,即当水灰比在0.35附近抗压强度取得最高值。

    通过回归分析后得出多孔结构抗压强度在3 个因素影响下的预测趋势,如图11所示,图中不同颜色的点位代表不同编号的试验组别,试验值与预测值呈现出良好的拟合趋势,$R^2_{{\mathrm{pred}}} $=0.8439,说明模型具有较高的可靠性。

    图  11  预测抗压强度值与试验值对比
    Figure  11.  Predicted compressive strength value compared with the experimental value

    通过Design Expert13软件求解方程,得到较为合适的配合比设计并进行换算:骨料粒径在2 cm左右,水灰比为0.377,胶凝材料体积含量在20.7%左右较为合适,此时得到的28 d抗压强度值为1.34 MPa左右。通过此配合比制取3个平行样并得到多孔结构的28 d抗压强度为1.29 MPa,与预测值基本相符。在此配合比下,孔隙率为38.3%,有效孔隙率为33.5%,透水系数为2.98 cm/s。由此可见,在该优化配合比下,多孔结构具有足够的植生空间和良好的透水性能,满足应用条件。

    (1) 抗压强度随着水灰比增大呈现先增大后减小的变化趋势,最佳水灰比约0.35。骨料粒径越小,多孔结构抗压强度越高,但为了满足多孔性和透水性,选取粒径2 cm左右的骨料较为适宜。

    (2) 在不影响强度的条件下,胶凝材料体积含量是影响有效孔隙和形成上下表面联通的透水通道的最关键因素,应控制为15%~25%,胶凝材料体积含量不应超过30%。

    (3) 采用响应面对不同水灰比、骨料粒径区间、胶凝材料体积含量进行优化设计并进行抗压试验,以抗压强度为响应量,得到优化后的配合比设计:骨料粒径约2 cm,水灰比为0.377,胶凝材料体积含量为20.7%。测试了该配比下的多孔结构孔隙率、有效孔隙率和透水系数分别为:38.3%、33.5%、2.98 cm/s。证明在该优化配合比下,多孔结构不仅具有较高的抗压强度,还具有良好的植生性能和透水性能,满足工程需求。

    (4) 轻质多孔结构在力学强度与结构稳定性方面具有十分优异的性能,加之其内部具有满足植物生长的孔隙,相比普通建筑材料对环境具有更加良好的相容性,因此在生态保护方面有更为广阔的应用前景。然而,目前关于多孔结构的研究主要集中于制备工艺与力学性质,依旧将其作为普通混凝土开展传统力学试验,忽视了其生态环境作用,在今后的研究中可更多地考虑其环境友好性优势,为生态修复工程提供技术支撑。

  • 图  1   试验图片

    Figure  1.   Test pictures

    图  2   各组试验应力-应变曲线

    Figure  2.   Stress-strain curve of each group test

    图  3   同一围压下各组试验应力-应变曲线

    Figure  3.   Stress-strain curve of each test group under the same circumferential pressure

    图  4   不同路径下初始切线模量

    Figure  4.   Initial tangent modulus under different paths

    图  5   ①、②组试验Ei、(σ1σ3)uσ3变化关系

    Figure  5.   Relationship of Ei, (σ1σ3)u and σ3 in groups ① and ② tests

    图  6   昆明泥炭质土应力-应变归一化曲线

    注:(a)图中Y=${{{\varepsilon _1}{E_{\rm{i}}}} \mathord{\left/ {\vphantom {{{\varepsilon_1}{E_{\rm{i}}}} {\left( {q - {q_{\rm{c}}}} \right)}}} \right. } {\left( {q - {q_{\rm{c}}}} \right)}}$,其余图中Y=${{{\varepsilon _1}{\sigma_{\rm{m}}}} \mathord{\left/ {\vphantom {{{\varepsilon _1}{\sigma_{\rm{m}}}} {\left( {q - {q_{\rm{c}}}} \right)}}} \right. } {\left( {q - {q_{\rm{c}}}} \right)}}$;$X=\varepsilon_{\rm{a}}$

