ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

微扰动四轴搅拌桩数字化施工应用研究

杜策, 张振, 张力, 周振

杜策,张振,张力,等. 微扰动四轴搅拌桩数字化施工应用研究[J]. 水文地质工程地质,2023,50(6): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202210017
引用本文: 杜策,张振,张力,等. 微扰动四轴搅拌桩数字化施工应用研究[J]. 水文地质工程地质,2023,50(6): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202210017
DU Ce, ZHANG Zhen, ZHANG Li, et al. Application of digital construction of the minor-disturbance four-axial soil mixing pile[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202210017
Citation: DU Ce, ZHANG Zhen, ZHANG Li, et al. Application of digital construction of the minor-disturbance four-axial soil mixing pile[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202210017

微扰动四轴搅拌桩数字化施工应用研究

详细信息
    作者简介:

    杜策(1983-),男,博士研究生,高级工程师,主要从事岩土工程设计与施工工作。E-mail:78127107@qq.com

  • 中图分类号: TU753.3

Application of digital construction of the minor-disturbance four-axial soil mixing pile

  • 摘要: 针对水泥土搅拌桩施工过程中数字化程度低、桩体质量难控、施工数据无法回溯等问题,以微扰动四轴搅拌桩为依托,研发了数字化搅拌桩施工云平台,云平台由数字化施工控制系统、云服务器和交互平台组成,实现成桩过程数据的实时追踪与反馈。通过数字化施工云平台,施工前输入同地层匹配的成桩参数,实现了变参数的自动化施工;输入与钻头提升速度相匹配的钻杆转速,控制搅拌次数大于规范要求值;输入地内压力控制阈值,实现施工过程中对地基土的微扰动,实测土体侧向位移和地表隆起均控制在毫米级范围;通过钻头垂直度实时监测,桩体垂直度可达到1/250;通过管理云平台,实现参建各方对施工质量的动态管控。研究成果对于全面提升搅拌桩施工质量和软基施工数字化水平具有重要的实践意义。
    Abstract: Aiming at the problem of quality control of a deep mixing pile in construction process, this paper introduces a novel digital construction cloud platform incorporated in the equipment minor-disturbance four-axial soil mixing pile, realizing the real-time tracking and feedback in construction process. After inputting the parameter related to different strata into the platform, the variation of parameter is automatically controlled in construction. After inputting the threshold of underground pressure, the minor-disturbance to subsoil is realized with a measured soil lateral displacement and upheaving in millimeter scale. With a measurement of verticality of drill rod in real time, the pile verticality can be controlled to 1/250. The management cloud platform realizes a dynamic management of quality control for all parties in the construction. This practical results are beneficial to completely improve the construction quality of the deep mixing pile and digital construction level of soft soil.
  • 水泥土搅拌桩是软土地区地基处理中应用最为广泛的技术之一。叶观宝等[1]、张振等[2]研究了循环荷载下水泥土桩的力学特性,研究表明随着静偏应力增加,复合单元体的动弹模量减小,阻尼比增大,临界动应力比减小。王领等[3]基于上海地区黏土,得出当水泥含量或者加固土的初期pH值大于某一临界值时,水泥加固土的强度将迅速增加。温卫军等[4]、陈富等[5]研究了砂土和港口淤泥质土中搅拌桩的成桩工艺,表明采用双向搅拌、提升设备动力及改进钻头能够提升施工质量。唐昌意等[6]采用新型钻头、新型固化剂在珠海进行搅拌桩试桩,证明新型钻头和新型固化剂可以较大幅度地提高搅拌桩芯样的抗压强度。Rong[7]、尹忠辉[8]、何开胜[9]探讨了钻头提升速度、搅拌次数、搅拌速度等对成桩质量的影响。吕国仁等[10]通过室内配合比及现场试验得出了合理的布桩方式、16%~18%的水泥掺量及四喷四搅拌的施工工艺。李东等[11]在天津地区开展了三轴搅拌桩施工工艺参数现场试验研究,表明其在天津地区有较好适用性。赵春风等[12]、郑赈济等[13]、詹金林等[14]进行了多轴搅拌桩的应用研究,证明五轴搅拌桩有效提高了搅拌均匀性。目前的研究主要针对成桩工艺、地质条件和强度特性等方面,值得注意的是,施工过程数字化程度低、桩体质量难控等制约着搅拌桩的应用和发展[1516],主要表现在以下几个方面:施工主要依赖操作人员的手动控制,凭借经验决定钻头下沉与提升速率、喷浆量、钻杆转速等关键工艺参数,如控制不当可能导致成桩均匀性问题;施工记录多为人工填写,无法精确反映施工参数,发现问题难以补救;不能根据地层变化动态调整施工参数,达到最优的处理效果[1720]

