Processing math: 0%
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

多时相数字孪生滑坡变形监测方法与应用研究以金沙江白格滑坡为例

杨云建, 周学铖, 何中海, 李宗亮, 蔡嘉伦, 裴鹏, 刘锦涛, 匡伟

杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究−以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2): 132-143. DOI: 10.16030/j.cnki.issn.1000-3665.202210053
引用本文: 杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究−以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2): 132-143. DOI: 10.16030/j.cnki.issn.1000-3665.202210053
YANG Yunjian, ZHOU Xuecheng, HE Zhonghai, et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on Baige landslide in Jinsha River[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 132-143. DOI: 10.16030/j.cnki.issn.1000-3665.202210053
Citation: YANG Yunjian, ZHOU Xuecheng, HE Zhonghai, et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on Baige landslide in Jinsha River[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 132-143. DOI: 10.16030/j.cnki.issn.1000-3665.202210053

多时相数字孪生滑坡变形监测方法与应用研究——以金沙江白格滑坡为例

基金项目: 国家自然科学基金项目(42171355);四川省测绘地理信息学会科技开放基金(CCX202205);西南科技大学博士基金项目(22ZX7171)
详细信息
    作者简介:

    杨云建(1990—),男,工程师,主要从事无人机航空摄影测量与遥感、地灾应急监测与响应工作。E-mail:787135238@qq.com

    通讯作者:

    周学铖(1989—),男,高级工程师,主要从事遥感地质灾害监测与风险评估防控研究。E-mail:zhouxuecheng_rs@qq.com

  • 中图分类号: P237;P642.2

Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on Baige landslide in Jinsha River

  • 摘要:

    高位隐蔽滑坡因为难到达、难识别、难监测,致使成灾表现具有极强的突发性和破坏性。针对传统人工地面调查和地面布设监测设备存在危险系数高、工作效率低、设备易损坏和离线误报率高等问题,提出基于无人机倾斜摄影测量技术构建高位隐蔽滑坡数字孪生体的方法,通过信息化、数字化手段对地质灾害变形特征及时空演化规律进行监测分析。以西藏金沙江白格滑坡为研究对象,利用无人机倾斜摄影测量技术获取2019年4月—2021年9月共计10期次航测数据,融合多源数据构建了多时相数字孪生滑坡体,通过多期孪生滑坡体实现对白格滑坡整体滑移、局部微变形、滑塌体积等多维要素的高精度定量分析,并及时应用于白格滑坡时空演化分析和监测预警中。研究表明:白格滑坡在2019—2021年监测期内存在持续变形迹象,强变形主要位于滑坡两侧及后缘,渐有扩大趋势,存在垮塌堵江风险。运用多时相数字孪生滑坡变形监测手段实现对地质灾害定性-定量化特征描述与风险评估,具有快速灵活、覆盖全面、不受复杂艰险地形条件限制等优势,可为高位隐蔽滑坡等斜坡灾害大梯度形变监测提供工程实践参考。

    Abstract:

    High-locality and hidden landslides, due to its significant characteristics of being difficult to access, identify, and monitor, have strong suddenness and destructiveness when they occur. Continuous monitoring and risk assessment of these landslides are of great significance. Traditional artificial ground survey methods and ground monitoring equipment have the characteristics of high risk, low efficiency, easy damage to equipment, and frequent offline false alarms. Thus, based on unmanned aerial vehicle (UAV) tilt photogrammetry, this study attempts to provide a digital twin method to characterize high-locality and hidden landslides by monitoring and analyzing the deformation and spatiotemporal evolution of geological disasters. This study uses UAV tilt photogrammetry technology to obtain 10 periods of aerial survey data of the Baige landslide on the Jinsha River in Tibet as the research area from April 2019 to September 2021. A multi-temporal digital twin landslide body is constructed, and high-precision quantitative monitoring of multi-dimensional factors, such as the overall sliding characteristics, local micro deformation, and collapse volume of the Baige landslide, is achieved, which are applied to the monitoring and warning of Baige landslide. The results show that there are signs of continuous deformation in the Baige landslide during the monitoring period from 2019 to 2021, and strong deformation mainly occurs at both sides and rear edges of the landslide, gradually expanding, and posing a risk of collapse and river blockage. The multi-temporal digital twin method and application of landslide deformation monitoring on qualitative and quantitative characteristics description and risk assessment of geological disasters are further analyzed. The method in this study has the advantages of fast and flexible, comprehensive coverage, and not limited by complex and dangerous terrain conditions, which could provide information for the large gradient deformation monitoring and engineering practice of slope disasters, such as high-locality and hidden landslides.

  • 近30年来,高位隐蔽滑坡地质灾害频发,华蓥山溪口滑坡[1]、西藏易贡滑坡[2]、关岭县岗乌乡滑坡[3]、茂县叠溪镇新磨滑坡[4]、金沙江白格滑坡[5]等重大滑坡灾害均对当地人民群众生命财产造成了严重损害。由于高位隐蔽滑坡地质灾害隐患多发育于地形陡峭、地势落差较大的高山峡谷区域,传统地质灾害调查往往仅依靠人员地面调查,工作强度大、效率低、风险高,甚至部分区域根本无法到达[67]。同时,一些高位隐蔽滑坡发生后,地质构造依然不稳定,还具备多次致灾能力,因此高位隐蔽滑坡的监测预警既是热点也是难点[8]

