ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

基于离散元的采空诱发山体滑塌失稳模式研究

马杰, 何开明, 常文斌, 邢爱国

马杰,何开明,常文斌,等. 基于离散元的采空诱发山体滑塌失稳模式研究[J]. 水文地质工程地质,2024,51(3): 171-179. DOI: 10.16030/j.cnki.issn.1000-3665.202210057
引用本文: 马杰,何开明,常文斌,等. 基于离散元的采空诱发山体滑塌失稳模式研究[J]. 水文地质工程地质,2024,51(3): 171-179. DOI: 10.16030/j.cnki.issn.1000-3665.202210057
MA Jie, HE Kaiming, CHANG Wenbin, et al. Study on the failure pattern of mining-induced landslides based on discrete elements[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 171-179. DOI: 10.16030/j.cnki.issn.1000-3665.202210057
Citation: MA Jie, HE Kaiming, CHANG Wenbin, et al. Study on the failure pattern of mining-induced landslides based on discrete elements[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 171-179. DOI: 10.16030/j.cnki.issn.1000-3665.202210057

基于离散元的采空诱发山体滑塌失稳模式研究

基金项目: 国家重点研发计划课题(2018YFC1504804)
详细信息
    作者简介:

    马杰(1988—),男,高级工程师,主要从事地下空间开发研究工作。E-mail:wanfeng1004@126.com

    通讯作者:

    常文斌(1995—),男,博士研究生,主要从事滑坡灾害研究工作。E-mail:changwenbin@sjtu.edu.cn

  • 中图分类号: TU443

Study on the failure pattern of mining-induced landslides based on discrete elements

  • 摘要:

    采空诱发的山体崩滑是煤矿山区常见的一类灾害形式,为明确采动作用下采空山体的变形失稳模式,对典型采空控制型滑坡进行现场调查,采用颗粒离散元方法模拟单层采空与三层采空两种工况下反倾煤层斜坡的失稳破坏过程,并对斜坡变形过程中裂纹扩展及岩体破碎特征进行分析。结果表明:(1) 单层开挖工况中,煤层开挖后顶板区域会产生拱圈型的变形带并随之演化为冒落岩体,多层开挖的采空区间隔岩体则会发生弯曲状沉陷垮落,形成大面积的岩体破碎;(2)不同开挖工况下,冒落带形成及应力重分布初期,斜坡内部裂纹演化及岩体破碎皆较为缓慢,顶板冒落及岩层弯曲断裂阶段为岩体断裂破碎的关键阶段;(3) 反倾煤层采空控制型山体失稳模式主要为煤层采空-顶板拱圈状冒落-内部岩层弯曲沉陷-后缘拉裂破碎-坡脚锁固区失效-破碎岩体浅层滑动。研究结果为采空控制型斜坡失稳机理分析提供了新的方向,为矿区滑坡灾害的防治提供了科学依据。

    Abstract:

    Mining-induced landslides are a common form of disaster in the mountainous areas of coal mines. To clarify the deformation and failure patterns of such slopes under the mining action, the particle discrete element method was employed to simulate the destabilization damage process of the anticline coal seam slope under two conditions, single-seam mining and three-seam mining, and analyze the characteristics of crack expansion and rock fragmentation during slope deformation, based on the field investigation of typical mining-controlled landslides. The results show that: 1) In a single-seam condition, an arch-ring type deformation zone is created in the roof area after the coal seam is excavated and evolves into a fallen rock body; while the rock body at the interval of multi-layer excavation will be bent sink collapse, forming a large area of rock fragmentation. 2) Under different excavation conditions, the internal crack evolution and rock fragmentation of the slope are slow at the beginning of the formation of the fall zone and stress redistribution. The stage of roof emergence and rock bending fracture is the main stage of rock fracture and fragmentation. 3) The anti-inclined coal seam mining-controlled mountain failure pattern is mainly manifested as follows: Coal seam mining →Arch-loop-like fall of the roof →Bending and sinking of the internal rock →Pulling and breaking of the trailing edge →Failure of the locking zone at the foot of the slope → Shallow sliding of the fragmented rock. This study provides a new direction for the analysis of the destabilization mechanism of mining-controlled slopes and scientific guidance for the prevention and control of landslide hazards in mining areas.

  • 当前,伴随我国对矿物能源需求的日益增加,加之开采方式的不合理性与次生灾害研究工作的滞后性,大规模采矿活动诱发的山体滑塌失稳事件时有发生[13]。采空结构区上部岩体塌陷(冒顶),会导致坡面附近原有裂缝扩展或产生新的裂缝,进而在坡面特定部位逐步形成危岩体[46]。相比于单一煤层开采,多层开挖或近距离煤层开采将更容易引发矿山的失稳问题[79]。相关的研究显示,上层煤层的开采会导致围岩内部应力先增高再逐渐降低,最后达到稳定,这意味着预留煤柱及下覆底板将产生严重的应力集中。当采空层预留煤柱设置较少时,采空区煤柱及围岩体将产生严重的应力损伤甚至变形破坏[1012]。在这种情况下,若缺乏科学的治理或及时的控制措施,当采空结构发生持续变形时,危岩体边界结构面会进一步扩展,进而导致山体发生滑塌破坏[1315]。历史灾害案例的调查结果显示,我国的煤层采空诱发山体滑塌灾害主要集中于西南岩溶山区[1618]。这些区域由于岩溶作用强烈,导致区域内的岩体相对破碎,整体稳定性差,当下覆地层存在大规模的煤层采空区时,上覆山体将会不断变形并产生滑塌[1921]。例如,2004年12月3日凌晨3时40分,贵州省纳雍县鬃岭镇佐家营村岩脚组孙晓煤矿突发山体崩塌,崩塌岩体冲击坡脚堆积体形成高速碎屑流,造成44人死亡[22]。纳雍县鬃岭镇为产煤区,鬃岭高陡边坡下有13家煤矿,中岭山体自2003年开始山顶出现裂缝,山岭东南临鬃岭镇侧已发生了2次较大规模崩塌。2006年5月18日,贵州省都匀市马达岭青山煤矿采空区发生滑坡,滑体前缘高程1440 m,后缘高程约1555 m,高差115 m,滑坡平面面积3×104 m2,体积约190×104 m3,造成了大面积的农田及道路受损[2324]。采空区控制的地表坡体变形特征的复杂性及其引发崩滑灾害的巨大危害性,使得研究采空诱发山体的滑塌失稳模式对相应的灾害预防工作具有重要的指导意义。

