ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策

铁永波, 张宪政, 卢佳燕, 梁京涛, 王东辉, 马志刚, 李宗亮, 鲁拓, 石胜伟, 刘民生, 巴仁基, 何龙江, 张新克, 甘伟, 陈凯, 高延超, 白永健, 龚凌枫, 曾孝文, 徐伟

铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(0): 1-12. DOI: 10.16030/j.cnki.issn.1000-3665.202209029
引用本文: 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(0): 1-12. DOI: 10.16030/j.cnki.issn.1000-3665.202209029
TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(0): 1-12. DOI: 10.16030/j.cnki.issn.1000-3665.202209029
Citation: TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(0): 1-12. DOI: 10.16030/j.cnki.issn.1000-3665.202209029

四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策

基金项目: 国家自然科学基金项目(U20A20110-01);中国地质调查局地质调查项目(DD20221746)
详细信息
    作者简介:

    铁永波(1979-),男,博士,教授级高级工程师,博士生导师,主要从事地质灾害形成机理与防治研究。E-mail:tyongbo@mail.cgs.gov.cn

  • 中图分类号: 中图分类号: 文献标志码:A

Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province

  • 摘要: 2022年9月5日四川省泸定县Ms6.8级地震诱发大量次生地质灾害。为深入认识此次地震地质灾害发育分布规律及特征,分析地质灾害发展趋势及潜在风险,文章在现场调查获取的一手资料,结合震区首轮地质灾害排查资料、遥感解译和区域地质背景资料综合研究,对地震地质灾害的特征、控灾条件及防灾减灾对策进行了研究。结果表明:截至2022年9月14日22时,地震重灾区泸定县和石棉县境内共诱发有威胁对象的地质灾害隐患点565处,包括崩塌331处、滑坡234处,导致81处已有地质灾害隐患点加剧变形;地震诱发的地质灾害类型主要以中、小型群发性高位崩塌和滑坡为主,主要集中分布在震中附近地震烈度Ⅸ度区域,包括泸定县磨西镇、得妥乡、得妥乡—德威镇段大渡河两岸及石棉县草科乡、王岗坪乡;位于地震烈度Ⅸ度区内的湾东河等流域,根据汶川地震经验认为,在未来5年内泥石流将处于活跃期,泥石流防治工程设计需考虑其高频率、黏性泥石流等特征;得妥乡—德威镇段大渡河两岸残留在坡面的崩滑体在降雨作用下易转化成坡面泥石流,建议在防治工程设计时要充分考虑两种灾害类型的转化形式。研究可为震区地震地质灾害防范及灾后重建规划提供科学参考。
    Abstract: On 5th September, 2022, the Ms 6.8 earthquake in Luding County, Sichuan Province induced large numbers of geological hazards. To deeply understands the evolution, distribution, and characteristics of geological hazards caused by the earthquake, we got the distribution of geological hazards by the field investigation and remote sensing interpretation. Then we analyzed the conditions for hazard control and the countermeasures for hazard prevention and reduction. The results show that as of 22:00 on September 14, 2022, the earthquake has induced 565 geological hazards with threat objects in Luding County and Shimian County (including 331 collapses and 234 landslides), and there were 81 existing geological hazards became more deformed. The types of geological hazards induced by the earthquake are mainly medium and small mass high-level collapses, which are mainly concentrated in the areas with Seismic intensity zone ofⅨ near the epicenter. These areas include Moxi Town, Detuo Township, both banks of Dadu River between Detuo Township and Dewei town in Luding County, Caoke Township and wanggangping Township in Shimian County. According to the experience of the Wenchuan earthquake, the debris flow will be active in the next five years, and its characteristics of high frequency and viscous debris flow should be considered in the design of debris flow prevention and control engineering. Under the rainfall condition, the landslide deposition remaining on the slopes of Dadu River banks in the section of Detuo Township Dewei town can be easily transformed into debris flow. It is suggested that the transformation forms of the two hazards’ types should be fully considered in the design of prevention and control projects. The study can provide a reference for earthquake geological hazard prevention and post hazard reconstruction planning in the earthquake area.
  • 据中国地震台网中心发布的数据,2022年9月5日12时52分,四川省甘孜州泸定县磨西镇发生Ms6.8级地震,震中位于北纬29.25°、东经102.08°,震源深度16 km,最高烈度达到Ⅸ度。地震造成大量交通、通信、电力及建筑等基础设施受损,同时诱发大量崩塌、滑坡等地震地质灾害。截止到2022年9月14日17时,地震已经造成93人遇难,25人失联。

    地震地质灾害是指地震发生时因地面强烈震动而引起的崩塌、滑坡等地质灾害,也可称为同震地质灾害,其破坏模式、表现形式及致灾特征一直以来都受到国内外学者的广泛关注[1-5],前人研究在地震地质灾害的早期识别、快速解译、综合评估及区划等研究方法和模型取得了较多进展[6-10]。已有研究表明,地震地质灾害的数量及规模等与距断层距离、距震中距离、地震烈度、地形及岩土体结构等密切相关[11-17],并根据不同地区、不同震级地震开展了大量的规律统计分析与成因机制研究[18-22],取得了较多的研究成果,为地震地质灾害的机理认识提供了重要基础[23-27]。许多学者认为,对强震引发的地质灾害的防范不能只关注短期防治,需要从更长远、更系统的视角进行设计[28-31]。事实证明,一次强震后,震区内地质灾害的活跃将会持续数十年之久,且震后次生地质灾害的群发性、链式效应等特征会更为突出,且规模会明显增大,这种现象在2008年汶川Ms8.0级地震发生后近15a内仍极为典型[32-34]。因此,深入分析地震地质灾害规律及特征,对震区灾后重建与次生地质灾害防治具有重要的指导意义。此次研究聚焦泸定县Ms6.8级地震诱发的地质灾害发育分布特征,在分析控灾因素和震后地质灾害演化趋势的基础上,提出了震区地质灾害防灾减灾建议,为震区灾害重建规划与地质灾害防治提供科学依据。