    数字化转型已经成为国家战略写入“十四五”规划。水泥土搅拌作为建筑工程领域重要的施工工艺,亟待提升设备的数字化水平,实现施工过程的精准控制,以适应国民经济和行业的发展。本文依托微扰动四轴搅拌桩设备,研发了数字化搅拌桩施工云平台。通过现场试验的应用研究,实现了对四轴搅拌桩施工全过程数据的实时监控、分析和管理,尤其对成桩的内压力和垂直度进行监控,以大幅提高施工和管理的数字化水平。

    数字化施工云平台(图1)主要由成桩设备内置的数字化施工控制系统、云服务器、交互平台构成。

    图  1  数字化搅拌桩施工云平台构成
    Figure  1.  Composition of the digital construction cloud platform

    微扰动四轴搅拌桩配置了数字化施工控制系统,由控制系统、定位系统及监控系统构成[21],具有成桩施工自动化控制、施工数据自动采集与显示、监控及预警的功能,如图2所示。

    图  2  数字化施工控制系统
    Figure  2.  Digital construction control system

    控制系统实现施工参数的输入输出、前后台联动、自动成桩、数据实时上传等功能。定位系统通过安装在桩架上的卫星定位模块,计算各个搅拌轴的坐标,同设计桩位坐标相互比对,在规范误差范围以内才容许施工。监控系统由一系列传感器构成,包括深度传感器、流量传感器、地内压力传感器、倾角传感器等。

    数字化施工控制系统将单桩成桩过程划分为16个阶段,如图3所示。其中下沉部分8个阶段,桩底位置2个阶段,提升部分6个阶段。每个阶段可以设置不同的浆液流量、下沉和提升速度等参数。后台供浆系统采用变频浆泵,供浆量自动匹配进尺,无需人工干预,改变了传统搅拌桩浆液量供应由人工控制的弊端。通过电控浆液流量能够便捷的控制不同深度处的水泥掺量。

    图  3  成桩阶段划分
    Figure  3.  Division of pile forming stages

    施工前,需分析场地勘察报告提供的土质情况,并根据试成桩结果,在软弱土层区段,如淤泥质土等土层设定较高的水泥掺量,在硬土层区段如硬塑的粉质黏土层,适当降低掺量,由此使得加固目标更明确,也具有较高经济性。同时下沉速度和转速的有效控制,能够在遇到临近构筑物时,有效降低搅拌桩施工对周边环境的影响[22]。将同一区域的施工数据进行积累分析,可以得出针对特定地区的施工经验参数,便于工艺的改进提高,数字化施工云平台为此提供了有利的数据支撑。

    张振等[23]认为地层中单点搅拌次数是桩身均匀性控制的重要指标。《建筑地基处理技术规范》(JGJ 79—2012)[24]建议的单点搅拌次数为不少于20次,搅拌次数同搅拌叶片数量和钻杆转速成正比,同提升速度成反比。

    微扰动四轴搅拌桩钻杆上设置7层叶片,叶片角度(60°或75°)可根据加固土层性质调整。图4为采用不同角度叶片,单点搅拌次数设定为20 次时钻杆转速同提升速度之间的关系。

    图  4  钻杆转速和提升速度关系曲线
    Figure  4.  Relation between shaft rotation rate and lifting speed

    将此对应关系以程序方式内置于数字化施工控制系统,实现转速、提升速度、搅拌次数的相互匹配,确保搅拌次数满足规范要求,保证了搅拌均匀性。

    水泥土搅拌桩施工过程中由于搅拌叶片的剪切力和浆液压力,引起对桩周土体扰动[2528]。对高灵敏度土体而言,土体受到扰动后屈服应力会急剧下降[29]。目前可采用控制施工过程中的地内压力调整施工对周围地层的扰动。

    在微扰动四轴搅拌桩钻杆内安装压力传感器,监测钻进过程中钻头附近的地内压力。施工前,在数字化施工控制系统内设定地下压力控制系数。施工过程中,控制系统按下式控制地内压力:

    p=ξγwh1000 (1)

    式中:p——地内压力控制值/MPa,为施工期间钻头中 部的泥浆压力;