    近年来,研究人员通过卫星遥感技术、专业监测设备搭建的监测预警系统对滑坡等地质灾害进行了监测预警[910],但是监测预警中仍然存在一定不足:(1)光学卫星空间分辨率普遍较低,难以满足大尺度的地质灾害变形监测及调查精度要求,并且在云雾天气下成像效果差,无法清晰表达地表特征。(2)合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)也存在诸多不足:①受相干性和相位解缠等因素限制,基于相位信息的InSAR技术对于大变形非相干移动存在过低估计;②在地表形变时对高山峡谷地形起伏引起的几何畸变;③密集植被覆盖等低相干区域难以发挥作用;④SAR卫星极轨飞行和侧视成像模式导致InSAR形变监测对南北向形变极其不敏感[11]。(3)星载遥感数据的获取时间存在较大的不确定性且严重受限于卫星重访周期。(4)专业监测预警模型阈值设置复杂且差异性大、离线误报率高、成功预警案例少[9, 12]

    为了解决以上问题,学者们利用无人机摄影测量技术具有布设灵活、快速反应、定位精度高等优点,在地质灾害应急抢险及监测预警广泛应用。四川茂县叠溪镇滑坡,救援队伍利用八旋翼无人机在坡源顶发现裂缝及渗水,成功预测了该部位发生的二次滑坡,避免了救援人员生命财产损失[13];西藏江达县白格发生滑坡-堰塞湖堵江险情后,救援队伍采用多种无人机获取大量高精度正射影像,建立三维模型构建的数字孪生体,为抢险救灾指挥和科学决策提供了重要依据[1415],在应急处置中采用无人机进行预警监测,保证施工安全[16];张祖勋等在巫峡箭穿洞危岩地质调查利用无人机贴近摄影测量获取的正交影像图清晰识别到岩体及裂缝[17];李德仁等[18]基于无人机系统的优势分析了其在地质灾害调查监测中的应用前景;王俊豪等[19]利用无人机摄影测量对贾家村滑坡地形、坡度、植被覆盖率等进行定量提取;董秀军等[7]、许强等[20]基于航空遥感和“天-空-地”协同监测对我国地质灾害监测领域最新研究进展进行了系统总结,提出以数字孪生体为基础的三维立体监测技术,认为目前亟须以数字孪生体为底座的“天-空-地”多元立体地灾分析软件。以上研究成果表明无人机摄影测量技术是“天-空-地”协同监测不可或缺的有机组成部分,特别是由三维模型构建的数字孪生体能够精确解译、识别地质灾害发育特征,获取灾害演变规律,达到可视化和定性分析的目的。但将多期次高精度实景三维模型构建的多时相数字孪生滑坡体技术应用到高精度定量分析中的研究成果不多,缺少利用数字孪生滑坡体进行变形监测的方法体系。

    为了监测白格滑坡整体变形情况并分析其变形趋势,采用无人机倾斜摄影测量技术,对滑坡体进行长时序、多期次的数据采集,获得滑坡体数字正射影像图(digital orthophoto map,DOM)、数字表面模型(digital surface model,DSM)、数字高程模型(digital elevation model,DEM)、Mesh三维模型(Mesh three-dimensional model)等成果,构建了多时相数字孪生滑坡体,在此基础上对白格滑坡整体滑移特征、局部微变形、滑塌体积等滑坡监测预警、防灾减灾关键要素进行高精度定量分析,进一步探讨滑坡变形趋势,开展风险评估,探索提出多时相数字孪生滑坡变形监测方法体系,为斜坡灾害大梯度形变监测提供工程实践参考。

    白格滑坡(图1)位于川藏交界的金沙江西侧,西藏自治区昌都市 江达县白格村,堆积区涉及金沙江东侧的四川省甘孜藏族自治州白玉县。滑坡地处藏东横断山脉、金沙江流域的河谷地带,为典型的构造侵蚀地貌,滑坡体后缘高程3720 m,前缘金沙江水面高程2880 m,高差约840 m,滑坡体后缘至前缘直线距离1.43 km,平均宽度550 m,主滑方向82°~102°[21],两次滑坡形成的堆积体体积达千万立方米[22],属于高位、远程特大型滑坡[23]

    图  1  白格滑坡泄洪全貌图
    注:拍摄于2018年11月13日,镜向西北。
    Figure  1.  Full view of Baige landslide flood discharge

    滑坡处于昌都—思茅陆块与德格—中甸陆块间的金沙江构造结合带中,总体构造线呈NW—SE向展布。主要表现为一套构造混杂岩建造,出露岩层为二叠系—下三叠统岗托岩组(PT1g),由不同时代、不同性质、不同成因的岩块和基质混杂而成[24],具有基性岩与大理岩组合的混杂岩带特征,节理化与片理化交织的碎裂结构特征,活跃的热液作用形成的蚀变软岩夹层,为白格滑坡形成提供了极为不利的基础条件[21]

    2018年10月11日和11月3日,金沙江白格先后两次发生滑坡后,堵塞金沙江干流形成堰塞湖,堰塞湖泄洪后出现较大洪峰,对下游沿江地区基础设施的损毁十分严重,造成重大经济损失[25]。应急抢险完成后,滑坡体后缘及两侧残留体仍存在3个裂缝区[22, 26],后缘不时发生小规模坍塌变形,存在发生大规模失稳滑坡和堵江风险[23, 27],仍需对滑坡区域进行监测预警。

    自2019年4月26日起,采用经纬M600 Pro多旋翼无人机、M300 RTK多旋翼无人机以及奋斗者固定翼无人机,搭载睿铂DG3五镜头相机或摆扫式索尼A7RII相机采用倾斜摄影测量技术对白格滑坡进行长时序、高分辨率数据采集。无人机具备后差分(Post-Processing Kinematic,PPK)或实时差分(Real-Time Kinematic,RTK)功能,采用阶梯式或仿地飞行航线,飞行航向重叠率80%,旁向重叠率70%,航高120~250 m,飞行速度7~9 m/s。截至2021年9月28日,共获取了10期滑坡体无人机倾斜摄影测量数据(表1)。进一步利用航测数据进行滑坡地形快速重建[28],并布设17个像控点,其中6个作为检查点进行模型配准,得到高分辨率DOM、DSM、DEM、Mesh三维模型等成果,利用以上成果构建数字孪生滑坡体。各期航测成果地面分辨率均优于0.05 m,检查点三维精度(表1)均满足《数字航空摄影测量 空中三角测量规范》(GB/T 23236—2009)[29]中检查点平面位置中误差0.35 m,高程中误差0.6 m的要求。