    当下对于采空诱发型山体滑塌的研究方法主要包括现场调查、物理模型试验、数值分析等。物理模型试验能够较真实直观地反映和模拟不同诱发条件下斜坡变形的破坏机制与过程,已经成为一种主要的研究手段。赵建军等[2527]基于室内相似模型试验,模拟了两层开采条件下采动斜坡的变形过程,并分析了地质力学破坏模式,将该类斜坡变形破坏的地质力学模式分为:弯曲–拉裂、塑流–拉裂、蠕滑–拉裂3个阶段。同时,伴随计算机技术的发展,数值模拟技术在边坡动力稳定性分析中逐渐取得了广泛应用。王玉川等[2829]基于有限元数值方法研究了都匀马达岭矿区分布开挖情况下山体的位移、应力及应变响应,结果表明:采空区上覆斜坡应力重分布导致坡体内产生较大范围拉应力变动,伴随拉裂作用逐渐向下贯通,最大剪应变由软岩区贯通至地表。蔡国军等[30]运用离散元软件3DEC,模拟动力条件下斜坡的变形失稳过程,分析斜坡表面的动力响应特征,研究不同地震波输入工况条件下坡体表面动力响应差异。Cui等[31]基于对2017年贵州纳雍采空诱发的崩塌进行了现场调查,结果表明当从下至上开采边坡下的煤层时,采空区上方的塌陷带、断裂带和变形带逐渐扩大,在降雨的促进作用下最终导致崩塌。Fathi等[32]对澳大利亚Nattai North煤矿诱发的滑坡进行了调查,并采用不连续的数值模拟分析了滑坡的运动机制,结果表明,采矿引起的应力导致坡脚附近的软弱地层发生剪切和压缩破坏。基底材料的破坏以及上覆层状岩石的坍塌,促进了斜坡的失稳。受限于动力条件下土体裂纹扩展模拟的复杂性,当前采空区诱发型山体滑塌过程中岩体微观裂纹扩展模式及破碎演化特征研究存在较高的难度,且鲜有报道。因此,对于此类斜坡动力失稳模式的认识仍有待深化。

    近年来,基于离散元法的颗粒流程序 PFC展现了在模拟岩土微观裂纹及宏观大变形破坏等方面的诸多优势[3335]。由于PFC只需定义颗粒与颗粒之间的黏结性质,而不用定义整体的本构关系,避免了宏观本构关系的预先假定[36],当前已逐渐成为国内外岩土灾害研究领域的有力手段。鉴于颗粒流模拟的优点,本研究在对已有典型采空诱发山体失稳案例调查的基础上,在PFC中建立了相关的地质模型,研究了单层采动及多层采动情况下山体的变形破坏特征,分析了岩层顶板及内部岩体的垮落模式。研究结果对采空区的滑坡灾害防治提供了重要的理论依据。

    马达岭滑坡位于贵州省黔南州都匀市毛尖镇富溪村,所在区域属溶蚀侵蚀低中山地形地貌。研究区域内发育的斜坡为典型的缓倾斜横向斜坡。岩层为灰、浅灰色薄至厚层状细粒石英砂岩,内部夹杂暗灰色薄至中厚层状泥质粉砂岩、黑色炭质泥岩、含炭泥质粉砂岩等。区域内岩层整体近南北走向,呈软硬互层状结构(图1)。根据节理统计结果, 区域岩体内主要发育两组近垂直的节理,产状分别为120°∠82°,330°∠87°。其中,斜坡距坡顶200 m深度范围内发育3层可采煤层,厚度1~2 m,产状280°∠10°~12°。

    图  1  马达岭滑坡滑源区
    Figure  1.  Source area of the Madaling landslide

    马达岭滑坡源区位于山脊的东南侧,由于煤矿开采年代较久,开采后没有及时治理,任其自由垮落,致使采空区顶板变形、垮塌。现场勘察发现,暴雨导致地表水沿张开的裂缝、裂隙渗入采空区,导致裂缝宽度不断扩大,进一步弱化底部未采煤层或炭质页岩的力学性能,最终形成贯通的滑面。该案例中,滑坡滑体前缘高程1440 m,后缘高程约1555 m,高差115 m。滑坡后壁陡立,前缘坡度25°。滑坡主滑方向南偏西8°,平面面积3×104 m2,滑面深度约40~60 m,体积约为190×104 m3

    PFC中,宏观物理力学参数与颗粒的细观参数一般不能直接联系,但两者可以通过相应的数值模拟实验来建立关联。采用PFC内置参数标定程序来模拟室内单轴压缩实验,对模型材料颗粒的细观参数进行标定。由于现场调查过程中,不同斜坡煤层顶板和底板的岩性存在差异,鉴于研究区多发育为层状的砂岩,本研究对数值模型进行了简化,仅考虑岩层为砂岩情况下工况。研究过程中,基于马达岭滑坡现场采集的砂岩及煤的试样,通过室内试验进行测定,其强度特性的试验结果如表1所示。