    ξ——地内压力控制系数,一般取1.2~1.4;

    h——计算压力点处的垂直深度/m;

    γw——水的重度/(kN∙m−3),可取10.0 kN/m3

    当地内压力高于控制值时,数字化施工控制系统将调整加气压力,以此降低地内压力,进而减小对桩周土体的扰动。

    搅拌桩属于隐蔽工程,垂直度控制是质量控制的关键因素之一,传统设备成桩垂直度控制借由桩架垂直度间接反应,整个过程费时费力,无法满足超深搅拌桩止水帷幕对于垂直度的控制要求。

    在微扰动四轴搅拌桩多通道钻杆内安装垂直度监测装置,通过数字化施工控制系统测量钻头位置垂直度,这样可直接反应成桩过程中钻头的偏斜情况。测量数据上传云服务器,便于施工管理和质量判定。

    数字化施工控制系统可按照设定的采集频率记录施工全过程数据,并上传云服务器。云服务器根据工程名称、设备号、桩号、卫星定位等信息对数据进行分类管理,形成工程所需的施工记录图表。在电脑端、手机小程序上,可根据需要显示、查看和导出相关数据。成桩过程中,数据实时更新,便于参建各方及时掌握施工情况,提升施工管理数字化程度。

    现场试验段为地下五层基坑,位于南京地铁6号线明故宫站内,与既有2号线明故宫站十字换乘,周边环境条件复杂。十字换乘段基坑内采用直径850 mm、间距650 mm的微扰动四轴搅拌桩进行裙边加固,加固深度15 m。如图5所示,在桩位附近布置了地表沉降监测点及深层土体测斜孔。

    图  5  监测点剖面布置图
    Figure  5.  Profile layout of the monitoring points

    场地地貌属于秦淮河漫滩,下伏岩层面较平缓,岩土层分布不均匀。加固范围内土层主要为:①-1层,杂填土;①-2层,素填土;②-1b层,粉质黏土夹粉土,软塑局部流塑;②-2b3-4层,淤泥质粉质黏土、粉质黏土,软~流塑,局部夹粉砂,干强度中等偏低。

    试验段搅拌桩水泥掺量为13%,相较常规三轴搅拌桩[30],微扰动四轴水泥土搅拌桩水泥掺量降低35%,单次成桩面积增加36.8%。加固主要针对埋深5 m以下淤泥质粉质黏土层,将成桩下沉1—8阶段和提升9—16阶段分别合并设置参数。《建筑地基处理技术规范》(JGJ 79—2012)[24]建议的搅拌次数只考虑提升阶段,将下沉水胶比取为1.5,提升水胶比取为0.8,如图6所示,提升阶段按照图4关系设定搅拌次数为20次,并采用低水胶比浆液,同时确保了成桩质量和均匀性。

    图  6  成桩分段水胶比控制
    Figure  6.  Water binder ratio control of the construction section

    搅拌桩施工过程中,供浆系统提供的浆液量同钻杆的进尺速度相互匹配,下沉速度快时,需要提供较大的浆液流量,以此来保证整桩的水泥掺量均匀。

    本次下钻和提升速度设定为1.0 m/min。图7为数字化施工控制系统对浆液流量的控制情况,浆液量同下钻速度相互匹配,可以看出,在13 m左右深度,下钻速度和喷浆流量受地层夹粉土影响有所波动。在10 m和15 m深度位置停机监测垂直度,下钻速度变化后,浆液量随之减少;速度逐渐恢复后,浆液量逐步提高。

    图  7  下钻速度同浆液流量匹配情况
    Figure  7.  Matching situation of drilling speed and slurry flow

    图8为数字化施工控制系统显示的成桩过程中地内压力的控制情况。由图可知,地内压力实测值在0~13 m范围内均在控制值以内,桩底位置略大于控制值,加气压力调整后地内压力回到控制值附近。

    图  8  明故宫站地内压力曲线
    Figure  8.  Underground pressure curve of the Ming Gugong station

    图9为测斜孔测得的土体侧向位移曲线,测斜孔距离试验桩中心分别为2 m和4 m。试成桩施工土体产生了远离试验桩的水平位移,位移量随着与试验桩的距离不断减小。距离桩中心2 m处最大水平位移为4.81 mm,发生在地表下6 m左右;距离桩中心4 m处最大水平位移约3.35 mm,发生在地表下14 m左右。

