ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

冻融岩石蠕变特性及孔隙结构演化特征研究

宋勇军, 孟凡栋, 毕冉, 张琨, 张君

宋勇军,孟凡栋,毕冉,等. 冻融岩石蠕变特性及孔隙结构演化特征研究[J]. 水文地质工程地质,2023,50(6): 69-79. DOI: 10.16030/j.cnki.issn.1000-3665.202211026
引用本文: 宋勇军,孟凡栋,毕冉,等. 冻融岩石蠕变特性及孔隙结构演化特征研究[J]. 水文地质工程地质,2023,50(6): 69-79. DOI: 10.16030/j.cnki.issn.1000-3665.202211026
SONG Yongjun, MENG Fandong, BI Ran, et al. Research on creep characteristics and pore structure evolution characteristics of freezing-thawing rocks[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 69-79. DOI: 10.16030/j.cnki.issn.1000-3665.202211026
Citation: SONG Yongjun, MENG Fandong, BI Ran, et al. Research on creep characteristics and pore structure evolution characteristics of freezing-thawing rocks[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 69-79. DOI: 10.16030/j.cnki.issn.1000-3665.202211026

冻融岩石蠕变特性及孔隙结构演化特征研究

基金项目: 国家自然科学基金项目(11972283;42277182)
详细信息
    作者简介:

    宋勇军(1979-),男,博士,教授,主要从事岩石力学与地下工程方面的教学与研究工作。E-mail:songyj79@xust.edu.cn

    通讯作者:

    孟凡栋(1996-),男,硕士研究生,主要从事岩石力学方面的研究工作。E-mail:wy1065203655@163.com

  • 中图分类号: TU458;P642.3

Research on creep characteristics and pore structure evolution characteristics of freezing-thawing rocks

  • 摘要: 寒区露天岩体面临着循环冻融和长期荷载共同作用引起的时效性损伤的考验。为探究寒区环境对岩体稳定性的影响,以陕北某工程的红砂岩为研究对象,从冻融岩石的宏观蠕变特性及细观结构的演化特征着手,通过冻融岩石的加卸载蠕变试验,并配合核磁共振检测,对冻融红砂岩蠕变过程中的宏观力学指标及细观参数的演化进行定量分析。结果表明:应力水平在0.3σucs~0.5σucs时,孔径分布在一个较小范围内波动,当应力水平增高至0.5σucs~0.6σucs时,小孔(横向弛豫时间T2<10 ms)占比下降,大孔(T2>10 ms)占比上升;冻融加剧了蠕变阶段孔隙度的增长,高应力水平下冻融对孔隙度增长的影响更为显著。引入分形理论表征孔隙结构的复杂程度,发现大孔有明显分形特征,而小孔分形特征不明显,总孔分维DT与孔隙度呈正相关;孔隙结构的复杂程度仅在孔隙度较大时才明显影响岩石的蠕变力学特性。建立了有关冻融作用影响及蠕变损伤的冻融-损伤蠕变模型,模型曲线可以很好地反映冻融岩石的蠕变破坏特征,且与试验曲线吻合良好。本研究可为冻融环境下的岩体工程建设提供理论依据。
    Abstract: The rock mass of open pit in cold regions is often affected by freezing-thawing cycles and long-term loads. In order to explore the influence of cold region environment on the stability of rock mass, the red sandstone of a project in northern Shaanxi is taken as the research object, starting with the macroscopic creep characteristics and meso-structure evolution characteristics of freezing-thawing rocks. The evolution of macro-mechanical indexes and meso-parameters during the creep process of freezing-thawing red sandstone is quantitatively analyzed through the loading and unloading creep test of freezing-thawing rock and the NMR detection. The results show that the pore size distribution fluctuates in a small range when the stress level is between 0.3σucs−0.5σucs, and when the stress level increases to 0.5σucs−0.6σucs, the proportion of small holes (T2<10 ms) decreases and the proportion of large holes (T2>10 ms) increases, and freezing-thawing aggravates the increase of porosity in the creep stage, and the effect of freezing and thawing on porosity growth is more significant at high stress levels. The fractal theory is introduced to characterize the complexity of pore structure. It is found that the large pores have obvious fractal characteristics, while the fractal characteristics of small pores are not obvious. The total pore fractal dimension DT is positively correlated with porosity. The complexity of pore structure only affects the creep mechanical properties of rock when the porosity is large. The freezing-thawing-damage creep model of freezing-thawing effect and creep damage is established. The model curve can well reflect the creep characteristics of the freezing-thawing rock, which is in good agreement with the experimental curve. This study can provide a theoretical basis for rock engineering construction in freezig-thawing environment.
  • 图  1   红砂岩岩样尺寸及安装示意

