Abstract:
There are abundant phreatic water in loess tablelands in the Loess Plateau of northwest China. The vertical infiltration of atmospheric precipitation is the main source of the recharge, but the spatial channels of water occurrence and migration in loess are still ambiguous. Based on the geomorphology, strata structure and other hydrogeological conditions, groundwater utilization condition and related experimental data of the Dongzhiyuan and Weibei loess tablelands, combined with scanning electron microscope image processing and statistical analysis, the pore characteristics and the migration processes of water in the loess phreatic and aeration zones are discussed and zoned. Pores are considered to be the main space channel for the occurrence and migration of loess groundwater, and the minimum equivalent pore size of seepage is about 12 μm. The vertical structural combination of the loess aeration zone composed of the Malan loess with developed pores in the upper part is conducive to the infiltration of atmospheric precipitation, and the water migration in the pores of the aeration zone is very weak and slow, but is relatively continuous and uniform. The aeration zone can be divided into four zones for loess: the climate impact zone, storage regulation zone, slow runoff zone and capillary receiving zone. Except for the upper climate impact zone, the other three zones are in a basically dynamic equilibrium state of water transport. The research results can provide important references for comprehensively and systematically understanding the characteristics of water transport in the aeration zone of loess tablelands.