    泸定县位于四川省甘孜藏族自治州东南部,此次地震震中位于泸定县南部的磨西镇,区内地形高差大(磨西镇境内最高海拔可达7 556 m,与最低处海拔高差超过5 000 m),地震波随山体高度增加而放大的效应极为突出,为地震诱发高位崩塌、滑坡提供了地形条件。同时,区域内水系发育,有雅砻江、大渡河等大江大河,河谷深切、支流发育,加之区内构造应力强[35-36],岩体被河流切割后沿临空方向卸荷并导致卸荷裂隙发育,为同震崩塌、滑坡的形成提供了地质条件。此次震中所在的磨西镇属于典型亚热带季风气候,主要受东南季风和来自四川盆地的暖湿气流影响,因区内地形高差大而导致降雨量随海拔差异较大,磨西镇海拔1 600 m处多年平均降雨量为897.8 mm,海拔3000 m处多年平均降雨量为1 941.5 mm,区域点暴雨频发,为震后次生地质灾害的发生提供充足的水动力条件。

    研究区内地层岩性复杂,从区域1∶130万比例尺地质图上可以看出,从第四系至震旦系地层均有分布,广泛出露震旦系(Z)、志留系(S)、泥盆系(D)、石炭系(C)、二叠系(P)、三叠系(T)、古近系(E)和第四系(Q)地层, 其中,以中生界、古生界三叠系及元古界变质岩系分布最广。研究区西部区域主要出露三叠系的砂岩、板岩和少量石灰岩。研究区东部区域主要出露石英岩、大理岩、白云石、变质砂岩、碳酸盐岩、基性和酸性火山岩。侵入岩体从元古代到新生代均有出露,岩性以花岗岩类、闪长岩类和少量超基性侵入岩为主,属坚硬岩组。花岗岩类主要分布在鲜水河断裂带以西,闪长岩类在研究区北部零星分布。第四系沉积物主要分布在鲜水河及其支流的相邻区域和该区的一些小盆地,包括全新世冲积层、砂、粘土、砾石,更新世冲积层、砾石土、黏土。研究区内多时代、多类型的岩性背景奠定了地质灾害孕灾的复杂性,特别是河谷斜坡上部的破碎岩体在地震下为群发性浅表层崩塌的形成提供了有利条件,而坚硬花岗岩体在高陡临空条件下形成卸荷裂隙,则为高位大块体岩质崩塌的形成提供了有利条件。

    图  1  研究区地质概况图
    Figure  1.  Geological overview of the study area

    磨西镇所处地质构造部位属于鲜水河断裂带南端,鲜水河断裂是我国西部Y字形断裂带的重要组成部分,为一条大型左旋走滑断裂带,经炉霍、道孚、乾宁(八美)、康定延伸至石棉安顺场一带,全长约350 km,走向整体呈NW—SE。鲜水河断裂带活动强,历史上曾发生过有记载的震级Ms7.0级以上地震8次,如1786年6月1日四川康定-泸定Ms7.75级地震等,与此次泸定Ms6.8级地震空间上较为接近。泸定县Ms6.8级地震发震断裂为鲜水河断裂带南东段的磨西断裂,震中位于磨西镇海螺沟风景区内,地震最高烈度达到Ⅸ度,影响区范围主要涉及3个市、州共12个县(市)。由于地震对部分县(市)的影响区面积较小,且未引发明显新增地质灾害隐患点,故此次研究区只选择其中10个县(市),分别是甘孜州泸定县、康定市、九龙县、雅江县,雅安市石棉县、天全县、荥经县、汉源县,凉山州甘洛县、冕宁县,震区影响范围约4.36 ×104 km2

    根据四川省地质灾害隐患点在库统计数据,此次震区10县(区)境内有地质灾害隐患点共1797处(截止到2022年9月7日),灾害类型主要为滑坡、泥石流和崩塌,其中滑坡887处、泥石流677处、崩塌233处(表1)。从空间分布特征上看,震前研究区地质灾害主要沿河流呈线状分布。根据应急管理部中国地震局提供的烈度分布数据,泸定县Ms6.8级地震烈度在Ⅵ度以上影响范围内,已有地质灾害点722处,沿大渡河两岸呈线状分布(图2)。主要分布在鱼同镇—泸定县城—得妥镇,安顺场镇—石棉县城—汉源县城。

    表  1  震区震前地质灾害点统计表
    Table  1.  Statistics of geological hazard points before the earthquake in the study area.
    市(州)县(地级市)滑坡/处泥石流/处崩塌/处合计/处
    甘孜州泸定县160124593431170
    康定市517941171
    九龙县14318648377
    雅江县1767231279
    雅安市石棉县31656102316
    天全县330336
    荥经县407451
    汉源县10999127
    凉山州甘洛县833226141311
    冕宁县611036170
    下载: 导出CSV 
    | 显示表格
    图  2  研究区震前地质灾害分布图
    Figure  2.  Distribution of geological disasters before earthquakes in the study area

    泸定县Ms6.8级地震影响范围内,震前地质灾害发育,且其分布密度与烈度等级呈正相关(图3)。烈度在Ⅷ度以上影响范围内,已有地质灾害点81处,主要分布在燕子沟镇、磨西镇和德妥镇,尤以磨西镇最多,少数分布在草科乡和王岗坪乡。在Ⅶ度影响范围内,已有地质灾害点292处,主要分布在泸定县城—德威镇,少数分布在安顺场镇附近。在Ⅵ度影响范围内,已有地质灾害点共349处,主要分布在泸定县—磨西镇段和石棉县—汉源县段,泸定县—磨西镇段地质灾害点共计361处,沿大渡河两岸密集分布,石棉县—汉源县段地质灾害点共计188处,沿河流两岸呈散点状分布。

    图  3  震区震前地质灾害点与地震烈度统计图
    Figure  3.  Statistical map of geological hazard points and seismic intensity before the earthquake in the study area.

