ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

基于三维离散-连续耦合的岩溶隧道突水破坏模式研究

刘琛尧, 晏启祥, 孙润方, 王绪, 邓宝华, 陈耀

刘琛尧,晏启祥,孙润方,等. 基于三维离散-连续耦合的岩溶隧道突水破坏模式研究[J]. 水文地质工程地质,2024,51(2): 163-171. DOI: 10.16030/j.cnki.issn.1000-3665.202211045
引用本文: 刘琛尧,晏启祥,孙润方,等. 基于三维离散-连续耦合的岩溶隧道突水破坏模式研究[J]. 水文地质工程地质,2024,51(2): 163-171. DOI: 10.16030/j.cnki.issn.1000-3665.202211045
LIU Chenyao, YAN Qixiang, SUN Runfang, et al. Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 163-171. DOI: 10.16030/j.cnki.issn.1000-3665.202211045
Citation: LIU Chenyao, YAN Qixiang, SUN Runfang, et al. Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 163-171. DOI: 10.16030/j.cnki.issn.1000-3665.202211045

基于三维离散-连续耦合的岩溶隧道突水破坏模式研究

基金项目: 国家自然科学基金项目(52278416)
详细信息
    作者简介:

    刘琛尧(2000—),男,硕士研究生,主要从事隧道与地下工程科研工作。E-mail:lcy2847662434@163.com

    通讯作者:

    晏启祥(1971—),男,博士,教授,博士生导师,主要从事隧道与地下工程科研以及教学工作。E-mail:1445333599@qq.com

  • 中图分类号: P641.134;U452.1+1

Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling

  • 摘要:

    岩溶隧道在修建的过程中难以避免接近溶腔甚至高承压水溶腔,而突水破坏极易引发安全事故甚至对隧道产生不可逆的影响,因此对岩溶隧道突水破坏模式的研究有利于解决相关安全问题,并对选线安全具有一定参照意义。通过三维离散-连续耦合数值技术,对微观离散颗粒物理、力学参数进行标定并验证,模拟水压作用下下伏溶腔与隧道仰拱之间的防突岩体垮塌过程。根据试验结果将防突岩体的破坏模式分为3类:剪切破坏模式、弯折破坏模式和复合破坏模式。弯折破坏模式表现为防突岩体中部和两端拉伸裂缝呈贯通状;剪切破坏模式表现为防突岩体两端裂缝呈剪切态;复合破坏模式则同时具有二者的共同特性。3种破坏模式所引起的裂缝发育规律相似,均可分为初始发育、快速发育和平缓发育3个阶段。初始发育阶段时防突岩体所存在的裂缝数量较少;维持水压力防突岩体的裂缝数量突增并进入快速发育阶段;而后防突岩体中的裂缝产生贯通效果进入平缓发育阶段,最终防突岩体整体垮塌。由此得出结论:突水破坏在岩溶隧道中是一个渐变的过程,但对岩溶隧道总体安全性有不可逆的影响。

    Abstract:

    During the construction of karst tunnel, it is difficult to avoid approaching the cavern, even high pressure water cavern. Water inrush damage very easily causes safety accidents and would have irreversible impact on the tunnel. The study on damage mode is conducive to solving problems related to karst tunnel safety and has certain significance for the safety of route selection. In this study, the physical and mechanical parameters of micro-discrete particles are calibrated and verified by a three-dimensional discrete-continuous coupling numerical technology, and the important process of rock-burst collapse prevention between the underlying solution cavity and the tunnel invert under water pressure is simulated. The results show that the failure modes of outburst prevention rock mass are divided into three types: shear failure mode, bending failure mode, and composite failure mode. The bending failure mode indicates that the tensile cracks in the middle and both ends of the outburst prevention rock mass are in the form of penetration; the shear failure mode shows that the cracks at both ends of the outburst prevention rock mass are in the shear state; while the composite failure mode has the common characteristics of both. The fracture development rules caused by the three failure modes are similar and can be divided into three stages: initial development, rapid development, and gentle development. At the stage of initial development, the number of cracks in the rock body is small; the number of cracks in the rock mass maintaining water pressure and preventing outburst suddenly increases and enters the stage of rapid development; after that, the crack in the outburst prevention rock mass connect and then enter the stage of gentle development, ultimately, leading to the overall collapse of the outburst prevention rock mass. Thus, this study indicates that water inrush damage is a gradual process in karst tunnels, but it has an irreversible impact on the overall safety of karst tunnels.

  • 随着我国对西南地区互通发展的重视,各种公路、铁路等基础设施正在紧锣密鼓地修建中。其中作为运输的主力军,铁路修建的数量以及总里程数都在不断地增大。铁路在西南地区的修建过程中不可避免地穿越岩溶地区,岩溶地区溶腔特别是高承压水溶腔具有重大安全隐患[13]。隧址区岩溶发育的影响主要表现为对隧道稳定性影响和隧道涌水[45],隧道围岩与溶腔之间的岩体失稳破坏是岩溶隧道突水的关键因素。根据其他研究区的实践,当修建岩溶隧道时保留足够厚度的防突岩体可以大大减小突水灾害发生的概率,保证隧道施工安全。因此,国内外学者对于岩溶隧道防突岩体的破坏相关问题进行了研究。