    表  1  无人机倾斜摄影测量日期及精度简表
    Table  1.  Date and accuracy of UAV oblique photogrammetry
    期次 拍摄日期 航片数量
    /张
    航测面积
    /km2
    检查点中误差
    平面/m 高程/m
    一期 2019-04-26 8980 6.5 0.1850 0.1766
    二期 2019-06-29 2850 14.6 0.1545 0.3010
    三期 2019-08-03 7310 5.5 0.1849 0.1232
    四期 2019-09-25 9570 5.0 0.2101 0.2629
    五期 2020-01-16 1956 9.1 0.3377 0.2789
    六期 2020-04-25 16335 7.9 0.2136 0.0794
    七期 2020-07-26 3124 12.1 0.1860 0.1400
    八期 2020-10-12 14225 7.9 0.2115 0.0964
    九期 2021-04-26 8939 12.7 0.1396 0.0842
    十期 2021-09-28 16055 7.9 0.1139 0.0896
    下载: 导出CSV 
    | 显示表格

    多时相数字孪生滑坡变形监测方法主要包括多期次无人机倾斜摄影测量数据采集、数字孪生滑坡体构建、利用多期次三维立体的数字孪生体获取灾害变形特征及时空演化规律,进行高精度定量分析及风险评估等方面。首先利用无人机倾斜摄影测量技术对滑坡区域进行长时序、多期次、高分辨率的数据采集;然后通过内业进行滑坡地形快速重建,且采用大地坐标配准法对多期成果进行配准后,基于二三维地理信息平台,将高分辨率的DOM、DSM、DEM、Mesh三维模型等多源数据融合构建三维立体的数字孪生滑坡体;最后通过智能解译、多期对比、空间分析、竖向差分测量[30]等方法获取滑坡灾害发育分布特征,对监测区进行三维变形分析,监测滑坡体多维变形要素,综合分析滑坡体的稳定性和时空演化规律,开展风险评估。其监测方法主要流程如图2所示。

    图  2  多时相数字孪生滑坡变形监测方法
    Figure  2.  Landslide deformation monitoring method of multi-temporal digital twin

    竖向差分测量是利用多期配准后的数字孪生滑坡体高程值进行竖向差分计算获得竖向差分模型,对模型进行统计分析,从而将滑坡地表竖直方向的变形情况进行精确量化。其计算原理是在二重积分的基础上,以两期数字孪生滑坡体高程差值作为积分高度,以单元网格面积(单个像元面积)为积分单元进行计算,分类统计积分单元的体积即可获得滑坡体各监测区内滑塌、堆积的体积[31],其数学表达式(1):

    V= (1)

    式中:\Delta h_{(x , y)} ——两期数字孪生滑坡体高程差值/m;

    \Delta S_{(x , y)} ——单个像元面积/m2

    V——岩土体积,分类统计对应代表堆积、滑塌。

    经过大量试验数据研究表明[3235],使用满足规范要求的DEM、DSM、三维模型等成果计算滑坡体积,其最大误差率小于5%。

    以2021年9月28日数字孪生体为基准,结合应急抢险时滑坡残留体、裂缝分布及持续变形情况对白格滑坡进行监测分区,涵盖了滑坡堆积区、后缘变形区、左侧变形区、右侧变形区、滑壁滑坡槽等5个监测大区,23个监测亚区,白格滑坡监测分区分布如图3所示。

    图  3  白格滑坡监测分区(2021年9月28日正射影像)
    Figure  3.  Source-deposit zones of Baige landslide (orthophoto on September 28, 2021)

    对2019年4月26日—2021年9月28日共10期数字孪生滑坡体进行差分测量,获取了监测区3年的时空变形数据(图4),并识别了滑坡体在本次监测区段内存在的变形区域和地表变形量。

    图  4  滑坡体长时序变形图(2019年4月26日—2021年9月28日)
    Figure  4.  Landslide deformation map of long time series (from April 26, 2019 to September 28, 2021)

    白格滑坡成灾后,救援力量于2019年4月26日—2019年9月25日(一至四期)对滑坡后缘强变形区进行减载施工,对滑坡堆积1区域堆积体进行减载施工、疏通河道,每期差分变形迹象明显。经应急排危工程干预,消除了部分潜在危险,但仍有大量物源存在垮塌风险,通过监测分析表明,白格滑坡强变形区域主要集中在后缘残留体K1、K2、K3区域。

    K1变形区位于滑坡后缘顶部,受两次滑动牵引,虽然经人工减载消方,但变形迹象仍然明显,其前缘滑坡壁陡峭,K1-1、K1-2、K1-3区受重力等影响出现下错变形及多处溜滑垮塌;K2变形区位于滑坡边界右侧,受两次滑坡牵引及刮铲,滑坡临空面增大且较为陡峭,K2-1、K2-2区发育大量裂缝,出现下错变形及发生小规模溜滑垮塌;K3变形区位于滑坡边界左侧,临空条件好,受重力影响K3-1区块体已逐渐分解破碎滑塌,K3-2、K3-3区发育众多裂缝,块体逐渐被裂缝分解破碎,滑塌趋势明显;滑壁及滑槽堆积大量后缘残留体滑塌岩土,在自重作用下,向下蠕滑,同时受降雨冲刷形成大量冲沟,且深度和宽度不断扩大。