    为突出泸定县Ms6.8级地震地质灾害的发育特征,地震地质灾害的研究主要聚焦此次地震烈度Ⅷ度、Ⅸ度区主要分布的泸定县和石棉县。为突出“以人为本”的原则,重点对有威胁对象的地质灾害隐患点开展地面排查和遥感解译,主要包括居民区、重大工程区、公路等区域。地面排查工作主要通过地面现场开展,遥感解译数据来源于高分六号、高分二号、北京三号卫星遥感影像,时间为2022年9月9—11日。

    截至2022年9月14日22时,泸定县和石棉县境内共排查有威胁对象的地震地质灾害隐患点273处,此次遥感解译有威胁对象的地质灾害隐患点共292处。地震还导致泸定县境内已有地质灾害隐患点加剧变形53处、石棉县境内已有地质灾害隐患点加剧变形28处。

    研究表明,此次地震地质灾害类型主要以中、小型规模高位崩塌滑坡,且集中分布在震中附近地震烈度Ⅸ度区域,包括泸定县磨西镇、得妥乡、得妥乡—德威镇段大渡河两岸及石棉县草科乡、王岗坪乡;地质灾害较为发育的乡镇有泸定县磨西镇、得妥镇和石棉县草科乡、王岗坪乡,其余地区地震地质灾害发育程度相对较低(图4)。磨西镇地震地质灾害主要在两个区域较为集中,一个区域是磨西台地临燕子沟和雅家埂河一侧临空区域,因磨西台地最大高度可达110 m,为冰水堆积和泥石流堆积体,虽然台地胶结较好,但在强震作用下仍产生大量崩塌,这些区域的崩塌也是导致磨西镇至得妥乡道路中断的主要原因(图5a);另一个区域是磨西镇两岸高位山体,多发育高位崩塌,多分布在海螺沟两岸、燕子沟磨西段右岸、雅家埂河磨西段左岸坡体中上部,能划分出单个崩塌的边界,分布相对较为分散。

    图  4  研究区地震新增地质灾害分布图
    Figure  4.  Distribution map of new seismic geological disasters in the study area.
    图  5  震区典型地质灾害发育特征
    Figure  5.  Characteristics of typical geological hazards in seismic area.

    泸定县得妥镇和石棉县草科乡、王岗坪乡境内地震烈度Ⅸ度区域,地质灾害密集发育在坡体和山脊中上部临空侧,多以浅表层崩塌滑坡,且密度极大,多呈片状分布,难以划出崩塌之间的边界,表现为崩塌群形式,如图5(b)所示。

    得妥乡—德威镇段大渡河两岸地质灾害多发育在坡体上部,崩塌运动模式表现出两种显著的差异模式:相对较为坚硬的块石多以落石方式崩落,且运动距离较远,部分直接进入大渡河,多数停留在坡脚下公路、民房处及低洼地带并成灾,这也是导致得妥镇至德威镇段道路遭受影响的主要原因,如图5(c)所示;相对碎裂的岩体崩落后,在运动过程中解体,以碎块石的方式堆积在斜坡中下部地形低缓处,其运动距离相对较短,造成直接破坏的范围有限,如图5(d)所示。

    (1)地形地貌对地震地质灾害的控灾机制

    此次地震地质灾害集中分布在泸定县磨西镇、得妥镇和石棉县草科乡、王岗坪乡,该区域属于流水侵蚀形成的沟谷地貌,河谷深切而狭窄,为地震地质灾害的诱发提供了极大的势能条件。同时,地震地质灾害多发育在大渡河深切河谷两岸及一级支流流域内,河流侵蚀基准面相对较低,下切作用强烈,多以V型谷为主,高陡岸坡和狭窄沟道形成的陡坡地形为地震地质灾害的发生提供了有利条件。

    以大岗山水电站至王岗坪乡区域为例,该区域南边长约3.2 km,宽约2.8 km,面积约9 km2,基于9月9日震后航空影像解译(图6a)可知,该区域共发育地质灾害点119处,其中滑坡91处,崩塌28处,平均发育密度为13.2处/km2。根据灾害规模统计结果可知,大型规模地质灾害发育2处,中型发育36处,小型发育81处,灾害规模以中小型为主。相比该地区震前光学影像(图6b),卫星影像上未见明显地质灾害发育,该区域地震前后灾害发育密度和数量发生明显变化。

    图  6  大岗山水电站至王岗坪乡区域地震前后地质灾害发育情况对比图
    注:(a)中地质灾害解译分布图来源于四川省地质调查院,数据由四川测绘地理信息局提供,分辨率0.2 m,航摄时间20220909;(b)中影像数据为资源三号卫星影像,分辨率2 m,拍摄时间20210210。
    Figure  6.  Comparison of geological hazards’ distribution in the area from Dagangshan hydropower station to Wanggangping Town before and after the earthquake.