    图  9  实测土体测斜曲线
    Figure  9.  Measured soil inclinometer curve

    图10所示的地表隆起曲线可以看出,施工期间桩周围土体略微向上隆起。随着距离增大,隆起逐渐减小,最大隆起量为3.2 mm。

    图  10  实测地表隆起曲线
    Figure  10.  Measured surface upheaving curve

    综上,施工过程中地内压力得到了有效控制,实测土层深层水平位移和地面隆起均控制在毫米级,对地层的扰动较小。

    图11(a)为明故宫站钻进过程中垂直度监测情况。可以看出顶部0~2 m范围,钻头摆动幅度较大,此时钻头仍然位于施工前开挖的沟槽内,没有土体约束。4 m以下钻头摆动情况较小,整体在垂线范围左右摆动,主要原因是倾角传感器受转动影响,产生了角加速度。以上情况对成桩垂直度测量不利。因此调整监测程序,即在数字化施工控制系统中设定在深度10 m和15 m处自动停机30 s,监测成桩垂直度,得到图11(b)。由此得出的成桩垂直度小于1/250,优于设计要求的1/150。

    图  11  垂直度监测
    Figure  11.  Verticality monitoring

    图12显示云交互平台网站。通过云交互平台网站可方便查看项目实施情况。图13展示了手机小程序界面。云平台可做到所有数据的实时更新和同步展示,方便建设方、监理方等参建人员随时随地关注施工进程。

    图  12  网站查询系统示意图
    Figure  12.  Diagram of the website query system
    图  13  手机小程序监控页面示意图
    Figure  13.  Diagram of the mobile monitoring page

    (1)数字化控制系统可实现施工过程中,根据地层情况分段匹配水泥掺量、浆液流量和钻进速率,实现桩体施工参数的准确控制,提高桩体质量。

    (2)数字化控制系统实现施工过程中地内压力的有效控制,进而减小对桩周土体的扰动。当地内压力高于控制值时,自动调整加气压力降低地内压力,实测土体侧向位移和地表隆起均控制在毫米级。

    (3)通过钻头垂直度实时监测,直接反映成桩过程中钻头的偏斜情况,实测的桩体垂直度可达到1/250。

    (4)通过交互云平台,做到所有数据的实时更新和同步展示,实现参建各方对施工质量的动态管控。

    研究成果对于全面提升搅拌桩施工质量和软基施工数字化水平具有重要的实践意义。

  • 图  1   数字化搅拌桩施工云平台构成

    Figure  1.   Composition of the digital construction cloud platform

    图  2   数字化施工控制系统

    Figure  2.   Digital construction control system

    图  3   成桩阶段划分

    Figure  3.   Division of pile forming stages

    图  4   钻杆转速和提升速度关系曲线

    Figure  4.   Relation between shaft rotation rate and lifting speed

    图  5   监测点剖面布置图

    Figure  5.   Profile layout of the monitoring points

    图  6   成桩分段水胶比控制

    Figure  6.   Water binder ratio control of the construction section

    图  7   下钻速度同浆液流量匹配情况

    Figure  7.   Matching situation of drilling speed and slurry flow

    图  8   明故宫站地内压力曲线

    Figure  8.   Underground pressure curve of the Ming Gugong station

    图  9   实测土体测斜曲线

    Figure  9.   Measured soil inclinometer curve

    图  10   实测地表隆起曲线

    Figure  10.   Measured surface upheaving curve

    图  11   垂直度监测

    Figure  11.   Verticality monitoring

    图  12   网站查询系统示意图

    Figure  12.   Diagram of the website query system

    图  13   手机小程序监控页面示意图

    Figure  13.   Diagram of the mobile monitoring page

  • [1] 叶观宝,秦粮凯,张振,等. 循环荷载下水泥土桩复合体动力参数试验研究[J]. 水文地质工程地质,2022,49(1):48 – 56. [YE Guanbao,QIN Liangkai,ZHANG Zhen,et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J] Hydrogeology & Engineering Geology,2022,49(1):48 – 56(in Chinese with English abstract)

    YE Guanbao, QIN Liangkai, ZHANG Zhen, et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J] Hydrogeology & Engineering Geology, 2022, 49(1): 48 – 56(in Chinese with English abstract)