    Figure  1.   Rock sample size and installation instructions

    图  2   冻融岩石分级加卸载蠕变应力加载方式

    Figure  2.   Graded loading and unloading creep stress loading method of freezing-thawing rock

    图  3   应力-应变曲线

    Figure  3.   Stress-strain curves

    图  4   不同冻融岩样的蠕变曲线

    Figure  4.   Creep curves of different freezing-thawing rock samples

    图  5   蠕变速率、塑性应变分别与加载比的关系

    Figure  5.   Relationship between the creep rate, plastic strain and loading ratio

    图  6   冻融红砂岩蠕变过程中T2分布曲线

    Figure  6.   T2 distribution during the creep process of rock samples with different freezing-thawing times

    图  7   蠕变过程中红砂岩的孔径分布占比

    Figure  7.   Proportion of pore size distribution of rock samples during creep

    图  8   孔隙度增量受应力水平的影响

    Figure  8.   Effect of loading ratio on porosity increment

    图  9   冻融次数对孔隙度增量的影响

    Figure  9.   Effect of freezing-thawing times on porosity increment

    图  10   分形维数计算过程

    Figure  10.   Fractal dimension calculation process

    图  11   冻融红砂岩分形维数随应力水平的演化

    Figure  11.   Evolution of fractal dimension of freezing-thawing red sandstone with stress level

    图  12   DT与孔隙度的关系

    Figure  12.   Relationship between DT and porosity

    图  13   双因素共同作用对蠕变力学行为的影响

    Figure  13.   Influence of two factors on creep mechanical behavior

    图  14   冻融损伤黏性元件

    Figure  14.   Freezing-thawing damage viscous element

    图  15   改进的Poyting-Thomson模型

    Figure  15.   Improved saturated Poyting-Thomson model

    图  16   蠕变模型验证曲线

    Figure  16.   Creep model validation curve

    表  1   各项物理参数的平均值

    Table  1   Mean physical parameters of the rock samples

    物理参数纵波波速/
    (m∙s−1
    干密度/
    (g·cm−3
    饱和密度/
    (g·cm−3
    饱和含
    水率/%
    孔隙
    度/%
    平均值2 7812.212.677.0515.59
    下载: 导出CSV

    表  2   岩样分组

    Table  2   Grouping of the rock samples

    组别冻融0次冻融30次冻融60次
    A-1B-1C-1
    A-RB-RC-R
    下载: 导出CSV

    表  3   单轴蠕变试验中不同冻融岩样各级应力加载值

    Table  3   Stress loading values at various levels in the uniaxial creep test of sandstone under different freezing-thawing conditions

    冻融循环
    次数/次
    岩样
    编号
    冻融后T2
    谱面积
    加载应力/MPa
    第一级 第二级 第三级 第四级 第五级
    0 A-R 10 668.82 10.01 13.34 16.68 20.01 23.35
    30 B-R 11 584.31 9.71 12.95 16.19 19.42 22.66
    60 C-R 11 348.65 8.40 11.20 14.00 16.79 19.59
    下载: 导出CSV

    表  4   组Ⅰ中不同冻融岩样的力学参数

    Table  4   Mechanical parameters of different freezing-thawing rock samples in group I

    参数冻融次数/次
    03060
    抗压强度/MPa33.3732.3727.99
    弹性模量/GPa39.6537.7931.22
    下载: 导出CSV