    监测显示,白格滑坡在监测期内的活动方式以蠕滑为主,主体表现为老裂缝的宽度与深度不断加大,新裂缝不断滋生,局部伴随小规模的垮塌与渗水等现象(图5)。

    图  5  裂缝发育分布图
    Figure  5.  Distribution of fractures development

    (1) 裂缝变形分析

    2019年4月26日—2021年9月28日,白格滑坡后缘新增裂缝总长1075 m,裂缝总长度超过5377 m。其中位于后缘K1-3监测亚区的裂缝(LF1)和K2-2亚区的裂缝(LF2)变形特征最为典型。

    空间上,LF1的长度从第一期43 m增加到第四期53 m后,受地形限制长度不再增加,但变形一直在扩大,水平变形量从0.1 m增加到2.06 m,竖向变形量从0.08 m增加到3.69 m;LF2于第五期监测发现,至第十期水平变形量达2.72 m,竖向变形量达3.6 m(图6)。

    图  6  裂缝变化图
    Figure  6.  Comparison of fracture development

    时间上,LF1在2019年4月26日—2019年6月29日期间较为稳定,于2019年8月3日—2020年10月12日存在一个快速变形的过程,之后趋势有所缓和,但仍在持续变形;LF2于第五期(2020年1月16日)监测发现,夏季降雨期变形速率远高于冬季枯水期,且第十期变形时序曲线演化趋势尚未脱离线性(图7)。

    图  7  裂缝变形及趋势图
    Figure  7.  Trend of fracture deformation

    (2) 其他形式的变形分析

    位于K1-3裂缝LF1旁边的变形区可见明显垮塌,垮塌面积达到829 m2。同时在人工减载后的K1-2区域存在大量渗水迹象,减载台阶出现垮塌;K2-2靠近滑坡壁外侧块体在持续向沟底搓动,平均移动速率达到每月5.88 m,且块体已经出现分解垮塌迹象;K3-2位于滑坡壁外侧,整个块体处于不稳定状态,侧翼剪张裂缝在不断发展扩大,边缘不稳定块体与滑坡壁间距逐渐扩大,且滑坡壁出现密集裂缝;另外,滑壁及滑槽受雨季雨水冲刷,形成了若干条冲刷沟槽,最大宽度达到33.83 m,最大深度达到14.78 m,大量土方顺着沟槽冲入金沙江,河岸两侧的铲刮区和滑坡堆积区受江水冲刷其垮塌面积达到30161 m2图8)。

    图  8  变形区量化分析图
    Figure  8.  Quantitative analysis of deformation zone

    (3) 整体变形

    利用2019—2021年多时相数字孪生滑坡体跟踪测量了滑坡体地表数百个特征点的空间位移量及移动方位等信息,结合滑坡体竖向差分模型绘制了滑坡体地表三维变形图(图9)。

    图  9  滑坡体地表三维变形图
    Figure  9.  3D deformation map of landslide surface

    整体上,白格滑坡K1区后缘经施工减载后,部分区域虽有较明显的宏观变形,但强变形体规模不大;K2、K3区变形迹象明显,裂缝不断发育增加,后缘不断出现垮塌,部分残留体逐渐分解破碎滑塌,其中LF1裂缝水平变形速率最大可达每月1.98 m、垂直变形速率最大可达每月3.735 m,LF2裂缝水平变形速率最大可达每月3.75 m、垂直变形速率最大可达3.692 m/月,K2-2变形块体平均移动速率达到每月5.88 m,且有加速变形迹象。综合滑坡体地表三维变形情况,在极端工况下存在变形区失稳滑坡风险。

    DSM差分结果表明(图10),2019年4月26日—2021年9月28日,滑坡后缘人工卸载区,平均消减厚度达到20 m,减载42×104 m3岩土;K1、K2、K3等3个变形区共计自然垮塌69×104 m3岩土,垮塌最大厚度18 m,同时有27×104 m3岩土堆积在该区域下部边缘;滑坡槽累计堆积了52×104 m3岩土,其中包括42×104 m3人工削坡滑落堆积的岩土和实际因变形坍塌的10×104 m3岩土,局部堆积厚度达16 m,受雨水冲刷形成多条冲沟,截至2021年9月28日冲沟最深处达到14.78 m,累计冲刷带走33×104 m3岩土;铲刮区2因金沙江长期冲刷,导致坡面底部受力失稳,产生崩塌,崩塌最高处距江面79.5 m,崩塌累计体积90×104 m3岩土;堆积区1通过人工减载268×104 m3岩土,削减堆积体高度61 m后,块体处于稳定状态。

    图  10  滑坡体已滑变形分析图
    Figure  10.  Analysis of landslide deformation

    白格滑坡体在3年内经应急施工减载和变形滑塌等地形变化,总计有800×104 m3的体积变化,其中后缘、滑坡壁、前缘等区域变形滑塌248×104 m3的岩土,部分堆积在滑坡槽形成堆积体,在降雨期因饱水呈流塑状不断向下蠕滑。

    滑坡后缘及两侧的K2、K3区域岩土受降雨、重力等因素的影响仍处于强变形期,根据地面调查情况,结合裂缝分布发育情况、整体变形趋势及可能的剪出口,初步估算K2欠稳定区域块体厚度约在10~30 m,总体积约413×104 m3,K3欠稳定区域块体厚度约在10~25m,总体积约306×104 m3表2)。K2欠稳定区的变形调整过程风险基本可控,K3欠稳定区的调整过程风险较大,易出现失稳垮塌情况。加之滑坡槽堆积残留的52×104 m3松散块碎岩土,其可入江岩土体积总量仍很大。滑坡堆积1区域清方后使堰塞体整体高度降低,但江面未拓宽,最窄处仅50m,在极端工况下,存在一定堵江风险。