    [2] 张振,陈勇,杨天亮,等. 分级循环动荷载下水泥土动力特性试验研究[J]. 水文地质工程地质,2021,48(2):89 − 96. [ZHANG Zhen,CHEN Yong,YANG Tianliang,et al. An experimental study of the dynamic characteristics of cement soils subjected to staged cyclic loading[J]. Hydrogeology & Engineering Geology,2021,48(2):89 − 96. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202007042

    ZHANG Zhen, CHEN Yong, YANG Tianliang, et al. An experimental study of the dynamic characteristics of cement soils subjected to staged cyclic loading[J]. Hydrogeology & Engineering Geology, 2021, 482): 8996. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202007042

    [3] 王领,沈水龙,白云,等. 上海黏性土与水泥混合后强度增长特性试验研究[J]. 岩土力学,2010,31(3):743 − 747. [WANG Ling,SHEN Shuilong,BAI Yun,et al. Characteristics of strength increase of cement treated Shanghai clayey soils[J]. Rock and Soil Mechanics,2010,31(3):743 − 747. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2010.03.013

    WANG Ling, SHEN Shuilong, BAI Yun, et al. Characteristics of strength increase of cement treated Shanghai clayey soils[J]. Rock and Soil Mechanics, 2010, 313): 743747. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2010.03.013

    [4] 温卫军,张毅民,张仁辉. 硬砂地质超深三轴搅拌桩钻进施工技术[J]. 施工技术,2014,43(增刊1):13 − 15. [WEN Weijun,ZHANG Yimin,ZHANG Renhui. Drilling construction of ultra-deep mixing triaxial-pile in hard sand geological[J]. Construction Technology,2014,43(Sup 1):13 − 15. (in Chinese with English abstract)

    WEN Weijun, ZHANG Yimin, ZHANG Renhui. Drilling construction of ultra-deep mixing triaxial-pile in hard sand geological[J]. Construction Technology, 2014, 43(Sup 1): 13 − 15. (in Chinese with English abstract)

    [5] 陈富,李海涛. 黄骅港地区深层水泥土搅拌桩施工工艺研究[J]. 岩土工程学报,2015,37(增刊1):156 − 160. [CHEN Fu,LI Haitao. Construction technology of cement deep mixing piles in Huanghua Port region[J]. Chinese Journal of Geotechnical Engineering,2015,37(Sup 1):156 − 160. (in Chinese with English abstract)

    CHEN Fu, LI Haitao. Construction technology of cement deep mixing piles in Huanghua Port region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup 1): 156 − 160. (in Chinese with English abstract)

    [6] 唐昌意,刘文献,吴章平,等. 改进的海相淤泥搅拌桩成桩效果试验研究[J]. 工业建筑,2022,52(6):156 − 161. [TANG Changyi,LIU Wenxian,WU Zhangping,et al. Experimental study on pile-forming effect of improved marine silt mixing pile[J]. Industrial Construction,2022,52(6):156 − 161. (in Chinese with English abstract)

    TANG Changyi, LIU Wenxian, WU Zhangping, et al. Experimental study on pile-forming effect of improved marine silt mixing pile[J]. Industrial Construction, 2022, 526): 156161. (in Chinese with English abstract)

    [7]

    RONG Wen tao. Study on construction parameters of cement deep mixing piles[J]. Applied Mechanics and Materials,2012,226/227/228:1386 − 1389.

    [8] 尹忠辉. 水泥搅拌桩施工参数间相关关系研究[J]. 隧道建设(中英文),2021,41(增刊2):172 − 179. [YIN Zhonghui. Correlation about construction parameters of cement mixing pile[J]. Tunnel Construction,2021,41(Sup 2):172 − 179. (in Chinese with English abstract)

    YIN Zhonghui. Correlation about construction parameters of cement mixing pile[J]. Tunnel Construction, 2021, 41(Sup 2): 172 − 179. (in Chinese with English abstract)

    [9] 何开胜. 水泥土搅拌桩的施工质量问题和解决方法[J]. 岩土力学,2002,23(6):778 − 781. [HE Kaisheng. Present construction quality problem of deep mixing cement-soil piles and solving measures[J]. Rock and Soil Mechanics,2002,23(6):778 − 781. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2002.06.035

    HE Kaisheng. Present construction quality problem of deep mixing cement-soil piles and solving measures[J]. Rock and Soil Mechanics, 2002, 236): 778781. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2002.06.035

    [10] 吕国仁,葛建东,肖海涛. 水泥土搅拌桩沿海软基处理[J]. 山东大学学报(工学版),2020,50(3):73 − 81. [LÜ Guoren,GE Jiandong,XIAO Haitao. Treatment of coastal soft foundation with cement-soil mixing pile[J]. Journal of Shandong University (Engineering Science),2020,50(3):73 − 81. (in Chinese with English abstract)

