Abstract:
With the implementation of the South-North Water Diversion Project and the implementation of groundwater suppression, the local groundwater levels in the North China Plain have gradually rebounded. However, there is a lack of systematic studies of the trends of groundwater balance elements and their impacts on the ecological environment. This paper takes the Baoding Plain, a typical area in the North China Plain, as an example, and uses the water balance method to calculate the groundwater recharge and discharge terms, applies the factor analysis method to analyze the causes of the changes in groundwater balance elements from 1975 to 2019, and calculates the amount of recoverable and suppressed groundwater resources by using the optimal exploitation coefficient method, which provides a basis for the development and utilization of groundwater resources in the study area. The results show that in the past 40 years, the groundwater recharge term was smaller than the discharge term in the Baoding Plain, which is in a negative equilibrium state, and the main change elements are canal irrigation infiltration, canal system seepage, well irrigation return, river seepage, rainfall infiltration and artificial exploitation. The main factor affecting the change of groundwater equilibrium elements is human activity, with a contribution rate of 77.2%. After the groundwater recharge and discharge imbalance is slowed down, the increase of groundwater level burial depth becomes smaller, the area of groundwater level depression cone gradually decreases, and the area of the Baiyangdian wetland gradually recovers. The optimal exploitation coefficient of groundwater resources in the Baoding Plain is determined to be 0.64, the exploitable groundwater resources range from 8.89×10
8 to 11.35×10
8 m
3/a, and the amount of compression exploitation ranges from 2.68×10
8 to 5.14×10
8 m
3/a. The research results can provide a scientific basis for the sustainable development of groundwater resources and ecological environment in similar areas.