    表  2  欠稳定区体积估算表
    Table  2.  Volume estimation of unstable zone
    欠稳定区亚区面积/km2亚区体积/
    (104 m3
    体积小计/
    (104 m3
    K2K2-1
    右滑壁
    0.13169413
    K2-20.0390
    K2-3a
    K2-3b
    0.14154
    K3K3-1
    左滑壁
    0.09117306
    K3-20.05125
    K3-3
    K1-3
    后滑壁
    0.0464
    合计0.48719719
    下载: 导出CSV 
    | 显示表格

    (1) 白格滑坡2019年4月—2021年9月期间总计有800×104 m3的体积变化,其中后缘、前缘堆积体减载310×104 m3,整体变形滑塌248×104 m3。滑坡体后缘及两侧的坡体极不稳定,裂缝不断发育,变形迹象明显,受雨水和岩土重力等影响,变形速率夏季明显高于冬季,左右两侧欠稳定区整体变形速率较大,变形曲线仍有加速阶段特征,且块体规模较大,估算总体积达到719×104 m3,在极端工况下失稳堵江风险仍然存在。

    (2) 采用无人机倾斜摄影测量技术构建的数字孪生滑坡体,不仅能够大大降低调查人员的野外强度和安全风险,通过孪生体信息化、数字化手段可以扫除调查盲区,提高调查效率,同时调查结果具有更高的时效性、精确性和完整性。通过多期次监测,其精确定量分析方法提取的高精度滑坡体属性信息,为滑坡变形趋势及风险评价提供了有力的数据支撑。

    目前,地质灾害的调查、防治与监测工作已上升到国家战略层面,“天-空-地-内”一体化协同监测体系已初步建成。由无人机倾斜摄影测量技术构建的数字孪生体是协同监测体系多源数据融合及立体分析评价的数字基础,在地质灾害领域具有广阔的应用前景。

  • 图  1   白格滑坡泄洪全貌图

    注:拍摄于2018年11月13日,镜向西北。

    Figure  1.   Full view of Baige landslide flood discharge

    图  2   多时相数字孪生滑坡变形监测方法

    Figure  2.   Landslide deformation monitoring method of multi-temporal digital twin

    图  3   白格滑坡监测分区(2021年9月28日正射影像)

    Figure  3.   Source-deposit zones of Baige landslide (orthophoto on September 28, 2021)

    图  4   滑坡体长时序变形图(2019年4月26日—2021年9月28日)

    Figure  4.   Landslide deformation map of long time series (from April 26, 2019 to September 28, 2021)

    图  5   裂缝发育分布图

    Figure  5.   Distribution of fractures development

    图  6   裂缝变化图

    Figure  6.   Comparison of fracture development

    图  7   裂缝变形及趋势图

    Figure  7.   Trend of fracture deformation

    图  8   变形区量化分析图

    Figure  8.   Quantitative analysis of deformation zone

    图  9   滑坡体地表三维变形图

    Figure  9.   3D deformation map of landslide surface

    图  10   滑坡体已滑变形分析图

    Figure  10.   Analysis of landslide deformation

    表  1   无人机倾斜摄影测量日期及精度简表

    Table  1   Date and accuracy of UAV oblique photogrammetry

    期次 拍摄日期 航片数量
    /张
    航测面积
    /km2
    检查点中误差
    平面/m 高程/m
    一期 2019-04-26 8980 6.5 0.1850 0.1766
    二期 2019-06-29 2850 14.6 0.1545 0.3010
    三期 2019-08-03 7310 5.5 0.1849 0.1232
    四期 2019-09-25 9570 5.0 0.2101 0.2629
    五期 2020-01-16 1956 9.1 0.3377 0.2789
    六期 2020-04-25 16335 7.9 0.2136 0.0794
    七期 2020-07-26 3124 12.1 0.1860 0.1400
    八期 2020-10-12 14225 7.9 0.2115 0.0964
    九期 2021-04-26 8939 12.7 0.1396 0.0842
    十期 2021-09-28 16055 7.9 0.1139 0.0896
    下载: 导出CSV

    表  2   欠稳定区体积估算表

    Table  2   Volume estimation of unstable zone

    欠稳定区亚区面积/km2亚区体积/
    (104 m3
    体积小计/
    (104 m3
    K2K2-1
    右滑壁
    0.13169413
    K2-20.0390
    K2-3a
    K2-3b
    0.14154
    K3K3-1
    左滑壁
    0.09117306
    K3-20.05125
    K3-3
    K1-3
    后滑壁
    0.0464
    合计0.48719719
    下载: 导出CSV
  • [1] 黄润秋. 灾害性崩滑地质过程的全过程模拟[J]. 中国地质灾害与防治学报,1994,5(增刊1):11 − 17. [HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control,1994,5(Sup 1):11 − 17. (in Chinese with English abstract)]

    HUANG Runqiu. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(Sup 1): 11 − 17. (in Chinese with English abstract)

    [2] 吕杰堂,王治华,周成虎. 西藏易贡大滑坡成因探讨[J]. 地球科学,2003,28(1):107 − 110. [LÜ Jietang,WANG Zhihua,ZHOU Chenghu. Discussion on the occurrence of yigong landslide in Tibet[J]. Earth Science,2003,28(1):107 − 110. (in Chinese with English abstract)]

    LÜ Jietang, WANG Zhihua, ZHOU Chenghu. Discussion on the occurrence of yigong landslide in Tibet[J]. Earth Science, 2003, 281): 107110. (in Chinese with English abstract)