    表  1  岩体强度特性
    Table  1.  Rock strength properties
    试样 弹性模量/MPa 泊松比 黏聚力/MPa 内摩擦角/(°)
    砂岩 15000 0.19 2 42
    500 0.32 0.43 36
    下载: 导出CSV 
    | 显示表格

    基于离散元单轴压缩模型的多次试算结果,将获取试样强度参数并与表1中结果进行对比,最后基于相关处理方法对颗粒的粒径及参数进行相应的转换[3738],获得的模型需要的细观参数如表2所示。计算中颗粒之间的接触可以选用不同作用定律的接触模型来施加。平行黏结模型是离散元中一种较为常用的接触模型,该黏结可以在不同实体之间传递力和力矩,这种力和力矩作用在两个接触体上,与胶结材料接触周围的最大正应力和剪应力有关,因此平行黏结模型适合于本文研究的具有黏结性质的砂岩及煤。

    表  2  PFC模型参数
    Table  2.  Parameters of PFC model
    参数名称 砂岩
    颗粒密度/(kg·m−3 2400 2000
    颗粒粒径/m 0.15~0.45 0.15~0.45
    摩擦系数 0.37 0.33
    颗粒法向刚度/(N·m−1 1.6e7 1.2e7
    颗粒切向刚度/(N·m−1 1.6e7 1.2e7
    胶结法向刚度/(N·m−3 5.0e5 4.0e7
    胶结切向刚度/(N·m−3 4.8e5 4.0e7
    下载: 导出CSV 
    | 显示表格

    基于对马达岭滑坡及西南矿区多处案例的调查结果,结合该地区煤层发育的层理特征,在研究过程中对斜坡模型进行了概化。本研究中,数值模型不考虑复杂的地层岩性及降雨工况。同时,为清晰展示采空诱发山体失稳的过程,在离散元程序中建立了如图2所示的赋存煤层二维斜坡开挖模型。模型坡角参照该区域常见的高角度边坡,设置为 57°,模型长 180 m,高 85 m。模型的下部及左右两侧设置为固定边界,其余设置为自由边界。根据上述标定方法获得的参数,在离散元中进行颗粒填充,对不同岩层赋予对应参数。3层不同煤层(M1—M3)设置于斜坡中部,倾角设置为6°。模拟过程中,结合实际开采情况,对煤层的中部区域进行开挖,该过程在PFC中通过删除局部颗粒来实现。完成斜坡模型制备后,使模型在静力作用下再次平衡,完成本研究所需的最终斜坡模型,模型共计34660个颗粒。

    图  2  煤层开挖斜坡模型
    Figure  2.  Slope model of coal seam excavation

    为了分析不同开挖情况下山体的失稳破坏情况,对两种开挖情形分别进行探讨,第一种工况为单煤层开挖情景,第二种工况为三组煤层均开挖的情景。本模型中忽略了实际情况下分级逐段开挖的细节,直接考虑所在煤层开挖完成后山体的变形特征。同时在本研究中,不考虑预留煤柱及相关支护结构的影响。颗粒离散元中,对破碎体(fragment)的定义是具有连接属性的一系列颗粒、簇或者墙体的集合体。在下述分析中,我们采用PFC中fragment这一元素对不同时刻斜坡的破坏情况进行讨论,同时本模型中坡体内部红色线条代表岩体间产生的裂纹。由于在离散元方法中可以直观的观测到破坏块体的位移及运动方向,因此舍去对滑体位移场的分析。

    图3为单层开挖情况下不同计算时步时山体的变形失稳情况,在该工况中,删除了图2内中间一层的可采煤层M2。可以发现1000时步时,采空区顶板上部出现了明显的拱圈状变形,在采空区两端及拱圈附近均有大量的裂纹产生。同时,坡脚处的岩体也存在挤压破碎的现象。2500时步,顶板上部的变形拱圈不断向下沉陷,与上部岩体分离,形成大规模的冒落块体。此时,顶部附近的裂纹不断向上部扩展,坡脚处的压剪作用更加明显。5000时步,煤层顶板完全冒落,在地表形成了较多的裂缝,并使得顶板以上的岩体产生了不同规模的断裂破碎,斜坡中下部及坡脚处的压剪鼓胀现象进一步演化。 10000时步,伴随失稳破碎体的不断沉陷及垮落,斜坡顶部后缘开始出现新的拉裂缝。从模拟结果中可以得知,在初始变形过程中上部失稳垮落岩体趋于更加破碎。20000~40000时步,斜坡坡脚处的鼓胀区完全失稳,锁固作用消失,大量的破碎岩体开始沿坡表向下滑落,形成山体崩滑灾害。在本模型中,由于采空煤层设置为反倾,因此顶板冒落后绝大部分的失稳岩体塌陷堆积于斜坡中上部,仅坡表的破碎断裂岩体演化为山体崩滑灾害的物源,该现象于实际调查结果相符。

    图  3  单层开挖斜坡失稳过程
    Figure  3.  Slope destabilization process of single layer excavation