    (2)地震烈度对地震地质灾害的控灾机制

    地震烈度是对地表变形影响最为显著的影响因素。本文基于2022年8月14日与2022年9月7日获取的两期Sentinel-1升轨数据,使用DinSAR技术获得了泸定地震同震InSAR形变场(图7)。其中红色(负值)表示该区域表现为下沉变形,蓝色(正值)表示抬升变形。通过将InSAR结果和地震烈度叠加分析可知,磨西镇和草科乡是研究区内地表形变最强烈的区域,这与地震烈度的分布是相吻合的。因此这两个区域内的地震灾害发育概率相对较大。

    图  7  研究区地震InSAR形变场(四川省地质调查院提供)
    Figure  7.  Seismic InSAR deformation field in the study area (provided by Sichuan Geological Survey)

    通常情况下,地质灾害发育数量、规模及破坏力均与地震烈度有着显著的相关性。通过对泸定县Ms6.8级地震地质灾害分布数量与地震烈度的对应关系研究发现,此次新增的地震地质灾害主要分布在地震烈度Ⅸ度区和Ⅷ度区,其数量约占总数的68%(表2)。虽然此次地震地质灾害规模多以中—小型为主,在数量上却表现了与地震烈度等级的极好相关关系。同时,地震地质灾害空间分布特征表明,地震随着地震烈度的衰减,地质灾害发育数量呈急剧减少的特点,这主要与地震能量释放随着距震中距离远而明显衰减的控灾机制有关。

    表  2  震区震前和震后地质灾害点与地震烈度统计表
    Table  2.  Statistics of geological hazard points and seismic intensity before and after the earthquake in the earthquake area
    不同烈度区震后新增地质灾害/处
    崩塌滑坡泥石流合计
    2411035*
    6630298*
    60726138
    1711212294
    注:*表明仅统计Ⅵ度和Ⅶ度部分范围内的新增地震灾害点。
    下载: 导出CSV 
    | 显示表格

    (3)特殊结构土体对地质灾害的控灾机制

    泸定县Ms6.8级地震影响区分布有海拔7556m的贡嘎山,因该地区强烈的构造隆升和特殊气候环境,使得该地区海洋性冰川极为发育。早期冰川形成的大量冰碛土和冰水堆积体在磨西河流域内广泛分布,且规模巨大,与其他地区第四系土体成因及分布有明显不同。如磨西镇所在的磨西台地就是早期贡嘎山冰川消融和后期河流下切后形成的冰水堆积阶地,其纵向长约11 km,垂直高差最高可达110米。从此次地震地质灾害发育特征看,磨西镇境内冰碛土边坡发生破坏的区域主要分布在海螺沟景区3号营地至4号营地之间的公路边坡、岸坡,以垮塌为主,主要受坡面临空和冻融作用影响,在地震时产生破坏,成为泥石流的潜在物源。磨西台地两侧临空边坡受地震影响后发生多起垮塌,虽然磨西台地的岩土体具有较好的胶结性,但因临空面坡度较陡,岩土体在长期重力卸荷作用下形成纵向拉裂缝,在强震作用下产生垮塌。除此外,其他类型成因土体区土质崩塌的发育数量相对较少,表明磨西镇境内特殊岩土体对地震地质灾害的明显控灾特征。

    (1)加强区域性地震地质灾害成因机制与规律研究

    目前已有大量关于地震地质灾害规律及成因机制的研究成果,但不同区域内的地形、地质条件和地震属性存在差异,导致不同区域内的地震地质灾害的发育规律存在明显差异。此次泸定县Ms6.8级地震诱发的地质灾害发育特征是地形地貌、地质背景条件及地震属性等共同作用的结果,加强研究区不同地震属性、不同地质背景下的地震地质灾害成因机制与规律研究,对未来该地区地质灾害演化趋势及防治技术防范具有重要理论与实践意义。特别是加强西南高山峡谷区震后交通中断条件下快速遥感识别与调查等新技术在地震地质灾害规律认识中的应用实践。

    (2)加强地震地质灾害多致灾模式的演变趋势研判

    地震发生后形成的大量不稳定斜坡、地裂缝及松散堆积体,他们在余震、降雨等作用下可能发生震后次生灾害,如崩滑体转化成坡面泥石流,震裂岩体转化成崩塌或滑坡等。因此需要根据此次地震地质灾害的发育特征,结合其所处地貌部位及结构特征等进行分析,研究其在不同外动力作用下可能的破坏模式及成灾表现形式,可通过物理模型实验、数值模拟等定量研究手段,结合定性分析进行综合研判,科学划定地质灾害可能的影响区范围与致灾模式,并在此基础上提出针对性的防范措施建议。

    (3)加强震区泥石流防治工程设计参数确定的科学性与合理性

    震区泥石流防治工程设计要充分汲取汶川震区泥石流破坏特征,通过类比优化震后泥石流动力学参数计算公式,结合未来地质灾害演变趋势提出针对性防治措施。特别是对坡面有大量松散堆积体的崩塌滑坡区,在防治工程设计中除了考虑对崩塌滑坡本身的防治措施外,还要综合考虑松散土体在降雨作用下转化成泥石流的防治方案。此外,对于已有泥石流防治工程的流域,需要进一步根据震后流域内松散物源增加量评估现有工程的防治成效,评估地震对已建工程的影响,并针对性地提出下一步防治措施建议。