    [3] 王治华,郭大海,郑雄伟,等. 贵州2010年6月28日关岭滑坡遥感应急调查[J]. 地学前缘,2011,18(3):310 − 316. [WANG Zhihua,GUO Dahai,ZHENG Xiongwei,et al. Remote sensing interpretation on June 28,2010 Guanling landslide,Guizhou Province,China[J]. Earth Science Frontiers,2011,18(3):310 − 316. (in Chinese with English abstract)]

    WANG Zhihua, GUO Dahai, ZHENG Xiongwei, et al. Remote sensing interpretation on June 28, 2010 Guanling landslide, Guizhou Province, China[J]. Earth Science Frontiers, 2011, 183): 310316. (in Chinese with English abstract)

    [4] 殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract)]

    YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 445): 827841. (in Chinese with English abstract)

    [5] 王立朝,温铭生,冯振,等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao,WEN Mingsheng,FENG Zhen,et al. Researches on the Baige landslide at Jinshajiang River,Tibet,China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)]

    WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the Baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2019, 301): 19. (in Chinese with English abstract)

    [6] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)]

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract)

    [7] 董秀军,邓博,袁飞云,等. 航空遥感在地质灾害领域的应用:现状与展望[J]. 武汉大学学报(信息科学版),2022,DOI:10.13203/j.whugis20220151. [DONG Xiujun,DENG Bo,YUAN Feiyun,et al. Application of Aerial Remote Sensing in Geological Hazards:Current Situation and Prospects[J]. Geomatics and Information Science of Wuhan University,2022,DOI:10.13203/j.whugis20220151. (in Chinese with English abstract)]

    DONG Xiujun, DENG Bo, YUAN Feiyun, et al. Application of Aerial Remote Sensing in Geological Hazards: Current Situation and Prospects[J]. Geomatics and Information Science of Wuhan University, 2022, DOI: 10.13203/j.whugis20220151. (in Chinese with English abstract)

    [8] 王家柱,巴仁基,葛华,等. 基于 MACD指标的渐变型滑坡临滑预报模型研究[J]. 水文地质工程地质,2022,49(6):133 − 140. [WANG Jiazhu,BA Renji,GE Hua,et al. Research on early-warning prediction model of critical slide of creep landslide based on the MACD index[J]. Hydrogeology & Engineering Geology,2022,49(6):133 − 140. (in Chinese with English abstract)]

    WANG Jiazhu, BA Renji, GE Hua, et al. Research on early-warning prediction model of critical slide of creep landslide based on the MACD index[J]. Hydrogeology & Engineering Geology, 2022, 496): 133140. (in Chinese with English abstract)

    [9] 唐亚明,张茂省,薛强,等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评,2012,58(3):533 − 541. [TANG Yaming,ZHANG Maosheng,XUE Qiang,et al. Landslide monitoring and early-warning:an overview[J]. Geological Review,2012,58(3):533 − 541. (in Chinese with English abstract)]

    TANG Yaming, ZHANG Maosheng, XUE Qiang, et al. Landslide monitoring and early-warning: an overview[J]. Geological Review, 2012, 583): 533541. (in Chinese with English abstract)

    [10] 周学铖,徐争强,胡祎,等. 帕隆藏布绞东滑坡堵江风险评估[J]. 中国地质灾害与防治学报,2021,32(6):36 − 40. [ZHOU Xuecheng,XU Zhengqiang,HU Yi,et al. Risk assessment of blocking the river by Jiaodong landslide in Parlung Zangbo[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):36 − 40. (in Chinese with English abstract)]

    ZHOU Xuecheng, XU Zhengqiang, HU Yi, et al. Risk assessment of blocking the river by Jiaodong landslide in Parlung Zangbo[J]. The Chinese Journal of Geological Hazard and Control, 2021, 326): 3640. (in Chinese with English abstract)

    [11] 李晓恩,周亮,苏奋振,等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报,2021,25(2):614 − 629. [LI Xiaoen,ZHOU Liang,SU Fenzhen,et al. Application of InSAR technology in landslide hazard:Progress and prospects[J]. National Remote Sensing Bulletin,2021,25(2):614 − 629. (in Chinese with English abstract)] DOI: 10.11834/jrs.20209297

    LI Xiaoen, ZHOU Liang, SU Fenzhen, et al. Application of InSAR technology in landslide hazard: Progress and prospects[J]. National Remote Sensing Bulletin, 2021, 252): 614629. (in Chinese with English abstract) DOI: 10.11834/jrs.20209297

    [12] 刘云,肖斌. 江西省地质灾害专业监测预警存在的问题与展望[J]. 地质灾害与环境保护,2022,33(3):64 − 70. [LIU Yun,XIAO Bin. Problems and prospect of professional monitoring and early warning of geological disasters in Jiangxi Province[J]. Journal of Geological Hazards and Environment Preservation,2022,33(3):64 − 70. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2022.03.010

    LIU Yun, XIAO Bin. Problems and prospect of professional monitoring and early warning of geological disasters in Jiangxi Province[J]. Journal of Geological Hazards and Environment Preservation, 2022, 333): 6470. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2022.03.010

    [13] 王晓刚,高飞云,杨磊,等. 无人机遥感技术在自然灾害应急中的应用及前景[J]. 四川地质学报,2019,39(1):158 − 163. [WANG Xiaogang,GAO Feiyun,YANG Lei,et al. The application of unmanned aerial vehicle remote sensing technology to natural disaster emergency[J]. Acta Geologica Sichuan,2019,39(1):158 − 163. (in Chinese with English abstract)]

    WANG Xiaogang, GAO Feiyun, YANG Lei, et al. The application of unmanned aerial vehicle remote sensing technology to natural disaster emergency[J]. Acta Geologica Sichuan, 2019, 391): 158163. (in Chinese with English abstract)

    [14] 郭晨,许强,董秀军,等. 无人机在重大地质灾害应急调查中的应用[J]. 测绘通报,2020(10):6 − 11. [GUO Chen,XU Qiang,DONG Xiujun,et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping,2020(10):6 − 11. (in Chinese with English abstract)]