    Figure  6.   Normalized stress-strain curve of the Kunming peaty soil

    图  7   昆明泥炭质土应力-应变预测曲线

    Figure  7.   Predicted stress-strain curve of the Kunming peaty soil

    表  1   不同卸荷路径下三轴剪切试验方案

    Table  1   Triaxial shear test schemes under different unloading paths

    试验分组σ3/kPa固结方式卸荷路径剪切路径
    100等向固结σ3不变,σ1
    逐渐增大
    150
    225
    100K0固结
    150
    225
    100K0固结σ3每级减10 kPa至破坏σ1不变,σ3
    逐渐减小
    150σ3每级减15 kPa至破坏
    225σ3每级减20 kPa至破坏
    100K0固结σ3=100→90→80→70→
    60→80→100
    σ3不变,σ1
    逐渐增大
    150σ3=150→135→120→
    105→90→120→150
    225σ3=225→205→185→
    165→145→185→225
    100K0固结每级σ3变化与④组一致,σ3减小时沿K0线减小σ1,后恢复至初始状态
    150
    225
    100K0固结σ1=133→128→123→
    118→113→123→133
    150σ1=200→192→185→
    177→170→185→200
    225σ1=300→290→280→
    270→260→280→300
    注:σ1σ3分别表示大、小主应力。
    下载: 导出CSV

    表  2   Eiσm拟合表达式及参数值

    Table  2   Ei and σm fitting expressions and parameter values

    试验组σm/kPaEi/MPaR2表达式
    10033.840.998${E_{\rm{i} } } = 0.199\;1{\sigma _{\rm{m} } } + 15.05$
    15044.27
    22557.84
    11131.910.958${E_{\rm{i} } } = 0.265\;5{\sigma _{\rm{m} } } - 0.267\;1$
    16739.60
    25067.98
    11123.020.986${E_{\rm{i} } } = 0.061\;4{\sigma _{\rm{m} } }{\text{ + } }16.55$
    16727.37
    25031.68
    11162.770.945${E_{\rm{i} } } = 0.357\;6{\sigma _{\rm{m} } }{\text{ + } }18.20$
    16769.69
    250110.87
    11157.010.947${E_{\rm{i} } } = 0.218\;4{\sigma _{\rm{m} } }{\text{ + } }35.25$
    16775.76
    25088.18
    11130.620.999${E_{\rm{i} } } = 0.242\;5{\sigma _{\rm{m} } }{\text{ + } }3.647$
    16743.98
    25064.31
    下载: 导出CSV
  • [1]

    LAMBE W T. Stress path method[J]. Journal of the Soil Mechanics and Foundations Division,1967,93(6):309 − 331. DOI: 10.1061/JSFEAQ.0001058

    [2] 李立云, 王子英, 王晓静, 等. 近铁路基坑通风井段变形特征及其机制分析. 吉林大学学报(地球科学版), 2021, 51(5): 1441 − 1451.

    LI Liyun, WANG Ziying, WANG Xiaojing, et al. Study on deformation characteristics of ventilation shaft section in foundation pit xxcavation adjacent to railway. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1441 − 1451.(in Chinese with English abstract)

    [3] 陈善雄,凌平平,何世秀,等. 粉质黏土卸荷变形特性试验研究[J]. 岩土力学,2007,28(12):2534 − 2538. [CHEN Shanxiong,LING Pingping,HE Shixiu,et al. Experimental study on deformation behavior of silty clay under unloading[J]. Rock and Soil Mechanics,2007,28(12):2534 − 2538. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.12.009

    CHEN Shanxiong, LING Pingping, HE Shixiu, et al. Experimental study on deformation behavior of silty clay under unloading[J]. Rock and Soil Mechanics, 2007, 28(12): 2534-2538. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.12.009

    [4]

    HSIEH P G, OU C Y. Analysis of nonlinear stress and strain in clay under the undrained condition[J]. Journal of Mechanics, 2011, 27(2): 201 − 213.