    LÜ Guoren, GE Jiandong, XIAO Haitao. Treatment of coastal soft foundation with cement-soil mixing pile[J]. Journal of Shandong University (Engineering Science), 2020, 503): 7381. (in Chinese with English abstract)

    [11] 李东,庞海,邹立春. SMW工法在天津软土深基坑施工中的应用[J]. 水文地质工程地质,2010,37(4):139 − 141. [LI Dong,PANG Hai,ZOU Lichun. Application of SMW construction method in Tianjin soft soil deep foundation pit construction[J]. Hydrogeology & Engineering Geology,2010,37(4):139 − 141. (in Chinese) DOI: 10.3969/j.issn.1000-3665.2010.04.029

    LI Dong, PANG Hai, ZOU Lichun. Application of SMW construction method in Tianjin soft soil deep foundation pit construction[J]. Hydrogeology & Engineering Geology, 2010, 374): 139141. (in Chinese). DOI: 10.3969/j.issn.1000-3665.2010.04.029

    [12] 赵春风,邹豫皖,赵程,等. 基于强度试验的五轴水泥土搅拌桩新技术研究[J]. 岩土工程学报,2014,36(2):376 − 381. [ZHAO Chunfeng,ZOU Yuwan,ZHAO Cheng,et al. Experimental research on strength of five-axis cement-soil mixed piles[J]. Chinese Journal of Geotechnical Engineering,2014,36(2):376 − 381. (in Chinese with English abstract) DOI: 10.11779/CJGE201402015

    ZHAO Chunfeng, ZOU Yuwan, ZHAO Cheng, et al. Experimental research on strength of five-axis cement-soil mixed piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 362): 376381. (in Chinese with English abstract) DOI: 10.11779/CJGE201402015

    [13] 郑赈济,梁志荣,李伟,等. 五轴水泥土搅拌墙在地下两层基坑中的应用[J]. 地下空间与工程学报,2014,10(增刊2):1860 − 1865. [ZHENG Zhenji,LIANG Zhirong,LI Wei,et al. Application of soil-cement wall mixed by five-shaft mixer in deep foundation pit[J]. Chinese Journal of Underground Space and Engineering,2014,10(Sup 2):1860 − 1865. (in Chinese with English abstract)

    ZHENG Zhenji, LIANG Zhirong, LI Wei, et al. Application of soil-cement wall mixed by five-shaft mixer in deep foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(Sup 2): 1860 − 1865. (in Chinese with English abstract)

    [14] 詹金林,谢晓东. 五(六)轴水泥土搅拌墙工艺及应用简介[J]. 工业建筑,2014,44(增刊1):866 − 870. [ZHAN Jinlin,XIE Xiaodong. A brief introduction to five-axis(six-axi) new cament mixing walls process[J]. Industrial Construction,2014,44(Sup 1):866 − 870. (in Chinese with English abstract)

    ZHAN Jinlin, XIE Xiaodong. A brief introduction to five-axis(six-axi) new cament mixing walls process[J]. Industrial Construction, 2014, 44(Sup 1): 866 − 870. (in Chinese with English abstract)

    [15] 万瑜,朱志铎,高波,等. 水泥土搅拌桩智能化施工控制研究[J]. 施工技术,2019,48(13):43 − 47. [WAN Yu,ZHU Zhiduo,GAO Bo,et al. Research on the intelligent construction control for cement soil mixing pile[J]. Construction Technology,2019,48(13):43 − 47. (in Chinese with English abstract)

    WAN Yu, ZHU Zhiduo, GAO Bo, et al. Research on the intelligent construction control for cement soil mixing pile[J]. Construction Technology, 2019, 4813): 4347. (in Chinese with English abstract)

    [16] 郭克诚,孙伟,彭威等. 搅拌桩技术的改进及工程应用[J]. 地基处理,2021,3(4):299 − 306. [GUO Kecheng,SUN Wei,PENG Wei,et al. Improvement and engineering application of mixing pile technology[J]. Journal of Ground Improvement,2021,3(4):299 − 306. (in Chinese with English abstract)

    GUO Kecheng, SUN Wei, PENG Wei, et al. Improvement and engineering application of mixing pile technology[J]. Journal of Ground Improvement, 2021, 34): 299306. (in Chinese with English abstract)