    表  5   蠕变模型参数

    Table  5   Creep model parameters

    加载等级 $ {E_1} $
    /GPa
    $ {E_2} $
    /GPa
    $ {\eta _1} $
    /(GPa·h)
    $ {\eta _2} $
    /(GPa·h)
    $ \gamma $ $ \alpha $/h−1 $ {R^2} $
    第一级 129.969 19.024 2.245 0.97
    第二级 89.972 13.931 1.568 0.95
    第三级 52.979 12.401 1.496 0.98
    第四级 22.135 9.671 1.054 0.93
    第五级 10.973 8.066 0.809 0.001 3 0.161 0.169 0.91
      注:“—”表示此处为空。
    下载: 导出CSV
  • [1]

    LIU Yanzhang,CAI Yuantian,HUANG Shibing,et al. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):2021 − 2036. DOI: 10.1007/s10064-019-01686-w

    [2]

    SHI Lei,LIU Yang,MENG Xiangzhen,et al. Study on mechanical properties and damage characteristics of red sandstone under freeze-thaw and load[J]. Advances in Civil Engineering,2021,2021:1 − 13.

    [3]

    HUANG Shibing,LIU Quansheng,CHENG Aiping,et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology,2018,145:142 − 150. DOI: 10.1016/j.coldregions.2017.10.015

    [4] 张峰瑞,姜谙男,杨秀荣,等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学,2020,41(2):1 − 12. [ZHANG Fengrui,JIANG Annan,YANG Xiurong,et al. Study of shear creep experiment and model of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics,2020,41(2):1 − 12. (in Chinese with English abstract)

    ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Study of shear creep experiment and model of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 412): 112. (in Chinese with English abstract)

    [5]

    WONG T F,BAUD P. The brittle-ductile transition in porous rock:A review[J]. Journal of Structural Geology,2012,44:25 − 53. DOI: 10.1016/j.jsg.2012.07.010

    [6]

    WU Xiang yang,BAUD P,WONG T F. Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1/2):143 − 160.

    [7] 杨更社,申艳军,贾海梁,等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,2018,37(3):545 − 563. [YANG Gengshe,SHEN Yanjun,JIA Hailiang,et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):545 − 563. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2017.1295

    YANG Gengshe, SHEN Yanjun, JIA Hailiang, et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 373): 545563. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2017.1295

    [8] 周科平,李杰林,许玉娟,等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报,2012,31(4):731 − 737. [ZHOU Keping,LI Jielin,XU Yujuan,et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):731 − 737. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-6915.2012.04.012

    ZHOU Keping, LI Jielin, XU Yujuan, et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 314): 731737. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-6915.2012.04.012

    [9] 李杰林,周科平,柯波. 冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J]. 煤炭学报,2015,40(8):1783 − 1789. [LI Jielin,ZHOU Keping,KE Bo. Association analysis of pore development characteristics and uniaxial compressive strength property of granite under freezing-thawing cycles[J]. Journal of China Coal Society,2015,40(8):1783 − 1789. (in Chinese with English abstract) DOI: 10.13225/j.cnki.jccs.2014.1158

    LI Jielin, ZHOU Keping, KE Bo. Association analysis of pore development characteristics and uniaxial compressive strength property of granite under freezing-thawing cycles[J]. Journal of China Coal Society, 2015, 408): 17831789. (in Chinese with English abstract) DOI: 10.13225/j.cnki.jccs.2014.1158

    [10] 陈国庆,万亿,孙祥,等. 不同温差冻融后砂岩蠕变特性及分数阶损伤模型研究[J]. 岩石力学与工程学报,2021,40(10):1962 − 1975. [CHEN Guoqing,WAN Yi,SUN Xiang,et al. Research on creep behaviors and fractional order damage model of sandstone subjected to freeze-thaw cycles in different temperature ranges[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(10):1962 − 1975. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2021.0064

    CHEN Guoqing, WAN Yi, SUN Xiang, et al. Research on creep behaviors and fractional order damage model of sandstone subjected to freeze-thaw cycles in different temperature ranges[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 4010): 19621975. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2021.0064