    GUO Chen, XU Qiang, DONG Xiujun, et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping, 202010): 611. (in Chinese with English abstract)

    [15] 郭晨,许强,彭双麒,等. 无人机摄影测量技术在金沙江白格滑坡应急抢险中的应用[J]. 灾害学,2020,35(1):203 − 210. [GUO Chen,XU Qiang,PENG Shuangqi,et al. Application research of UAV photogrammetry technology in the emergency rescue of baige landslide[J]. Journal of Catastrophology,2020,35(1):203 − 210. (in Chinese with English abstract)]

    GUO Chen, XU Qiang, PENG Shuangqi, et al. Application research of UAV photogrammetry technology in the emergency rescue of baige landslide[J]. Journal of Catastrophology, 2020, 351): 203210. (in Chinese with English abstract)

    [16] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 266): 15341551. (in Chinese with English abstract)

    [17] 言司. 独辟蹊径,不断创新 贴近摄影测量:第三种摄影测量方式的诞生——专访武汉大学遥感信息工程学院张祖勋院士[J]. 中国测绘,2019(10):31 − 37. [YAN Si. Creating a new way,constantly innovating and approaching photogrammetry:The birth of the third photogrammetry method—interview with academician Zhang Zuxun from school of remote sensing information engineering,Wuhan university[J]. China Surveying and Mapping,2019(10):31 − 37. (in Chinese)]

    YAN Si. Creating a new way, constantly innovating and approaching photogrammetry: The birth of the third photogrammetry method—interview with academician Zhang Zuxun from school of remote sensing information engineering, Wuhan university[J]. China Surveying and Mapping, 201910): 3137. (in Chinese)

    [18] 李德仁,李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版),2014,39(5):505 − 513. [LI Deren,LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University,2014,39(5):505 − 513. (in Chinese with English abstract)]

    LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 395): 505513. (in Chinese with English abstract)

    [19] 王俊豪,魏云杰,梅傲霜,等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质,2021,48(2):388 − 401. [WANG Junhao,WEI Yunjie,MEI Aoshuang,et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China,2021,48(2):388 − 401. (in Chinese with English abstract)]

    WANG Junhao, WEI Yunjie, MEI Aoshuang, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China, 2021, 482): 388401. (in Chinese with English abstract)

    [20] 许强,朱星,李为乐,等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416 − 1436. [XU Qiang,ZHU Xing,LI Weile,et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1416 − 1436. (in Chinese with English abstract)]

    XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 517): 14161436. (in Chinese with English abstract)

    [21] 张永双,巴仁基,任三绍,等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,2020,47(6):1637 − 1645. [ZHANG Yongshuang,BA Renji,REN Sanshao,et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River,Tibet[J]. Geology in China,2020,47(6):1637 − 1645. (in Chinese with English abstract)]

    ZHANG Yongshuang, BA Renji, REN Sanshao, et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 2020, 476): 16371645. (in Chinese with English abstract)

    [22] 邓建辉,高云建,余志球,等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9 − 16. [DENG Jianhui,GAO Yunjian,YU Zhiqiu,et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River,China[J]. Advanced Engineering Sciences,2019,51(1):9 − 16. (in Chinese with English abstract)]

    DENG Jianhui, GAO Yunjian, YU Zhiqiu, et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 2019, 511): 916. (in Chinese with English abstract)

    [23] 周礼,范宣梅,许强,等. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报,2019,27(6):1395 − 1404. [ZHOU Li,FAN Xuanmei,XU Qiang,et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River[J]. Journal of Engineering Geology,2019,27(6):1395 − 1404. (in Chinese with English abstract)]

    ZHOU Li, FAN Xuanmei, XU Qiang, et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River[J]. Journal of Engineering Geology, 2019, 276): 13951404. (in Chinese with English abstract)

    [24] 朱德明,李鹏岳,胡孝洪,等. 金沙江白格滑坡残留体稳定性分析与防治对策[J]. 现代地质,2021,35(1):56 − 63. [ZHU Deming,LI Pengyue,HU Xiaohong,et al. Stability analysis and prevention countermeasures for residual bodies of Baige landslide in Jinsha River[J]. Geoscience,2021,35(1):56 − 63. (in Chinese with English abstract)]

    ZHU Deming, LI Pengyue, HU Xiaohong, et al. Stability analysis and prevention countermeasures for residual bodies of Baige landslide in Jinsha River[J]. Geoscience, 2021, 351): 5663. (in Chinese with English abstract)

    [25] 吴瑞安,马海善,张俊才,等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质,2021,48(5):120 − 128. [WU Ruian,MA Haishan,ZHANG Juncai,et al. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology,2021,48(5):120 − 128. (in Chinese with English abstract)]

    WU Ruian, MA Haishan, ZHANG Juncai, et al. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 2021, 485): 120128. (in Chinese with English abstract)

    [26] 陈菲,王塞,高云建,等. 白格滑坡裂缝区演变过程及其发展趋势分析[J]. 工程科学与技术,2020,52(5):71 − 78. [CHEN Fei,WANG Sai,GAO Yunjian,et al. Evolution of the cracking zones at the site of the Baige landslides and their future development[J]. Advanced Engineering Sciences,2020,52(5):71 − 78. (in Chinese with English abstract)]

    CHEN Fei, WANG Sai, GAO Yunjian, et al. Evolution of the cracking zones at the site of the Baige landslides and their future development[J]. Advanced Engineering Sciences, 2020, 525): 7178. (in Chinese with English abstract)