    (4)加强地震地质灾害密集发育区微小流域综合治理规划

    一次强震后地质灾害的表现形式及链式效应极为突出,对这类地质灾害的治理需要提出系统的防治方案,要结合流域上下游、灾害规模及保护对象进行综合考虑。如此次地震地质灾害密集发育的泸定县得妥乡湾东河流域内,在干流和支流中均发育有大量崩滑体,在强降雨作用下,支流发生的泥石流进入干流会形成一定的堵溃。若多条支流同时暴发泥石流,其堵溃效应会更明显。虽然该流域内沟道纵坡比降大,泥石流堵溃后的规模放大有限,仍会形成超常态的流量,其危险区可能会扩大几倍,因此,需要采用流域水土保持、重点河道清淤、泥石流物源稳固等多管齐下的方式,联合自然资源、水利、林草及水电站业主单位共同推进相关工作,从源头防范震后次生灾害风险。

    (1)泸定Ms6.8级地震地质灾害主要以浅表层中—小规模崩塌和滑坡为主,主要集中分布在坡体中上部,在震中附近具有典型的群发性特征,与地震九级烈度区具有较好的对应关系。

    (2)陡峻的地形地貌、高地震烈度及特殊岩土体是影响泸定县Ms6.8级地震地质灾害发育数量、空间分布、规模及破坏模式的主要影响因素,今后在地震活跃区重大工程及村镇建设选址中需引起注意。

    (3)在地震地质灾害集中发育的泸定县磨西镇、得妥镇,石棉县王岗坪乡、草科乡境内,地震地质灾害形成的大量松散物源将成为泥石流的潜在物源,支沟群发性高频黏性泥石流将是该区域未来地质灾害的主要表现形式,需要加强该地区泥石流的趋势研判与风险防控。

    (4)此次初步排查和遥感解译的新增地质灾害隐患点主要针对有威胁对象的点,用于分析此次地震地质灾害的宏观规律与趋势。目前震中区所在的泸定县得妥镇、石棉县草科乡部分区域仍尚未完成地面地质灾害排查,随着后续各项工作的推进,震区新增地质灾害隐患点数量会有所增加,特别是无人类工程活动区群发性崩塌的数量会有明显增加,因此关于地震地质灾害新增点的分布规律还需进一步研究。

  • 图  1   研究区地质概况图

    Figure  1.   Geological overview of the study area

    图  2   研究区震前地质灾害分布图

    Figure  2.   Distribution of geological disasters before earthquakes in the study area

    图  3   震区震前地质灾害点与地震烈度统计图

    Figure  3.   Statistical map of geological hazard points and seismic intensity before the earthquake in the study area.

    图  4   研究区地震新增地质灾害分布图

    Figure  4.   Distribution map of new seismic geological disasters in the study area.

    图  5   震区典型地质灾害发育特征

    Figure  5.   Characteristics of typical geological hazards in seismic area.

    图  6   大岗山水电站至王岗坪乡区域地震前后地质灾害发育情况对比图

    注:(a)中地质灾害解译分布图来源于四川省地质调查院,数据由四川测绘地理信息局提供,分辨率0.2 m,航摄时间20220909;(b)中影像数据为资源三号卫星影像,分辨率2 m,拍摄时间20210210。

    Figure  6.   Comparison of geological hazards’ distribution in the area from Dagangshan hydropower station to Wanggangping Town before and after the earthquake.

    图  7   研究区地震InSAR形变场(四川省地质调查院提供)

    Figure  7.   Seismic InSAR deformation field in the study area (provided by Sichuan Geological Survey)

    表  1   震区震前地质灾害点统计表

    Table  1   Statistics of geological hazard points before the earthquake in the study area.

    市(州)县(地级市)滑坡/处泥石流/处崩塌/处合计/处
    甘孜州泸定县160124593431170
    康定市517941171
    九龙县14318648377
    雅江县1767231279
    雅安市石棉县31656102316
    天全县330336
    荥经县407451
    汉源县10999127
    凉山州甘洛县833226141311
    冕宁县611036170
    下载: 导出CSV

    表  2   震区震前和震后地质灾害点与地震烈度统计表

    Table  2   Statistics of geological hazard points and seismic intensity before and after the earthquake in the earthquake area

    不同烈度区震后新增地质灾害/处
    崩塌滑坡泥石流合计
    2411035*
    6630298*
    60726138
    1711212294
    注:*表明仅统计Ⅵ度和Ⅶ度部分范围内的新增地震灾害点。
    下载: 导出CSV
  • [1] 王谦,钟秀梅,高中南,等. 门源M6.9地震诱发地质灾害特征研究[J]. 地震工程学报,2022,44(2):352 − 359. [WANG Qian,ZHONG Xiumei,GAO Zhongnan,et al. Characteristics of geological hazards induced by the Menyuan M6.9 earthquake[J]. China Earthquake Engineering Journal,2022,44(2):352 − 359. (in Chinese with English abstract)

    WANG Qian, ZHONG Xiumei, GAO Zhongnan, et al. Characteristics of geological hazards induced by the Menyuan M6.9 earthquake[J]. China Earthquake Engineering Journal, 2022, 44(2): 352-359. (in Chinese with English abstract)

    [2] 黄润秋. 强震地质灾害效应及风险防控[J]. 民主与科学,2017(6):18 − 20. [HUANG Runqiuguo. Effects of strong earthquakes and geological hazards and risk prevention and control[J]. Democracy and Science,2017(6):18 − 20. (in Chinese) DOI: 10.3969/j.issn.1003-0026.2017.06.007