    [5] 李德宁, 楼晓明, 杨敏. 上海地区基坑开挖卸荷土体回弹变形试验研究[J]. 岩土力学, 2011, 32(增刊2): 244 − 249

    LI Dening, LOU Xiaoming, YANG Min. Experimental researches on unloading resilient deformation properties during excavations in Shanghai area[J]. Rock and Soil Mechanics, 2011, 32(Sup2): 244 − 249. (in Chinese with English abstract)

    [6] 张玉, 邵生俊. 平面应变加、卸荷条件下黄土的非线性变形特性的研究[J]. 岩土工程学报, 2015, 37(增刊1): 185 − 190

    ZHANG Yu, SHAO Shengjun. Non-linear deformation behaviors of loess under plane strain state of vertical loading and lateral unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup1): 185 − 190. (in Chinese with English abstract)

    [7] 杨爱武,杨少坤,张振东. 基于不同卸荷速率与路径影响下吹填土力学特性研究[J]. 岩土力学,2020,41(9):2891 − 2900. [YANG Aiwu,YANG Shaokun,ZHANG Zhendong. Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths[J]. Rock and Soil Mechanics,2020,41(9):2891 − 2900. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2019.1992

    YANG Aiwu, YANG Shaokun, ZHANG Zhendong. Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths[J]. Rock and Soil Mechanics, 2020, 41(9): 2891-2900. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2019.1992

    [8] 李新明,孔令伟,郭爱国. 考虑卸荷速率的K0固结膨胀土应力-应变行为[J]. 岩土力学,2019,40(4):1299 − 1306. [LI Xinming,KONG Lingwei,GUO Aiguo. Stress-strain behavior of expansive soil under K0 condition with different unloading rates[J]. Rock and Soil Mechanics,2019,40(4):1299 − 1306. (in Chinese with English abstract)

    LI Xinming, KONG Lingwei, GUO Aiguo. Stress-strain behavior of expansive soil under K0 condition with different unloading rates[J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306. (in Chinese with English abstract)

    [9] 梅国雄,陈浩,卢廷浩,等. 坑侧土体卸荷的侧向应力-应变关系研究[J]. 岩石力学与工程学报,2010,29(增刊1):3108 − 3112. [MEI Guoxiong,CHEN Hao,LU Tinghao,et al. Research on lateral stress-strain relation on side of foundation pit with lateral unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup1):3108 − 3112. (in Chinese with English abstract)

    MEI Guoxiong, CHEN Hao, LU Tinghao, et al. Research on lateral stress-strain relation on side of foundation pit with lateral unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup1): 3108-3112. (in Chinese with English abstract)

    [10] 陈志波,钟理峰,蔡廉锦,等. 基坑开挖过程坑侧土体应力路径试验研究[J]. 防灾减灾工程学报,2016,36(6):943 − 949. [CHEN Zhibo,ZHONG Lifeng,CAI Lianjin,et al. Stress pathtriaxial tests on the lateral soil of foundation pit during excavation process[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):943 − 949. (in Chinese with English abstract) DOI: 10.13409/j.cnki.jdpme.2016.06.014

    CHEN Zhibo, ZHONG Lifeng, CAI Lianjin, et al. Stress pathtriaxial tests on the lateral soil of foundation pit during excavation process[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(6): 943-949. (in Chinese with English abstract) DOI: 10.13409/j.cnki.jdpme.2016.06.014

    [11] 陈立国,吴昊天,陈晓斌,等. 超载预压处理软土的次固结特征及沉降计算[J]. 水文地质工程地质,2021,48(1):138 − 145. [CHEN Liguo,WU Haotian,CHEN Xiaobin,et al. Secondary consolidation characteristics and settlement calculation of soft soil treated by overload preloading[J]. Hydrogeology & Engineering Geology,2021,48(1):138 − 145. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202009016

    CHEN Liguo, WU Haotian, CHEN Xiaobin, et al. Secondary consolidation characteristics and settlement calculation of soft soil treated by overload preloading[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 138-145. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202009016