    为分析极端情况下采空诱发型山体崩滑的失稳模式,在多层开挖工况中删除了三组煤层的开挖部分M1−M3,用于对比同等情况下山体的破坏模式(图4)。整体上,多层开挖时,坡体的破坏明显较单层开挖时严重。1000时步,最上层M1顶板依旧出现了对应的拱圈型冒落带,坡脚处为压缩剪切区,同时M1−M2及M2−M3之间的出现了大量的裂纹,裂纹几乎沿水平方向展布。2000时步,岩体内部裂纹持续演化,采空区内部的一段开始出现明显的拉张断裂区,同时断裂区域内裂纹与小型的破碎块更加密集,底部M3处的采空区已被上部沉陷垮落岩层逐渐充填。3500时步,由于M1上部拱圈状冒落带自重较小,此部分岩体没有在该过程中单独垮落,而是伴随采空区左端岩体的完全拉裂,整个采空区区域岩体全部向下沉陷垮落。此时中下部区域M2—M3岩体的断裂破碎较为严重,M2上部岩体表现为弧形弯曲状的沉陷垮塌。在这一过程中,采空区控制的坡体内部应力重分布作用导致坡脚处需承受更多的挤压应力,因此在本模型中,坡脚处成为斜坡破坏的初始点及关键点,同时也形成了局部的剪切滑动面。

    图  4  多层开挖斜坡失稳过程
    Figure  4.  Slope destabilization process of multi-layer excavation

    4500−5500时步,失稳的岩体不断向下垮落沉陷,垮落的岩体充填了采空区,在该过程中沉陷冒落岩体部分产生弯曲断裂,部分产生挤压撞击破碎,失稳破碎的岩体完全垮落于采空区之上,整个斜坡模型中破碎最严重的区域位于采空区一端的拉裂区及斜坡表面中下部的挤压变形区。后续,斜坡上部坡肩区域开始出现新的拉裂缝,坡表的破碎岩体不断向下滑落。值得注意的是,多层煤矿开采情况下,山体的变形失稳速率及破碎情况是远高于单层开挖时的结果的。为了分析这一情况,模拟过程中记录了两种工况下斜坡内部裂纹及破碎体数量变化情况。一般而言,岩体内裂纹数目的变化可以较好地表征岩体的内部微观变形状态。

    图5为数值模型记录的10000计算时步内岩体内裂纹数目及破碎岩体数目变化情况。可以发现单层开挖与三层开挖在山体失稳破坏前期(小于4000时步)的整体裂纹数目相类似,破碎体数目也基本保持一致,多层开挖工况下的岩体裂纹及破碎体数目仅略多于单层开挖工况。坡体内的裂纹及破碎在初始阶段缓慢增长(小于2000时步),该阶段为煤层顶板冒落之前的缓慢沉陷变形阶段。4000时步之后,三层开挖工况下,斜坡内岩体裂纹及破碎体数目增长速率明显高于单层开挖工况,这是由于三层开挖工况中M1与M2煤层采空区的顶板不断发生弯曲沉陷及断裂破碎造成的。同时,三层开挖工况下,大量沉陷的上覆岩体的超强自重也对斜坡底部岩层产生了一定程度的撞击与挤压,导致M3采空区下部岩体内也出现了对应的拱圈状裂纹应变带。最终单层开挖及三层开挖工况下斜坡内部的裂纹数目分别约为6000与10000,破碎体数目分别约为300与540。

    图  5  岩体内部裂纹及破碎体数目
    Figure  5.  Number of fractures and fragments inside the slope

    基于单层开挖及多层开挖情况下山体变形失稳过程的模拟分析结果,列出了采空控制型山体失稳过程中的几个关键破坏区域,分别为压剪破碎区、塌陷冒落区、拉裂破碎区及浅层滑动区,如图6(a)所示。多数情况下,坡脚区域为斜坡的应力集中区,当斜坡内部煤层采空后,上层煤层顶板会由于应力重新分布,形成拱圈型变形区并随后发生顶板冒落。中部采空区域的岩层会因其自重及缺乏支撑而发生弯曲沉陷并形成断裂破碎。在一过程中,岩层弯曲沉陷及冒落岩体在坡体内部的一端会与原生岩体不断产生拉裂作用并与之分离,而在斜坡顶部坡肩也会陆续出现大量的拉张裂缝及岩体破碎,该过程为煤层采空导致的斜坡表层的形变及破坏。

    图  6  采空诱发型斜坡失稳模式
    Figure  6.  Mining-induced slope failure pattern

    在整个过程中,采空区的冒落塌陷及斜坡上部的拉裂破坏均会加剧坡脚处的鼓胀压剪破坏,当挤压应力超过岩体强度,坡脚处的锁固作用消失,破碎岩体开始沿表层滑动。需要注意的是,在反倾的岩层(煤层)中,由于岩层的产状特性,大部分的塌陷岩体会停滞于斜坡内的反倾岩层面上,未能发生大规模滑动。如图6(b)所示,在反倾煤层采空模型中,采空诱发的山体崩滑体的滑动面较浅,表现为表层破碎体的一种浅层滑动,与本文研究模型的马达岭滑坡的实际滑动面分布较为一致,如图6(c)所示。但在实际情况中,当滑源区所处位置高程较高时,崩滑体有着优势的滑动路径,此类崩滑灾害依旧会造成严重的危害且影响范围极大。

    基于上述分析,将反倾煤层采空诱发型山体失稳的破坏模式总结为:煤层采空-顶板拱圈状冒落-内部岩层弯曲沉陷-后缘拉裂破碎-坡脚锁固区失效-破碎岩体浅层滑动。

    (1)单层煤层开挖后顶板区域会产生拱圈型的变形带并随之演化为冒落岩体;多层采空工况中,采空区间隔岩体会发生弯曲状沉陷垮落,形成大面积的岩体破碎。

    (2)单层开挖及多层开挖工况下,初始阶段斜坡内部裂纹演化及岩体破碎皆较为缓慢,顶板冒落及岩层弯曲断裂阶段为岩体变形破碎的关键阶段,后续表层散落岩体滑动阶段基本无破碎现象产生。由于岩层的反倾特性,斜坡失稳后整体上表现为浅层的滑动,该发现与实际中马达岭滑坡的调查结果类似。