    [11] 彭瑞东,鞠杨,谢和平. 灰岩拉伸过程中细观结构演化的分形特征[J]. 岩土力学,2007,28(12):2579 − 2582. [PENG Ruidong,JU Yang,XIE Heping. Fractal characterization of meso-structural evolution during tension of limestone[J]. Rock and Soil Mechanics,2007,28(12):2579 − 2582. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.12.018

    PENG Ruidong, JU Yang, XIE Heping. Fractal characterization of meso-structural evolution during tension of limestone[J]. Rock and Soil Mechanics, 2007, 2812): 25792582. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.12.018

    [12] 高峰,谢和平,巫静波. 岩石损伤和破碎相关性的分形分析[J]. 岩石力学与工程学报,1999,18(5):503 − 506. [GAO Feng,XIE Heping,WU Jingbo. Fractal analysis of the relation between rock damage and rock fragmentation[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(5):503 − 506. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.1999.05.002

    GAO Feng, XIE Heping, WU Jingbo. Fractal analysis of the relation between rock damage and rock fragmentation[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 185): 503506. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.1999.05.002

    [13] 卢波,陈剑平,葛修润,等. 节理岩体结构的分形几何研究[J]. 岩石力学与工程学报,2005,24(3):461 − 467. [LU Bo,CHEN Jianping,GE Xiurun,et al. Fractal geometry study on structure of jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(3):461 − 467. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2005.03.016

    LU Bo, CHEN Jianping, GE Xiurun, et al. Fractal geometry study on structure of jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 243): 461467. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2005.03.016

    [14]

    TAN Hao,SONG Yongjun,GUO Xixi. Analysis of porosity,permeability,and anisotropy of sandstone in freeze–thaw environments using computed tomography and fractal theory[J]. Fractals,2021,29(8):2150239. DOI: 10.1142/S0218348X2150239X

    [15] 郑虹,冯夏庭,陈祖煜. 岩石力学室内试验ISRM建议方法的标准化和数字化[J]. 岩石力学与工程学报,2010,29(12):2456 – 2468. [ZHENG Hong, FENG Xiating, CHEN Zuyu. Standardization and digitization for isrm suggested methods of rock mechanics laboratory tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2456 – 2468.(in Chinese with English abstract)

    ZHENG Hong, FENG Xiating, CHEN Zuyu. Standardization and digitization for isrm suggested methods of rock mechanics laboratory tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2456 – 2468.(in Chinese with English abstract)

    [16] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准:GB/T 50266—2013[S]. 北京:中国计划出版社,2013. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass:GB/T 50266—2013[S]. Beijing:China Planning Press,2013. (in Chinese)

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013. (in Chinese)

    [17] 刘超,袁伟,路军富,等. 某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究[J]. 水文地质工程地质,2020,47(5):108 − 115. [LIU Chao,YUAN Wei,LU Junfu,et al. A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel[J]. Hydrogeology & Engineering Geology,2020,47(5):108 − 115. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202001001

    LIU Chao, YUAN Wei, LU Junfu, et al. A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel[J]. Hydrogeology & Engineering Geology, 2020, 475): 108115. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202001001

    [18]

    MOMENI A,ABDILOR Y,KHANLARI G R,et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology and the Environment,2016,75(4):1649 − 1656. DOI: 10.1007/s10064-015-0787-9

    [19] 何攀,许强,刘佳良,等. 基于核磁共振与氮吸附技术的黄土含盐量对结合水膜厚度的影响研究[J]. 水文地质工程地质,2020,47(5):142 − 149. [HE Pan,XU Qiang,LIU Jialiang,et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology,2020,47(5):142 − 149. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201910002

    HE Pan, XU Qiang, LIU Jialiang, et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology, 2020, 475): 142149. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201910002

    [20]

    HE Xinxin,CHENG Yuanping,HU Biao,et al. Effects of coal pore structure on methane-coal sorption hysteresis:An experimental investigation based on fractal analysis and hysteresis evaluation[J]. Fuel,2020,269:117438. DOI: 10.1016/j.fuel.2020.117438

    [21]

    DUNN KJ,BERGMAN DJ,LATORRACA GA. Nuclear magnetic resonance:Petrophysical and logging applications[M]. New York:Elsevier, 2002.