    HUANG Runqiuguo. Effects of strong earthquakes and geological hazards and risk prevention and control [J]. Democracy and Science, 2017 (6): 18-20. (in Chinese) DOI: 10.3969/j.issn.1003-0026.2017.06.007

    [3] 柴少峰, 帅向华, 吴志坚. 2016年1月21日青海门源MS6.4地震甘肃灾区震害特点分析[J]. 地震工程学报, 2016, 38(S1): 119-127

    CHAI Shaofeng, SHUAI Xianghua, WU Zhijian. Earthquake damage characteristics of the Menyuan, Qinghai MS6.4 earthquake on January 21, 2016 in Gansu disaster area[J]. China Earthquake Engineering Journal, 2016, 38(Sup 1): 119-127. (in Chinese with English abstract)

    [4] 王兰民,吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报,2013,35(3):401 − 412. [WANG Lanmin,WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian MS6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal,2013,35(3):401 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian MS6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401-412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    [5] 杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202009024

    YANG Zhihua, GUO Changbao, WU Ruian, et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 91-101. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202009024

    [6]

    GONG J,WANG D,LI Y,et al. Earthquake-induced geological hazards detection under hierarchical stripping classification framework in the Beichuan area[J]. Landslides,2010,7(2):181 − 189. DOI: 10.1007/s10346-010-0201-4

    [7] 李明威,唐川,陈明,等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei,TANG Chuan,CHEN Ming,et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201909006

    LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 182-190. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201909006

    [8]

    LAI C G,BOZZONI F,CONCA D,et al. Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale[J]. Bulletin of Earthquake Engineering,2021,19(10):4013 − 4057. DOI: 10.1007/s10518-020-00951-8

    [9] 李娟,何亮,荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan,HE Liang,XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)

    LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. (in Chinese with English abstract)

    [10]

    ZHANG X,TANG C,LI N,et al. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides,2022,19(8):1935 − 1956. DOI: 10.1007/s10346-022-01896-6

    [11] 巴仁基,王丽,郑万模,等. 大渡河流域地质灾害特征与分布规律[J]. 成都理工大学学报(自然科学版),2011,38(5):529 − 537. [BA Renji,WANG Li,ZHENG Wanmo,et al. Characteristics and distribution of the geology disasters of the Dadu River in Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2011,38(5):529 − 537. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2011.05.009

    BA Renji, WANG Li, ZHENG Wanmo, et al. Characteristics and distribution of the geology disasters of the Dadu River in Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(5): 529-537. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2011.05.009

    [12] 白永健,倪化勇,葛华. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报,2019,25(6):1116 − 1128. [BAI Yongjian,NI Huayong,GE Hua. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics,2019,25(6):1116 − 1128. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.06.095

    BAI Yongjian, NI Huayong, GE Hua. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics, 2019, 25(6): 1116-1128. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.06.095

    [13] 李明辉,王东辉,高延超,等. 鲜水河断裂带炉霍7.9级地震地质灾害研究[J]. 灾害学,2014,29(1):37 − 41. [LI Minghui,WANG Donghui,GAO Yanchao,et al. Research on the geohazards induced by the M7.9 Luhuo earthquake in Xianshuihe fault zone[J]. Journal of Catastrophology,2014,29(1):37 − 41. (in Chinese with English abstract)

    LI Minghui, WANG Donghui, GAO Yanchao, et al. Research on the geohazards induced by the M7.9 Luhuo earthquake in Xianshuihe fault zone[J]. Journal of Catastrophology, 2014, 29(1): 37-41. (in Chinese with English abstract)

    [14] 黄润秋,李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th may,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th may, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    [15]

    BOZZONI F,BONì R,CONCA D,et al. Megazonation of earthquake-induced soil liquefaction hazard in continental Europe[J]. Bulletin of Earthquake Engineering,2021,19(10):4059 − 4082. DOI: 10.1007/s10518-020-01008-6

    [16]

    LIU B,HAN S,GONG H,et al. Disaster resilience assessment based on the spatial and temporal aggregation effects of earthquake-induced hazards[J]. Environmental Science and Pollution Research,2020,27(23):29055 − 29067. DOI: 10.1007/s11356-020-09281-3

    [17]

    ZHENG H,LIU B,HAN S,et al. Research on landslide hazard spatial prediction models based on deep neural networks:a case study of northwest Sichuan,China[J]. Environmental Earth Sciences,2022,81(9):1 − 15.

    [18] 曹波,康玲,谭德宝,等. 地震诱发堰塞湖下游淹没风险评估方法对比研究[J]. 武汉大学学报·信息科学版,2015,40(3):333 − 340. [CAO Bo,KANG Ling,TAN Debao,et al. A comparative study of the rapid estimation of downstream flood risk induced by dammed lakes[J]. Geomatics and Information Science of Wuhan University,2015,40(3):333 − 340. (in Chinese with English abstract) DOI: 10.13203/j.whugis20130164

    CAO Bo, KANG Ling, TAN Debao, et al. A comparative study of the rapid estimation of downstream flood risk induced by dammed lakes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 333-340. (in Chinese with English abstract) DOI: 10.13203/j.whugis20130164

    [19] 李忠生. 国内外地震滑坡灾害研究综述[J]. 灾害学,2003,18(4):64 − 70. [LI Zhongsheng. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology,2003,18(4):64 − 70. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2003.04.013

    LI Zhongsheng. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology, 2003, 18(4): 64-70. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2003.04.013

    [20] 辛鸿博,王余庆. 岩土边坡地震崩滑及其初判准则[J]. 岩土工程学报,1999,21(5):591 − 594. [XIN Hongbo,WANG Yuqing. Earthquake induced landslide and avalanche[J]. Chinese Journal of Geotechnical Engineering,1999,21(5):591 − 594. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.1999.05.014