    (3)反倾煤层采空诱发型山体失稳的破坏模式表现为:煤层采空-顶板拱圈状冒落-内部岩层弯曲沉陷-后缘拉裂破碎-坡脚锁固区失效-破碎岩体浅层滑动。整体上顶板的冒落与坡脚处岩体的剪切破坏是滑坡形成的关键。

  • 图  1   马达岭滑坡滑源区

    Figure  1.   Source area of the Madaling landslide

    图  2   煤层开挖斜坡模型

    Figure  2.   Slope model of coal seam excavation

    图  3   单层开挖斜坡失稳过程

    Figure  3.   Slope destabilization process of single layer excavation

    图  4   多层开挖斜坡失稳过程

    Figure  4.   Slope destabilization process of multi-layer excavation

    图  5   岩体内部裂纹及破碎体数目

    Figure  5.   Number of fractures and fragments inside the slope

    图  6   采空诱发型斜坡失稳模式

    Figure  6.   Mining-induced slope failure pattern

    表  1   岩体强度特性

    Table  1   Rock strength properties

    试样 弹性模量/MPa 泊松比 黏聚力/MPa 内摩擦角/(°)
    砂岩 15000 0.19 2 42
    500 0.32 0.43 36
    下载: 导出CSV

    表  2   PFC模型参数

    Table  2   Parameters of PFC model

    参数名称 砂岩
    颗粒密度/(kg·m−3 2400 2000
    颗粒粒径/m 0.15~0.45 0.15~0.45
    摩擦系数 0.37 0.33
    颗粒法向刚度/(N·m−1 1.6e7 1.2e7
    颗粒切向刚度/(N·m−1 1.6e7 1.2e7
    胶结法向刚度/(N·m−3 5.0e5 4.0e7
    胶结切向刚度/(N·m−3 4.8e5 4.0e7
    下载: 导出CSV
  • [1] 龙建辉,朱清华,倪向龙. 地下资源开采诱发的一种滑坡模式研究——以采空触发滑坡为例[J]. 煤炭科学技术,2021,49(8):181 − 187. [LONG Jianhui,ZHU Qinghua,NI Xianglong. Study on landslide model induced by underground resources exploitation:Taking mining-triggered landslide as an example[J]. Coal Science and Technology,2021,49(8):181 − 187. (in Chinese with English abstract)]

    LONG Jianhui, ZHU Qinghua, NI Xianglong. Study on landslide model induced by underground resources exploitation: Taking mining-triggered landslide as an example[J]. Coal Science and Technology, 2021, 49(8): 181 − 187. (in Chinese with English abstract)

    [2] 高杨,贺凯,李壮,等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang,HE Kai,LI Zhuang,et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract)]

    GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 14 − 23. (in Chinese with English abstract)

    [3] 徐春. 发耳矿山体赋存煤层群开采坡体失稳规律及其控制研究[D]. 徐州:中国矿业大学,2019. [XU Chun. Study on the regularity and control of slope instability by mountain coals mining in faer mine[D]. Xuzhou:China University of Mining and Technology,2019. (in Chinese with English abstract)]

    XU Chun. Study on the regularity and control of slope instability by mountain coals mining in faer mine[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese with English abstract)

    [4] 代张音. 采动顺层岩质斜坡变形破坏机理与相似模拟试验研究[D]. 重庆:重庆大学,2019. [DAI Zhangyin. Study on deformation and failure mechanism and similar simulation test of consequent bedding rock slope after underground mining[D]. Chongqing:Chongqing University,2019. (in Chinese with English abstract)]

    DAI Zhangyin. Study on deformation and failure mechanism and similar simulation test of consequent bedding rock slope after underground mining[D]. Chongqing: Chongqing University, 2019. (in Chinese with English abstract)

    [5] 陈学军,余思喆,宋宇,等. 采矿爆破振动波在岩溶区的传播影响因素分析[J]. 地质力学学报,2018,24(5):692 − 698. [CHEN Xuejun,YU Sizhe,SONG Yu,et al. Analysis of factors influencing the propagation of mining blasting vibration wave in Karst area[J]. Journal of Geomechanics,2018,24(5):692 − 698. (in Chinese with English abstract)]

    CHEN Xuejun, YU Sizhe, SONG Yu, et al. Analysis of factors influencing the propagation of mining blasting vibration wave in Karst area[J]. Journal of Geomechanics, 2018, 24(5): 692 − 698. (in Chinese with English abstract)

    [6] 铁永波,徐伟,向炳霖,等. 西南地区地质灾害风险“点面双控”体系构建与思考[J]. 中国地质灾害与防治学报,2022,33(3):106 − 113. [TIE Yongbo,XU Wei,XIANG Binglin,et al. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):106 − 113. (in Chinese with English abstract)]

    TIE Yongbo, XU Wei, XIANG Binglin, et al. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 106 − 113. (in Chinese with English abstract)

    [7] 解明礼. 矿山崩滑地质灾害风险评价与管理研究——以贵州省米萝煤矿后山变形体为例[D]. 成都:成都理工大学,2018. [XIE Mingli. Risk assessment and management of landslide geohazards induced by underground mining[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]

    XIE Mingli. Risk assessment and management of landslide geohazards induced by underground mining[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    [8] 解明礼,巨能攀,刘蕴琨,等. 崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2021,48(5):184 − 192. [XIE Mingli,JU Nengpan,LIU Yunkun,et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology,2021,48(5):184 − 192. (in Chinese with English abstract)]