    [22]

    TANG Zongqing,ZHAI Cheng,ZOU Quanle,et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance[J]. Fuel,2016,186:571 − 578. DOI: 10.1016/j.fuel.2016.08.103

    [23] 戚利荣,王家鼎,张登飞,等. 冻融循环作用下花岗岩损伤的宏微观尺度研究[J]. 水文地质工程地质,2021,48(5):65 − 73. [QI Lirong,WANG Jiading,ZHANG Dengfei,et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):65 − 73. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103073

    QI Lirong, WANG Jiading, ZHANG Dengfei, et al. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 485): 6573. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103073

    [24]

    CHEN Longxiao,LI Kesheng,SONG Guilei,et al. Effect of freeze-thaw cycle on physical and mechanical properties and damage characteristics of sandstone[J]. Scientific Reports,2021,11:12315. DOI: 10.1038/s41598-021-91842-8

    [25] 周科平,胡振襄,李杰林,等. 基于核磁共振技术的大理岩卸荷损伤演化规律研究[J]. 岩石力学与工程学报,2014,33(增刊2):3523 – 3530. [ZHOU Keping,HU Zhenxiang,LI Jielin,et al. Study of marble damage evolution laws under unloading conditions based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3523 – 3530. (in Chinese with English abstract)

    ZHOU Keping, HU Zhenxiang, LI Jielin, et al. Study of marble damage evolution laws under unloading conditions based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup 2): 3523 – 3530. (in Chinese with English abstract)

    [26]

    ZHANG Jian,DENG Hongwei,DENG Junren,et al. Fractal analysis of pore structure development of sandstone:A nuclear magnetic resonance investigation[J]. IEEE Access,2019,7:47282 − 47293. DOI: 10.1109/ACCESS.2019.2909782

    [27] 封陈晨,李傲,王志亮,等. 锦屏大理岩单轴压缩过程中的微结构演化[J]. 水文地质工程地质,2022,49(6):90 − 96. [FENG Chenchen,LI Ao,WANG Zhiliang,et al. A Study of mineral composition and micro-structure characteristic for Jinping marble[J]. Hydrogeology & Engineering Geology,2022,49(6):90 − 96. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202204023

    FENG Chenchen, LI Ao, WANG Zhiliang, et al. A Study of mineral composition and micro-structure characteristic for Jinping marble[J]. Hydrogeology & Engineering Geology, 2022, 496): 9096. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202204023

    [28] 李安润,邓辉,王红娟,等. 水-岩作用下粉砂质泥岩含水损伤本构模型[J]. 水文地质工程地质,2021,48(2):106 − 113. [LI Anrun,DENG Hui,WANG Hongjuan,et al. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology,2021,48(2):106 − 113. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202004007

    LI Anrun, DENG Hui, WANG Hongjuan, et al. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology, 2021, 482): 106113. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202004007

    [29] 周宏伟,王春萍,段志强,等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学 力学 天文学,2012,42(3):310 – 318. [ZHOU Hongwei,WANG Chunping,DUAN Zhiqiang,et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica (Physica,Mechanica & Astronomica),2012,42(3):310 – 318. (in Chinese with English abstract)

    ZHOU Hongwei, WANG Chunping, DUAN Zhiqiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(3): 310 – 318. (in Chinese with English abstract)

    [30] 刘东燕,赵宝云,朱可善,等. 砂岩直接拉伸蠕变特性及Burgers模型的改进与应用[J]. 岩土工程学报,2011,33(11):1740 − 1744. [LIU Dongyan,ZHAO Baoyun,ZHU Keshan,et al. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering,2011,33(11):1740 − 1744. (in Chinese with English abstract)

    LIU Dongyan, ZHAO Baoyun, ZHU Keshan, et al. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 3311): 17401744. (in Chinese with English abstract)

图(16)  /  表(5)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  49
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-02-15
  • 网络出版日期:  2023-09-24
  • 发布日期:  2023-11-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