    XIN Hongbo, WANG Yuqing. Earthquake induced landslide and avalanche[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 591-594. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.1999.05.014

    [21] 孙崇绍,蔡红卫. 我国历史地震时滑坡崩塌的发育及分布特征[J]. 自然灾害学报,1997,6(1):25 − 30. [SUN Chongshao,CAI Hongwei. Developing and distributing characteristics of collapses and landslides during strong historic erthquake in China[J]. Journal of Natural Disasters,1997,6(1):25 − 30. (in Chinese with English abstract) DOI: 10.13577/j.jnd.1997.0105

    SUN Chongshao, CAI Hongwei. Developing and distributing characteristics of collapses and landslides during strong historic erthquake in China[J]. Journal of Natural Disasters, 1997, 6(1): 25-30. (in Chinese with English abstract) DOI: 10.13577/j.jnd.1997.0105

    [22] 张永双,任三绍,郭长宝,等. 青藏高原东缘高位崩滑灾害多动力多期次演化特征[J]. 沉积与特提斯地质,2022,42(2):310 − 318. [ZHANG Yongshuang,REN Sanshao,GUO Changbao,et al. Multi-dynamic and multi-phase evolution of high-position avalanche hazards on the eastern margin of the Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology,2022,42(2):310 − 318. (in Chinese with English abstract) DOI: 10.19826/j.cnki.1009-3850.2022.04008

    ZHANG Yongshuang, REN Sanshao, GUO Changbao, et al. Multi-dynamic and multi-phase evolution of high-position avalanche hazards on the eastern margin of the Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(2): 310-318. (in Chinese with English abstract) DOI: 10.19826/j.cnki.1009-3850.2022.04008

    [23] 武孟,谷天峰,谷琪,等. 海原地震区不同地貌单元的黄土斜坡动力响应[J]. 地球环境学报,2022,13(3):308 − 318. [WU Meng,GU Tianfeng,GU Qi,et al. Dynamic response of loess slopes in different geomorphic units in Haiyuan Seismic Zone[J]. Journal of Earth Environment,2022,13(3):308 − 318. (in Chinese with English abstract)

    WU Meng, GU Tianfeng, GU Qi, et al. Dynamic response of loess slopes in different geomorphic units in Haiyuan Seismic Zone[J]. Journal of Earth Environment, 2022, 13(3): 308-318. (in Chinese with English abstract)

    [24] 张培震. 中国地震灾害与防震减灾[J]. 地震地质,2008(3):577 − 583. [ZHANG Peizhen. Earthquake Disaster and Earthquake Prevention and Mitigation in China[J]. Earthquake Geology,2008(3):577 − 583. (in Chinese) DOI: 10.3969/j.issn.0253-4967.2008.03.001

    ZHANG Peizhen. Earthquake Disaster and Earthquake Prevention and Mitigation in China[J]. Earthquake Geology, 2008 (3): 577-583. (in Chinese) DOI: 10.3969/j.issn.0253-4967.2008.03.001

    [25] 许国昌. 强震区人工岩质路堑边坡的破坏及稳定性评价[J]. 西北地震学报,1981,3(3):66 − 72. [XU Guochang. The failure and the evaluation of the stability of artificial rock slope of cut in macroseismic area[J]. Northwestern Seismological Journal,1981,3(3):66 − 72. (in Chinese with English abstract)

    XU Guochang. The failure and the evaluation of the stability of artificial rock slope of cut in macroseismic area[J]. Northwestern Seismological Journal, 1981, 3(3): 66-72. (in Chinese with English abstract)

    [26] 杨秀元,姚亚辉. 2014年鲁甸MS6.5地震后地质灾害发育分布特征[J]. 地震工程学报,2018,40(5):1078 − 1083. [YANG Xiuyuan,YAO Yahui. Development and distribution characteristics of geological hazards after the 2014 Ludian MS6.5 earthquake[J]. China Earthquake Engineering Journal,2018,40(5):1078 − 1083. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2018.05.1078

    YANG Xiuyuan, YAO Yahui. Development and distribution characteristics of geological hazards after the 2014 Ludian MS6.5 earthquake[J]. China Earthquake Engineering Journal, 2018, 40(5): 1078-1083. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2018.05.1078

    [27] 韩金良,吴树仁,何淑军,等. 5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J]. 地学前缘,2009,16(3):306 − 326. [HAN Jinliang,WU Shuren,HE Shujun,et al. Basal characteristics and formation mechanisms of geological hazards triggered by the May 12,2008 Wenchuan earthquake with a moment magnitude of 8.0[J]. Earth Science Frontiers,2009,16(3):306 − 326. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2009.03.025

    HAN Jinliang, WU Shuren, HE Shujun, et al. Basal characteristics and formation mechanisms of geological hazards triggered by the May 12, 2008 Wenchuan earthquake with a moment magnitude of 8.0[J]. Earth Science Frontiers, 2009, 16(3): 306-326. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2009.03.025

    [28] 铁永波,李宗亮. 磨西河流域泥石流流域形态的非线性特征[J]. 工程地质学报,2011,19(3):376 − 380. [TIE Yongbo,LI Zongliang. Nonlinear characters of debris flow evolution in moxi river basin[J]. Journal of Engineering Geology,2011,19(3):376 − 380. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.03.013

    TIE Yongbo, LI Zongliang. Nonlinear characters of debris flow evolution in moxi river basin[J]. Journal of Engineering Geology, 2011, 19(3): 376-380. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.03.013