    XIE Mingli, JU Nengpan, LIU Yunkun, et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 184 − 192. (in Chinese with English abstract)

    [9] 吴季寰,张春山,孟华君,等. 抚顺西露天矿区滑坡易发性评价与时空特征分析[J]. 地质力学学报,2021,27(3):409 − 417. [WU Jihuan,ZHANG Chunshan,MENG Huajun,et al. Temporal and spatial characteristics of landslide susceptibility in the West open-pit mining area,Fushun,China[J]. Journal of Geomechanics,2021,27(3):409 − 417. (in Chinese with English abstract)]

    WU Jihuan, ZHANG Chunshan, MENG Huajun, et al. Temporal and spatial characteristics of landslide susceptibility in the West open-pit mining area, Fushun, China[J]. Journal of Geomechanics, 2021, 27(3): 409 − 417. (in Chinese with English abstract)

    [10] 朱怡飞,姚鑫,姚磊华,等. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报,2022,28(2):268 − 280. [ZHU Yifei,YAO Xin,YAO Leihua,et al. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics,2022,28(2):268 − 280. (in Chinese with English abstract)]

    ZHU Yifei, YAO Xin, YAO Leihua, et al. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics, 2022, 28(2): 268 − 280. (in Chinese with English abstract)

    [11] 王衍汇,倪万魁,李征征,等. 工程开挖引起的黄土边坡变形破坏机理分析[J]. 西北地质,2015,48(4):210 − 217. [WANG Yanhui,NI Wankui,LI Zhengzheng,et al. Study on the deformation and failure mechanism of loess slope caused by engineering excavation[J]. Northwestern Geology,2015,48(4):210 − 217. (in Chinese with English abstract)]

    WANG Yanhui, NI Wankui, LI Zhengzheng, et al. Study on the deformation and failure mechanism of loess slope caused by engineering excavation[J]. Northwestern Geology, 2015, 48(4): 210 − 217. (in Chinese with English abstract)

    [12] 袁素凤,王文生,曹佰迪,等. 庞庄煤矿老采区场地稳定性评价及环境影响分析[J]. 西北地质,2016,49(2):213 − 219. [YUAN Sufeng,WANG Wensheng,CAO Baidi,et al. Site stability evaluation and environmental impact analysis on the working face of old coal mine in Pangzhuang[J]. Northwestern Geology,2016,49(2):213 − 219. (in Chinese with English abstract)]

    YUAN Sufeng, WANG Wensheng, CAO Baidi, et al. Site stability evaluation and environmental impact analysis on the working face of old coal mine in Pangzhuang[J]. Northwestern Geology, 2016, 49(2): 213 − 219. (in Chinese with English abstract)

    [13] 滕超,王雷,刘宝华,等. 辽宁抚顺西露天矿南帮滑坡应力变化规律及影响因素分析[J]. 中国地质灾害与防治学报,2018,29(2):35 − 42. [TENG Chao,WANG Lei,LIU Baohua,et al. Stress variation within the southern landslide of Fushun West Open-Pit and its influencing factors[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):35 − 42. (in Chinese with English abstract)]

    TENG Chao, WANG Lei, LIU Baohua, et al. Stress variation within the southern landslide of Fushun West Open-Pit and its influencing factors[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2): 35 − 42. (in Chinese with English abstract)

    [14] 王红杰,卞孝东,邓晓伟,等. 基于模糊数学理论的煤矿地下空间开发利用适宜性评价——以白源煤矿为例[J]. 西北地质,2021,54(4):156 − 170. [WANG Hongjie,BIAN Xiaodong,DENG Xiaowei,et al. Suitability evaluation of underground space development and utilization of coal mine based on fuzzy mathematics theory—taking baiyuan coal mine as an example[J]. Northwestern Geology,2021,54(4):156 − 170. (in Chinese with English abstract)]

    WANG Hongjie, BIAN Xiaodong, DENG Xiaowei, et al. Suitability evaluation of underground space development and utilization of coal mine based on fuzzy mathematics theory—taking baiyuan coal mine as an example[J]. Northwestern Geology, 2021, 54(4): 156 − 170. (in Chinese with English abstract)

    [15] 薛强,张茂省,毕俊擘,等. 开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J]. 西北地质,2019,52(2):158 − 166. [XUE Qiang,ZHANG Maosheng,BI Junbo,et al. Exfoliation erosion and deformation failure of excavated loess slope[J]. Northwestern Geology,2019,52(2):158 − 166. (in Chinese with English abstract)]

    XUE Qiang, ZHANG Maosheng, BI Junbo, et al. Exfoliation erosion and deformation failure of excavated loess slope[J]. Northwestern Geology, 2019, 52(2): 158 − 166. (in Chinese with English abstract)

    [16] 周泽文,吕义清. 煤矿开采条件下滑坡的变形机理[J]. 煤矿安全,2016,47(11):45 − 48. [ZHOU Zewen,LYU Yiqing. Deformation mechanism of landslide under the condition of coal mining[J]. Safety in Coal Mines,2016,47(11):45 − 48. (in Chinese with English abstract)]

    ZHOU Zewen, LYU Yiqing. Deformation mechanism of landslide under the condition of coal mining[J]. Safety in Coal Mines, 2016, 47(11): 45 − 48. (in Chinese with English abstract)

    [17] 杜玉龙,方维萱,柳玉龙. 东川铜矿区泥石流特征与成因分析[J]. 西北地质,2010,43(1):130 − 136. [DU Yulong,FANG Weixuan,LIU Yulong. Characteristic and cause of debris flow in Dongchuan copper mining area[J]. Northwestern Geology,2010,43(1):130 − 136. (in Chinese with English abstract)]