    [12] 孟凡丽,娄桢桢,葛威. 长期循环荷载下卸荷粉土动力特性的试验研究[J]. 岩土力学,2022,43(增刊1):383 − 388. [MENG Fanli,LOU Zhenzhen,GE Wei. Experimental study on dynamic characters of unloading silt under long-term cyclic loading[J]. Rock and Soil Mechanics,2022,43(Sup1):383 − 388. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2021.0106

    MENG Fanli, LOU Zhenzhen, GE Wei. Experimental study on dynamic characters of unloading silt under long-term cyclic loading[J]. Rock and Soil Mechanics, 2022, 43(Sup1): 383-388. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2021.0106

    [13]

    BALASUBRAMANIAM A S,CHAUDRY A R. Deformation and strength characteristics of soft bangkok clay[J]. Journal of the Geotechnical Engineering Division,1978,104(9):1153 − 1167. DOI: 10.1061/AJGEB6.0000685

    [14] 李作勤. 粘土归一化性状的分析[J]. 岩土工程学报,1987,9(5):67 − 75. [LI Zuoqin. Analysis of normalized properties of clay[J]. Chinese Journal of Geotechnical Engineering,1987,9(5):67 − 75. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.1987.05.008

    LI Zuoqin. Analysis of normalized properties of clay[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(5): 67-75. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.1987.05.008

    [15] 曾国熙. 正常固结黏土不排水剪切的归一化性状[C]//软土地基学术讨论会论文集. 北京: 水利出版社, 1980: 13 − 26

    ZENG Guoxi. Normalized properties of normally consolidated clay soils in undrained shear[C]// Proceedings of the Symposium on Soft Ground Foundation. Beijing: Water Resources Press, 1980: 13 − 26. (in Chinese with English abstract)

    [16] 余志华,桂跃,付坚,等. 轴向卸荷条件下泥炭质土回弹变形试验研究[J]. 水文地质工程地质,2015,42(5):107 − 114. [YU Zhihua,GUI Yue,FU Jian,et al. An experimental study of the rebound deformation characteristics and mechanism of peaty soil under unloading[J]. Hydrogeology & Engineering Geology,2015,42(5):107 − 114. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2015.05.18

    YU Zhihua, GUI Yue, FU Jian, et al. An experimental study of the rebound deformation characteristics and mechanism of peaty soil under unloading[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 107-114. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2015.05.18

    [17] 吴昳,朱俊高,黄浩然,等. 不同密度粉质粘土K0固结侧向卸荷三轴试验研究[J]. 河北工程大学学报(自然科学版),2022,39(3):49 − 55. [WU Yi,ZHU Jungao,HUANG Haoran,et al. Triaxial test study on K0 consolidation of different density silty clays with lateral unloading[J]. Journal of Hebei University of Engineering (Natural Science Edition),2022,39(3):49 − 55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2022.03.008

    WU Yi, ZHU Jungao, HUANG Haoran, et al. Triaxial test study on K0 consolidation of different density silty clays with lateral unloading[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2022, 39(3): 49-55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2022.03.008

    [18] 周洪福,冯治国,石胜伟,等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluationof a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103076

    ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, et al. Slope engineering geology characteristics and stability evaluationof a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112-119. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103076

    [19] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [20] 苟富刚,龚绪龙,陆徐荣,等. 有机质对海相软土物理力学特性的影响效应分析[J]. 水文地质工程地质,2022,49(5):195 − 203. [GOU Fugang,GONG Xulong,LU Xurong,et al. Effect of organic matter content on physical-mechanical properties of sea soft soil[J]. Hydrogeology & Engineering Geology,2022,49(5):195 − 203. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202109033

    GOU Fugang, GONG Xulong, LU Xurong, et al. Effect of organic matter content on physical-mechanical properties of sea soft soil[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 195-203. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202109033

    [21]

    KONDNER R L. Hyperbolic stress-strain response:Cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division,1963,89(1):115 − 143. DOI: 10.1061/JSFEAQ.0000479