    [27] 蔡耀军,徐复兴,朱萌,等. 金沙江白格滑坡残留体失稳堵江风险分析[J]. 工程科学与技术,2021,53(6):33 − 42. [CAI Yaojun,XU Fuxing,ZHU Meng,et al. River blocking risk analysis for the residual unstable masses of the baige landslide at the Jinsha River[J]. Advanced Engineering Sciences,2021,53(6):33 − 42. (in Chinese with English abstract)]

    CAI Yaojun, XU Fuxing, ZHU Meng, et al. River blocking risk analysis for the residual unstable masses of the baige landslide at the Jinsha River[J]. Advanced Engineering Sciences, 2021, 536): 3342. (in Chinese with English abstract)

    [28] 张欢,巨能攀,陆渊,等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质,2021,48(6):171 − 179. [ZHANG Huan,JU Nengpan,LU Yuan,et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology,2021,48(6):171 − 179. (in Chinese with English abstract)]

    ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 486): 171179. (in Chinese with English abstract)

    [29] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 数字航空摄影测量空中三角测量规范:GB/T 23236—2009[S]. 北京:中国标准出版社,2009. [General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Specifications for aerotriangulation of digital aerophotogrammetry: GB/T 23236—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)]

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Specifications for aerotriangulation of digital aerophotogrammetry: GB/T 23236—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)

    [30] 丁要轩,龚文平,程展,等. 基于多期无人机影像的滑坡地表竖向变形测量模型试验与工程应用[J]. 地质科技通报,2023(2):267 − 278. [DING Yaoxuan,GONG Wenping,CHENG Zhan,et al. Model tests of the vertical ground deformation measurement of landslide based on multiple UAV images and its application[J]. Bulletin of Geological Science and Technology,2023(2):267 − 278. (in Chinese with English abstract)]

    DING Yaoxuan, GONG Wenping, CHENG Zhan, et al. Model tests of the vertical ground deformation measurement of landslide based on multiple UAV images and its application[J]. Bulletin of Geological Science and Technology, 20232): 267278. (in Chinese with English abstract)

    [31] 訾栓紧,蓝朝桢,陈曦. UAV-DEM法计算土方量精度影响因素及分析[J]. 北京测绘,2019,33(9):1034 − 1037. [ZI Shuanjin,LAN Chaozhen,CHEN Xi. Influencing factors and analysis of calculation of earthwork accuracy by UAV-DEM method[J]. Beijing Surveying and Mapping,2019,33(9):1034 − 1037. (in Chinese with English abstract)]

    ZI Shuanjin, LAN Chaozhen, CHEN Xi. Influencing factors and analysis of calculation of earthwork accuracy by UAV-DEM method[J]. Beijing Surveying and Mapping, 2019, 339): 10341037. (in Chinese with English abstract)

    [32] 李博,徐敬海. 无人机倾斜摄影测量土方计算及精度评定[J]. 测绘通报,2020(2):102 − 106. [LI Bo,XU Jinghai. UAV tilt photogrammetry earthwork calculation and accuracy evaluation[J]. Bulletin of Surveying and Mapping,2020(2):102 − 106. (in Chinese with English abstract)]

    LI Bo, XU Jinghai. UAV tilt photogrammetry earthwork calculation and accuracy evaluation[J]. Bulletin of Surveying and Mapping, 20202): 102106. (in Chinese with English abstract)

    [33] 朱连辉,田毅,王薇,等. UAV-DEM支持下的土方快速测算方法[J]. 测绘通报,2017(6):122 − 124. [ZHU Lianhui,TIAN Yi,WANG Wei,et al. Rapid earthwork calculation method supported by UAV-DEM[J]. Bulletin of Surveying and Mapping,2017(6):122 − 124. (in Chinese with English abstract)]

    ZHU Lianhui, TIAN Yi, WANG Wei, et al. Rapid earthwork calculation method supported by UAV-DEM[J]. Bulletin of Surveying and Mapping, 20176): 122124. (in Chinese with English abstract)

    [34] 太浩宇,夏永华. 多种测绘技术对同一土方量算方法研究及精度分析[J]. 城市勘测,2022(2):110 − 114. [TAI Haoyu,XIA Yonghua. Research on the same earthwork measurement method and accuracy analysis by multiple surveying and mapping technologies[J]. Urban Geotechnical Investigation & Surveying,2022(2):110 − 114. (in Chinese with English abstract)]

    TAI Haoyu, XIA Yonghua. Research on the same earthwork measurement method and accuracy analysis by multiple surveying and mapping technologies[J]. Urban Geotechnical Investigation & Surveying, 20222): 110114. (in Chinese with English abstract)

    [35] 盛海泉,覃婕,周吕,等. 无人机倾斜摄影测量与GNSS土方量测算精度对比分析[J]. 测绘通报,2022(增刊2):310 − 315. [SHENG Haiquan,QIN Jie,ZHOU L,et al. Comparative analysis of UAV oblique photogrammetry and GNSS earthwork measurement accuracy[J]. Bulletin of Surveying and Mapping,2022(Sup 2):310 − 315. (in Chinese with English abstract)]

    SHENG Haiquan, QIN Jie, ZHOU L, et al. Comparative analysis of UAV oblique photogrammetry and GNSS earthwork measurement accuracy[J]. Bulletin of Surveying and Mapping, 2022(Sup 2): 310 − 315. (in Chinese with English abstract)

  • 期刊类型引用(3)

    1. 张家铮,朱大明,王德智,戴祚敏. 金沙江中游水电站对植被时空变化的影响. 水土保持学报. 2025(01): 326-337 . 百度学术
    2. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 百度学术
    3. 余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价. 中国地质灾害与防治学报. 2024(06): 33-43 . 百度学术

    其他类型引用(0)

图(10)  /  表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  42
  • PDF下载量:  78
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-04-24
  • 录用日期:  2023-05-16
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回