    DU Yulong, FANG Weixuan, LIU Yulong. Characteristic and cause of debris flow in Dongchuan copper mining area[J]. Northwestern Geology, 2010, 43(1): 130 − 136. (in Chinese with English abstract)

    [18] 肖锐铧,陈红旗,冷洋洋,等. 贵州纳雍“8·28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报,2018,29(1):3 − 9. [XIAO Ruihua,CHEN Hongqi,LENG Yangyang,et al. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2018,29(1):3 − 9. (in Chinese with English abstract)]

    XIAO Ruihua, CHEN Hongqi, LENG Yangyang, et al. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(1): 3 − 9. (in Chinese with English abstract)

    [19] 李念春,张学强,冯泉霖,等. 基于“承载基础-承载现状-承载潜力”模型的山东省地质环境承载力评价[J]. 西北地质,2021,54(1):222 − 231. [LI Nianchun,ZHANG Xueqiang,FENG Quanlin,et al. Evaluation of bearing capacity of geological environment in Shandong Province based on “bearing foundation-bearing status-bearing potential” model[J]. Northwestern Geology,2021,54(1):222 − 231. (in Chinese with English abstract)]

    LI Nianchun, ZHANG Xueqiang, FENG Quanlin, et al. Evaluation of bearing capacity of geological environment in Shandong Province based on “bearing foundation-bearing status-bearing potential” model[J]. Northwestern Geology, 2021, 54(1): 222 − 231. (in Chinese with English abstract)

    [20] 易连兴. 西南岩溶山区复合水动力场滑坡影响模式——以关岭县大寨滑坡为例[J]. 水文地质工程地质,2020,47(4):43 − 50. [YI Lianxing. Impact model of landslide with complex hydrodynamic field in Karst Mountain areas of southwest China:A case study of the Dazhai landslide in Guanling County[J]. Hydrogeology & Engineering Geology,2020,47(4):43 − 50. (in Chinese with English abstract)]

    YI Lianxing. Impact model of landslide with complex hydrodynamic field in Karst Mountain areas of southwest China: A case study of the Dazhai landslide in Guanling County[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 43 − 50. (in Chinese with English abstract)

    [21] 钟祖良,高国富,刘新荣,等. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质,2020,47(4):97 − 106. [ZHONG Zuliang,GAO Guofu,LIU Xinrong,et al. Deformation response characteristics of Karst Mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology,2020,47(4):97 − 106. (in Chinese with English abstract)]

    ZHONG Zuliang, GAO Guofu, LIU Xinrong, et al. Deformation response characteristics of Karst Mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 97 − 106. (in Chinese with English abstract)

    [22] 吴彩燕,乔建平,王成华,等. 贵州省纳雍县鬃岭镇“12·3”大型崩塌灾害分析[J]. 水土保持研究,2006,13(6):100 − 102. [WU Caiyan,QIAO Jianping,WANG Chenghua,et al. Analysis on “12·3” super large-scaled landslide in zongling,Nayong,Guizhou[J]. Research of Soil and Water Conservation,2006,13(6):100 − 102. (in Chinese with English abstract)]

    WU Caiyan, QIAO Jianping, WANG Chenghua, et al. Analysis on “12·3” super large-scaled landslide in zongling, Nayong, Guizhou[J]. Research of Soil and Water Conservation, 2006, 13(6): 100 − 102. (in Chinese with English abstract)

    [23] 郭将,曾超,谢明宇,等. 贵州省马达岭滑坡崩滑形成机制及堆积体稳定性分析[J]. 安全与环境工程,2018,25(2):48 − 54. [GUO Jiang,ZENG Chao,XIE Mingyu,et al. Failure mechanism of madaling landslide in Guizhou Province and stability analysis of accumulation body[J]. Safety and Environmental Engineering,2018,25(2):48 − 54. (in Chinese with English abstract)]

    GUO Jiang, ZENG Chao, XIE Mingyu, et al. Failure mechanism of madaling landslide in Guizhou Province and stability analysis of accumulation body[J]. Safety and Environmental Engineering, 2018, 25(2): 48 − 54. (in Chinese with English abstract)

    [24] 亓星,余斌,朱渊,等. 贵州都匀马达岭滑坡碎屑流形成泥石流特征[J]. 中国地质灾害与防治学报,2013,24(1):1 − 6. [QI Xing,YU Bin,ZHU Yuan,et al. Characteristics of the debris flow derived from madaling landslide in Duyun,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2013,24(1):1 − 6. (in Chinese with English abstract)]

    QI Xing, YU Bin, ZHU Yuan, et al. Characteristics of the debris flow derived from madaling landslide in Duyun, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(1): 1 − 6. (in Chinese with English abstract)

    [25] 赵建军,蔺冰,马运韬,等. 缓倾煤层采空区上覆岩体变形特征物理模拟研究[J]. 煤炭学报,2016,41(6):1369 − 1374. [ZHAO Jianjun,LIN Bing,MA Yuntao,et al. Physical modeling on deformation characteristics of overlying rock mass above mined-out area in gently inclined coal seam[J]. Journal of China Coal Society,2016,41(6):1369 − 1374. (in Chinese with English abstract)]

    ZHAO Jianjun, LIN Bing, MA Yuntao, et al. Physical modeling on deformation characteristics of overlying rock mass above mined-out area in gently inclined coal seam[J]. Journal of China Coal Society, 2016, 41(6): 1369 − 1374. (in Chinese with English abstract)