    [29] 王东辉,田凯. 鲜水河断裂带炉霍段地震滑坡空间分布规律分析[J]. 工程地质学报,2014,22(2):292 − 299. [WANG Donghui,TIAN Kai. Spatial distribution analysis of seismic landslides along Luhuo segment of Xianshuihe fault zone[J]. Journal of Engineering Geology,2014,22(2):292 − 299. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2014.02.020

    WANG Donghui, TIAN Kai. Spatial distribution analysis of seismic landslides along Luhuo segment of Xianshuihe fault zone[J]. Journal of Engineering Geology, 2014, 22(2): 292-299. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2014.02.020

    [30] 齐信,唐川,陈州丰,等. 汶川地震强震区地震诱发滑坡与后期降雨诱发滑坡控制因子耦合分析[J]. 工程地质学报,2012,20(4):522 − 531. [QI Xin,TANG Chuan,CHEN Zhoufeng,et al. Coupling analysis of control factors between earthquake-induced landslides and subsequent rainfall-induced landslides in epicenter area of Wenchuan earthquake[J]. Journal of Engineering Geology,2012,20(4):522 − 531. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.04.007

    QI Xin, TANG Chuan, CHEN Zhoufeng, et al. Coupling analysis of control factors between earthquake-induced landslides and subsequent rainfall-induced landslides in epicenter area of Wenchuan earthquake[J]. Journal of Engineering Geology, 2012, 20(4): 522-531. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.04.007

    [31] 周本刚,张裕明. 中国西南地区地震滑坡的基本特征[J]. 西北地震学报,1994(1):95 − 103. [ZHOU Bengang,ZHANG Yuming. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwestern Seismological Journal,1994(1):95 − 103. (in Chinese with English abstract)

    ZHOU Bengang, ZHANG Yuming. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwestern Seismological Journal, 1994(1): 95-103. (in Chinese with English abstract)

    [32] 申通,王运生. 汶川地震震中区崩塌发育规律[J]. 科学技术与工程,2016,16(9):7 − 14. [SHEN Tong,WANG Yunsheng. Development pattern of collapses in Wenchuan earthquake epicentral area[J]. Science Technology and Engineering,2016,16(9):7 − 14. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2016.09.002

    SHEN Tong, WANG Yunsheng. Development pattern of collapses in Wenchuan earthquake epicentral area[J]. Science Technology and Engineering, 2016, 16(9): 7-14. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2016.09.002

    [33] 陈宁,王运生,蒋发森,等. 汶川县渔子溪地震地质灾害特征及灾害链成生分析[J]. 工程地质学报,2012,20(3):340 − 349. [CHEN Ning,WANG Yunsheng,JIANG Fasen,et al. Features and chains genesis analysis of earthquake geohazards in yuzi stream of Wenchan County[J]. Journal of Engineering Geology,2012,20(3):340 − 349. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.03.006

    CHEN Ning, WANG Yunsheng, JIANG Fasen, et al. Features and chains genesis analysis of earthquake geohazards in yuzi stream of Wenchan County[J]. Journal of Engineering Geology, 2012, 20(3): 340-349. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2012.03.006

    [34] 乔彦肖,马中社,吕凤军. 汶川地震地质灾害发育特点及动因机制分析[J]. 中国地质,2009,36(3):736 − 741. [QIAO Yanxiao,MA Zhongshe,LV Fengjun. Characteristics and dynamic cause mechanism of the Wenchuan Earthquake geological hazards[J]. Geology in China,2009,36(3):736 − 741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.03.020

    QIAO Yanxiao, MA Zhongshe, LV Fengjun. Characteristics and dynamic cause mechanism of the Wenchuan Earthquake geological hazards[J]. Geology in China, 2009, 36(3): 736-741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.03.020

    [35] 梁明剑,陈立春,冉勇康,等. 鲜水河断裂带雅拉河段晚第四纪活动性[J]. 地震地质,2020,42(2):513 − 525. [LIANG Mingjian,CHEN Lichun,RAN Yongkang,et al. Late-quaternary activity of the yalahe fault of the Xianshuihe fault zone,eastern margin of the Tibet plateau[J]. Seismology and Geology,2020,42(2):513 − 525. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2020.02.016

    LIANG Mingjian, CHEN Lichun, RAN Yongkang, et al. Late-quaternary activity of the yalahe fault of the Xianshuihe fault zone, eastern margin of the Tibet plateau[J]. Seismology and Geology, 2020, 42(2): 513-525. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2020.02.016

    [36] 尹福光,潘桂棠,孙志明. 西南三江构造体系及演化、成因[J]. 沉积与特提斯地质,2021,41(2):265 − 282. [YIN Fuguang,PAN Guitang,SUN Zhiming. Genesis and evolution of the structural systems during the Cenozoic in the Sanjiang orogenic belt,Southwest China[J]. Sedimentary Geology and Tethyan Geology,2021,41(2):265 − 282. (in Chinese with English abstract) DOI: 10.19826/j.cnki.1009-3850.2021.02014

    YIN Fuguang, PAN Guitang, SUN Zhiming. Genesis and evolution of the structural systems during the Cenozoic in the Sanjiang orogenic belt, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 265-282. (in Chinese with English abstract) DOI: 10.19826/j.cnki.1009-3850.2021.02014

图(7)  /  表(2)
计量
  • 文章访问数:  2821
  • HTML全文浏览量:  2237
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-12
  • 修回日期:  2022-09-14
  • 网络出版日期:  2022-09-26

目录

/

返回文章
返回