ISSN 1000-3665 CN 11-2202/P

    排水抗滑桩技术研究现状及展望

    Studies on status and prospects of anti-slide shaft technology

    • 摘要: 排水抗滑桩技术一方面可以克服传统抗滑桩不利于坡内渗流排水这一问题,另一方面也减少了竖向排水、抗滑等结构单独施作时的开挖工程量,并可充分提供水化热散热面,确保整体结构的质量,因此成为现代滑坡防治工程中重要的技术手段,也是近年来地质灾害、水文地质及地下工程等学科持续关注的新型技术。排水抗滑桩技术涉及流体力学和固体力学,以及水动力模型、结构模型、工程地质模型等,理论体系尚不够成熟,且存在空间结构组合相对复杂、施工技术难度较大等问题,其进一步推广应用受到制约,需要开展有针对性的现状总结研究。在查阅大量国内外相关文献、专利和实际工程应用的基础上,对现有排水抗滑桩结构(抗液化桩、空心排水抗滑桩、箱型排水抗滑桩等)特征及分类进行系统归纳,发现:结构上通常与集排水结构形成“渗-集-排”抗滑组合立体结构系统,主体抗滑形式多为桩型或键型,“渗-集-排”结构通常包括透水孔、辐射状渗水孔和排水花管;通过对典型应用实例的综合分析,指出排水抗滑桩虽已具有显著提高稳定性的优势,但距离其广泛应用和多元化发展还有一定距离。据此提出目前排水抗滑桩研究中施工工艺复杂、力学性能和排水特性不明晰、抗滑稳定性计算理论不完善、平面布置优化方法待加强等是今后该领域需要关注的重要科学问题和主要发展趋势,这些科学问题的解决不仅有利于完善排水抗滑桩力学和排水理论,而且有利于提升排水抗滑桩整体应用水平。

       

      Abstract: On one hand, anti-slide shaft technology can overcome the problems of blocking the seepage and drainage path in the slope by traditional anti-slide piles. On the other hand, it can reduce the excavation quantities when the vertical drainage and anti slide structures are separately constructed. Besides, it can fully provide the hydration-heat dissipation surface to ensure the overall structure quality. It has been an important technology in modern landslide prevention engineering, and the novel one of geological disaster, hydrogeology and underground engineering in recent years. The anti-slide shaft technology involves hydrodynamic mechanics and solid mechanics, as well as hydrodynamic model, structural model, engineering geological model, etc. Besides, its promoted application is restricted by some problems, such as the lack of mature theoretical system, the relatively complex of this spatial structural combination, and the difficulty of the construction technology. Thus, it is necessary to carry out targeted current status summary research. Based on a large number of relevant documents, patents and practical engineering applications at home and abroad, we summarize the characteristics and classification of anti-slide shaft structure (anti-liquefaction pile, hollow anti-slide shaft, box anti-slide shaft, etc), and find that the anti-slide shaft structure are mostly pile-type or tie-type, forming a 3-D structure system with the combination characteristics of seepage, collection, drainage and anti-slide. This kind of seepage-collection-drainage structures usually include water permeable holes, radiant seepage holes and drainage pipes. The demonstration of typical application examples show that although the anti-slide shafts have the advantage of significant improvement on the stability, there is still a large optimization space from its extensive use and diversification. Thus, the current complex construction process, unclear mechanical properties and drainage characteristics, imperfect stability calculation theory, plane layout optimization method to be improved in anti-slide shaft technology are important scientific issues and research trend, which need to be paid attention in the future. The solutions of these scientific problems are not only beneficial to improving the mechanical and drainage theory, but also beneficial to improving the overall application level of anti-slide shaft technology.

       

    /

    返回文章
    返回