    [26] 赵建军,马运韬,蔺冰,等. 平缓反倾采动滑坡形成的地质力学模式研究——以贵州省马达岭滑坡为例[J]. 岩石力学与工程学报,2016,35(11):2217 − 2224. [ZHAO Jianjun,MA Yuntao,LIN Bing,et al. Geomechanical mode of mining landslides with gently counter-inclined bedding:A case study of Madaling landslide in Guizhou Province[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11):2217 − 2224. (in Chinese with English abstract)]

    ZHAO Jianjun, MA Yuntao, LIN Bing, et al. Geomechanical mode of mining landslides with gently counter-inclined bedding: A case study of Madaling landslide in Guizhou Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2217 − 2224. (in Chinese with English abstract)

    [27]

    ZHAO Jianjun,XIAO Jianguo,LEE Min lee,et al. Discrete element modeling of a mining-induced rock slide[J]. SpringerPlus,2016,5(1):1 − 19. DOI: 10.1186/s40064-015-1659-2

    [28] 王玉川. 缓倾煤层采空区上覆山体变形破坏机制及稳定性研究——以贵州马达岭滑坡为例[D]. 成都:成都理工大学,2013. [WANG Yuchuan. Deformation failure mechanism and stability research of massif above the mined out area in gently inclined coal beds[D]. Chengdu:Chengdu University of Technology,2013. (in Chinese with English abstract)]

    WANG Yuchuan. Deformation failure mechanism and stability research of massif above the mined out area in gently inclined coal beds[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)

    [29] 王玉川,巨能攀,赵建军,等. 缓倾煤层采空区上覆山体滑坡形成机制分析[J]. 工程地质学报,2013,21(1):61 − 68. [WANG Yuchuan,JU Nengpan,ZHAO Jianjun,et al. Formation mechanism of landslide above the mined out area in gently inclined coal beds[J]. Journal of Engineering Geology,2013,21(1):61 − 68. (in Chinese with English abstract)]

    WANG Yuchuan, JU Nengpan, ZHAO Jianjun, et al. Formation mechanism of landslide above the mined out area in gently inclined coal beds[J]. Journal of Engineering Geology, 2013, 21(1): 61 − 68. (in Chinese with English abstract)

    [30] 蔡国军, 陈锡锐, 孙文鹏, 等. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报,2022,41(2):104 − 112. [CAI Guojun, CHEN Xirui, SUN Wenpeng, et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology,2022,41(2):104 − 112.(in Chinese with English abstract)]

    CAI Guojun, CHEN Xirui, SUN Wenpeng, et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104 − 112.(in Chinese with English abstract)

    [31]

    CUI Fangpeng,LI Bin,XIONG Chen,et al. Dynamic triggering mechanism of the Pusa mining-induced landslide in Nayong County,Guizhou Province,China[J]. Geomatics,Natural Hazards and Risk,2022,13(1):123 − 147. DOI: 10.1080/19475705.2021.2017020

    [32]

    FATHI SALMI E,NAZEM M,KARAKUS M. Numerical analysis of a large landslide induced by coal mining subsidence[J]. Engineering Geology,2017,217:141 − 152. DOI: 10.1016/j.enggeo.2016.12.021

    [33] 张龙,唐辉明,熊承仁,等. 鸡尾山高速远程滑坡运动过程PFC3D模拟[J]. 岩石力学与工程学报,2012,31(增刊1):2601 − 2611. [ZHANG Long,TANG Huiming,XIONG Chengren,et al. Movement process simulation of high-speed long-distance jiweishan landslide with pfc3d[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(Sup 1):2601 − 2611. (in Chinese with English abstract)]

    ZHANG Long, TANG Huiming, XIONG Chengren, et al. Movement process simulation of high-speed long-distance jiweishan landslide with pfc3d[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup 1): 2601 − 2611. (in Chinese with English abstract)

    [34] 曹文,李维朝,唐斌,等. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报,2017,25(2):455 − 462. [CAO Wen,LI Weichao,TANG Bin,et al. Pfc study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology,2017,25(2):455 − 462. (in Chinese with English abstract)]

    CAO Wen, LI Weichao, TANG Bin, et al. Pfc study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology, 2017, 25(2): 455 − 462. (in Chinese with English abstract)

    [35] 陈闻潇,石崇,单治钢,等. 基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究[J]. 工程地质学报,2021,29(6):1823 − 1830. [CHEN Wenxiao,SHI Chong,SHAN Zhigang,et al. Numerical simulation of subaqueous landslide based on openfoam and pfc coupling method[J]. Journal of Engineering Geology,2021,29(6):1823 − 1830. (in Chinese with English abstract)]

    CHEN Wenxiao, SHI Chong, SHAN Zhigang, et al. Numerical simulation of subaqueous landslide based on openfoam and pfc coupling method[J]. Journal of Engineering Geology, 2021, 29(6): 1823 − 1830. (in Chinese with English abstract)

    [36]

    POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(5):677 − 691. DOI: 10.1016/j.ijrmms.2006.10.002

    [37]

    POTYONDY D O,CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329 − 1364. DOI: 10.1016/j.ijrmms.2004.09.011

    [38]

    CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems[J]. Proocedings of the Symposio of the International Society of Rock Mechanics,Nancy 2,1971:129 − 136.

  • 期刊类型引用(1)

    1. 马杰,张耀明,于文罡,王春玲,张国锋,何君毅. 贵州都匀马达岭滑坡碎屑流动力演化过程分析. 中国地质灾害与防治学报. 2024(05): 42-49 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  10
  • PDF下载量:  47
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-04-02
  • 录用日期:  2023-04-05
  • 网络出版日期:  2024-03-27

目录

/

返回文章
返回