    [22] 刘熙媛. 基坑开挖过程的试验与数值模拟及土的微观结构研究[D]. 天津: 天津大学, 2004

    LIU Xiyuan. Experimental and numerical simulation of excavation process and microstructure study[D]. Tianjin: Tianjin University, 2004. (in Chinese with English abstract)

    [23] 蒋海飞,刘东燕,黄伟,等. 高围压下不同孔隙水压作用时岩石蠕变特性及改进西原模型[J]. 岩土工程学报,2014,36(3):443 − 451. [JIANG Haifei,LIU Dongyan,HUANG Wei,et al. Creep properties of rock under high confining pressure and different pore water pressures and a modified Nishihara model[J]. Chinese Journal of Geotechnical Engineering,2014,36(3):443 − 451. (in Chinese with English abstract)

    JIANG Haifei, LIU Dongyan, HUANG Wei, et al. Creep properties of rock under high confining pressure and different pore water pressures and a modified Nishihara model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 443-451. (in Chinese with English abstract)

    [24] 张挺,彭世龙,曹广勇,等. 膨胀土侧向卸荷试验研究及归一化特性分析[J]. 水利水电技术(中英文),2023,54(1):175 − 186. [ZHANG Ting,PENG Shilong,CAO Guangyong,et al. Experimental study on lateral unloading of expansive soil and analysis of normalized characteristics[J]. Water Resources and Hydropower Engineering,2023,54(1):175 − 186. (in Chinese with English abstract)

    ZHANG Ting, PENG Shilong, CAO Guangyong, et al. Experimental study on lateral unloading of expansive soil and analysis of normalized characteristics[J]. Water Resources and Hydropower Engineering, 2023, 54(1): 175-186. (in Chinese with English abstract)

    [25] 郭小帅. 基坑开挖中土体侧向卸荷特性研究[D]. 北京: 北京交通大学, 2012

    GUO Xiaoshuai. Research on the lateral unloading behavior of soils in deep excavation[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese with English abstract)

    [26] 周秋娟,陈晓平. 侧向卸荷条件下软土典型力学特性试验研究[J]. 岩石力学与工程学报,2009,28(11):2215 − 2221. [ZHOU Qiujuan,CHEN Xiaoping. Test research on typical mechanical characteristics of soft clay under lateral unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2215 − 2221. (in Chinese with English abstract)

    ZHOU Qiujuan, CHEN Xiaoping. Test research on typical mechanical characteristics of soft clay under lateral unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2215-2221. (in Chinese with English abstract)

    [27] 王大雁,马巍,常小晓,等. 深部人工冻土在小应变条件下的刚度特性[J]. 岩土力学,2006,27(9):1447 − 1451. [WANG Dayan,MA Wei,CHANG Xiaoxiao,et al. Small-strain stiffness properties of frozen soils in deep alluvium[J]. Rock and Soil Mechanics,2006,27(9):1447 − 1451. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2006.09.003

    WANG Dayan, MA Wei, CHANG Xiaoxiao, et al. Small-strain stiffness properties of frozen soils in deep alluvium[J]. Rock and Soil Mechanics, 2006, 27(9): 1447-1451. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2006.09.003

    [28]

    VARDANEGA P J,BOLTON M D. Stiffness of clays and silts:Normalizing shear modulus and shear strain[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(9):1575 − 1589. DOI: 10.1061/(ASCE)GT.1943-5606.0000887

    [29] 谢飞. 基于结构性力学参数的黄土归一化性状研究: 以延安地区马兰黄土为例[D]. 西安: 长安大学, 2021

    XIE Fei. Research on the normalized properties of loess based on structural parameters— A case of Malan loess in Yan’an area[D]. Xi’an: Chang’an University, 2021. (in Chinese with English abstract)

  • 期刊类型引用(1)

    1. 杨娥. 变权云模型在既有高速公路边坡健康评估中的应用研究. 安全与环境学报. 2024(12): 4552-4559 . 百度学术

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  108
  • PDF下载量:  167
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-10-23
  • 录用日期:  2022-10-24
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-03-14

目录

/

返回文章
返回
x 关闭 永久关闭