    [17] 任志福. 软弱土层基坑水泥搅拌桩止水帷幕失效分析[J]. 施工技术,2014,43(19):45 − 47. [REN Zhifu. The waterproof curtain failure analysis of cement mixing pile in soft soil foundation excavation[J]. Construction Technology,2014,43(19):45 − 47. (in Chinese with English abstract)

    REN Zhifu. The waterproof curtain failure analysis of cement mixing pile in soft soil foundation excavation[J]. Construction Technology, 2014, 4319): 4547. (in Chinese with English abstract)

    [18] 高显朋,赵海江,刘志强. 确保水泥搅拌桩成品质量关键技术的应用[J]. 公路,2020,65(6):126 − 129. [GAO Xianpeng,ZHAO Haijiang,LIU Zhiqiang. Application of key technology to ensure the quality of finished products of cement mixing piles[J]. Highway,2020,65(6):126 − 129. (in Chinese)

    GAO Xianpeng, ZHAO Haijiang, LIU Zhiqiang. Application of key technology to ensure the quality of finished products of cement mixing piles[J]. Highway, 2020, 656): 126129. (in Chinese)

    [19] 杜峰,王一霏. 物联网技术在水泥搅拌桩施工质量管控中的应用[J]. 公路,2019,64(7):68 − 73. [DU Feng,WANG Yifei. Application of Internet of Things technology in quality control of cement mixing pile construction[J]. Highway,2019,64(7):68 − 73. (in Chinese)

    DU Feng, WANG Yifei. Application of Internet of Things technology in quality control of cement mixing pile construction[J]. Highway, 2019, 647): 6873. (in Chinese)

    [20] 李琦. 水泥搅拌桩施工的质量控制要点[J]. 铁道建筑,2013,53(10):72 − 74. [LI Qi. Key issues of construction quality control over cement mixing piles[J]. Railway Engineering,2013,53(10):72 − 74. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1995.2013.10.23

    LI Qi. Key issues of construction quality control over cement mixing piles[J]. Railway Engineering, 2013, 5310): 7274. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1995.2013.10.23

    [21] 上海市土木工程学会. 微扰动四轴搅拌桩技术标准:T/SSCE 0002—2022[S]. 北京:中国建筑工业出版社,2022. [Shanghai Society of Civil Engineering. Technical code for minor-disturbance four-axial soil mixing pile:T/SSCE 0002—2022[S]. Beijing:China Architecture &Building Press,2022. (in Chinese)

    Shanghai Society of Civil Engineering. Technical code for minor-disturbance four-axial soil mixing pile: T/SSCE 0002—2022[S]. Beijing: China Architecture &Building Press, 2022. (in Chinese)

    [22]

    SHEN Shuilong,MIURA N,KOGA H. Interaction mechanism between deep mixing column and surrounding clay during installation[J]. Canadian Geotechnical Journal,2003,40(2):293 − 307. DOI: 10.1139/t02-109

    [23] 张振,沈鸿辉,程义,等. 基于物联网技术的水泥土搅拌桩施工质量评价[J]. 施工技术,2020,49(19):7 − 11. [ZHANG Zhen,SHEN Honghui,CHENG Yi,et al. Construction quality evaluation of cement deep mixed column based on Internet of Things technique[J]. Construction Technology,2020,49(19):7 − 11. (in Chinese with English abstract)

    ZHANG Zhen, SHEN Honghui, CHENG Yi, et al. Construction quality evaluation of cement deep mixed column based on Internet of Things technique[J]. Construction Technology, 2020, 4919): 711. (in Chinese with English abstract)

    [24] 中华人民共和国住房和城乡建设部. 建筑地基处理技术规范:JGJ 79—2012[S]. 北京:中国建筑工业出版社,2013. [Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for ground treatment of buildings:JGJ 79—2012[S]. Beijing:China Architecture & Building Press,2013. (in Chinese)

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for ground treatment of buildings: JGJ 79—2012[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)

    [25]

    FANG Zhen,YIN Jianhua. Responses of excess pore water pressure in soft marine clay around a soil-cement column[J]. International Journal of Geomechanics,2007,7(3):167 − 175. DOI: 10.1061/(ASCE)1532-3641(2007)7:3(167)

    [26] 沈水龙,蔡丰锡,顾伟华. 有明黏土中搅拌桩施工时的孔隙水压力[J]. 岩土力学,2006,27(4):648 − 652. [SHEN Shuilong,CAI Fengxi,GU Weihua. Excess pore pressure around deep mixing column in soft Ariake clay[J]. Rock and Soil Mechanics,2006,27(4):648 − 652. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.04.029

    SHEN Shuilong, CAI Fengxi, GU Weihua. Excess pore pressure around deep mixing column in soft Ariake clay[J]. Rock and Soil Mechanics, 2006, 274): 648652. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.04.029

    [27] 叶观宝,王艳. 如何控制水泥土搅拌法对土体的扰动[J]. 地下空间与工程学报,2007,3(2):263 − 267. [YE Guanbao,WANG Yan. How to control soil disturbance by cement mixing method[J]. Chinese Journal of Underground Space and Engineering,2007,3(2):263 − 267. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-0836.2007.02.016

    YE Guanbao, WANG Yan. How to control soil disturbance by cement mixing method[J]. Chinese Journal of Underground Space and Engineering, 2007, 32): 263267. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-0836.2007.02.016

    [28] 赵伟,杨龙才,王炳龙,等. 水泥搅拌桩施工引起邻近地层位移的监测分析[J]. 地下空间与工程学报,2018,14(增刊2):869 − 873. [ZHAO Wei,YANG Longcai,WANG Binglong,et al. Monitoring and investigation on displacement of surrounding strata caused by soil-cement columns installation[J]. Chinese Journal of Underground Space and Engineering,2018,14(Sup 2):869 − 873. (in Chinese with English abstract)

    ZHAO Wei, YANG Longcai, WANG Binglong, et al. Monitoring and investigation on displacement of surrounding strata caused by soil-cement columns installation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup 2): 869 − 873. (in Chinese with English abstract)

    [29] 邓永锋,刘松玉. 扰动对软土强度影响规律研究[J]. 岩石力学与工程学报,2007,26(9):1940 − 1944. [DENG Yongfeng,LIU Songyu. Effect of sample disturbance on soft soil strength[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(9):1940 − 1944. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.09.029

    DENG Yongfeng, LIU Songyu. Effect of sample disturbance on soft soil strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 269): 19401944. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.09.029

    [30] 梁志荣,李忠诚,刘江,等. 三轴水泥土搅拌桩强度分析及试验研究[J]. 地下空间与工程学报,2009,5(增刊2):1562 − 1567. [LIANG Zhirong,LI Zhongcheng,LIU Jiang,et al. Strength analysis and experimental research on soil-cement mixed pile made by triaxial stirring machine[J]. Chinese Journal of Underground Space and Engineering,2009,5(Sup 2):1562 − 1567. (in Chinese with English abstract)

    LIANG Zhirong, LI Zhongcheng, LIU Jiang, et al. Strength analysis and experimental research on soil-cement mixed pile made by triaxial stirring machine[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(Sup 2): 1562 − 1567. (in Chinese with English abstract)

  • 期刊类型引用(8)

    1. 费文燕. 双搅粉喷桩在连云港极软淤泥处理中的应用. 铁道勘察. 2025(01): 33-39 . 百度学术
    2. 周振,杜策,张振. 复杂环境深基坑中数字化微扰动搅拌桩的应用研究. 地基处理. 2025(01): 76-82 . 百度学术
    3. 韦前锋. 复杂地层智慧管控大直径水泥搅拌桩施工技术的研究. 低碳世界. 2025(02): 124-126 . 百度学术
    4. 杜策,李青,张振. 数字化微扰动搅拌桩在敏感环境深基坑中的应用研究. 工程勘察. 2025(04): 30-35 . 百度学术
    5. 杜策,李青,张振,周振,叶怀文. DMP工法在敏感环境深基坑工程中的应用. 施工技术(中英文). 2025(07): 77-81 . 百度学术
    6. 季伟. 濒海软土地区超大、超深基坑工程桩基围护施工工艺研究. 建筑施工. 2025(05): 771-776 . 百度学术
    7. 郭宏斌. 数字化微扰动搅拌桩施工工艺研究. 山西建筑. 2024(04): 102-105 . 百度学术
    8. 朱鹏飞. 基于超深地连墙水泥搅拌的桩联合施工技术. 中国建筑金属结构. 2024(03): 62-64 . 百度学术

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  50
  • PDF下载量:  46
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2022-12-07
  • 网络出版日期:  2023-10-03
  • 发布日期:  2023-11-14

目录

/

返回文章
返回