    根据现有文献,岩溶隧道防突岩体主要被简化为连续介质力学模型进行研究。有学者将防突岩体简化为梁,研究其本身属性,如研究其合理的安全厚度[68]、厚度风险评估[9]和溶洞发育对防突岩体的影响[1012]。也有学者将防突岩体简化为其他模型,如肖喜等[13]将其简化为薄板模型、翼形裂纹张拉贯通模型等其他模型,研究其结构类型、溶洞与隧道之间的相对大小和相对位置的角度的影响;也有学者将防突岩体视为连续的固体材料,研究高水压下防突岩体的开裂及裂缝发育情况,如黄鑫[14]基于弹性梁理论,研究了无裂隙和含裂隙防突岩体的厚度影响因素。

    然而,上述基于连续介质力学的研究,(1)没有考虑裂隙的防突岩体在高水压作用下多为小变形;(2)较难表现出含裂纹的防突岩体开裂情况;(3)在溶腔水压下的较大变形、开裂甚至完全失稳断裂的情况,也难以表现出防突岩体的破坏过程和破坏模式。与实际工程中岩溶水冲垮隧道围岩不符。

    结合实际工程情况,基于连续介质力学的有限元和有限差分等不同代码的解决方式,同时基于分子动理论的离散元程序在岩体大变形、断裂破坏模拟方面具有独特优势,可展示出岩体破坏过程,与实际情况更加接近,也为进一步的防突岩体自身属性研究提供基础。但对较为复杂的工程,全模型采用离散元,会使得计算效率降低。

    将连续介质与离散介质耦合[15]使得解决上述问题成为可能。许多学者应用离散-连续介质耦合技术于岩土工程中,如桩基工程[16]、边坡稳定[17] 、沉桩工程[1819]、强夯工程[20]等方面。在隧道开挖[2126]与锚索支护[27]中也有应用。然而,应用离散-连续耦合模拟岩溶隧道防突岩体的破坏过程的研究仍较少。

    本文采用离散-连续耦合模型对岩溶隧道防突岩体的破坏模式进行研究,通过对微观离散颗粒物理、力学参数进行标定并验证,并将隧道小范围围岩、下伏溶腔及之间的防突岩体视作离散颗粒的集合体,而其余较远处地层视为连续介质单元,模拟防突岩体在溶腔高压水的作用下的失稳的动态破坏形式,并根据裂缝发育规律对破坏模式进行分类总结。

    贵南高速铁路德庆隧道位于典型的喀斯特岩溶地貌区,隧道全长6610 m,大约全长的1/3处于深厚黏土层,围岩等级为Ⅴ级。隧道全长存在溶腔200个以上,隐伏溶槽、溶蚀破碎带等不良地质体发育。隧道穿过地层大部分为可溶岩地层,地表为典型的峰丛洼地地貌、残丘地貌,岩溶发育不均匀,钻探揭示隧道洞身灰岩岩溶强烈发育,局部揭示土洞,可能诱发岩溶塌陷或岩溶沉陷。根据区域水文地质条件,在最大日降雨条件下,隧区受岩溶洼地汇水影响最大,DK298+500—DK299+300段预计涌水量约2.33万m3/d。因为该隧道修建难度大,成为整个贵南高速铁路项目的控制性工程。

    隧道DK298+766—+772段仰拱基底开挖揭示一溶腔(图1),溶腔横向宽约5 m、纵向长5~6 m、深4~5 m,可能诱发溶腔与隧底之间的防突岩体塌陷。

    图  1  隧道仰拱下伏溶腔
    Figure  1.  Underground cavity of tunnel invert

    为研究岩溶隧道下伏承压溶腔与隧底的防突岩体在水压作用下的破坏过程,采用PFC3D颗粒流代码模拟隧道围岩及防突岩体;为了提高计算效率,其余地层应用FLAC3D连续介质模拟。

    微观的离散颗粒参数与宏观岩体不同,需进行离散颗粒的参数标定,即获得一组离散颗粒的参数,使之表现出宏观岩体的参数特点。

    对于离散-连续耦合模型中的离散元模型部分,为使颗粒集合体所体现的整体力学特性与试验模拟的材料相吻合,重点就是对颗粒细观参数进行标定。

    连续介质中的隧道围岩采用摩尔-库伦本构,离散介质颗粒采用平行黏结模型。在离散元部分采用三轴压缩试验对现场围岩参数进行标定,依托工程围岩物理力学参数见表1

    表  1  工程实际围岩物理力学参数
    Table  1.  Physical and mechanical parameters of actual surrounding rock
    参数 杨氏模量/GPa 泊松比 黏聚力/MPa 摩擦角/(°) 密度/(kg·m−3)
    取值 6 0.2 1.8 40 2600
    下载: 导出CSV 
    | 显示表格

    用于离散颗粒参数标定的三轴压缩试验采用1.0,1.5 ,2.0 MPa 3种围压,颗粒属性见表2。根据三轴试验的尺寸标准来对本试验模型进行建模,建立的圆柱体数值模型H=100 mm,D=50 mm(图2)。试样接触模型各微观参数的选取值见表2

    表  2  三轴压缩试验颗粒参数
    Table  2.  Particle parameters in the triaxial compression test
    参数 最小粒径/mm 粒径比 颗粒密度/(kg·m−3) 孔隙率 加载应变速率
    取值 1 1.66 2500 0.3 0.005
    下载: 导出CSV 
    | 显示表格
    图  2  三轴压缩模拟试验颗粒集合体模型
    Figure  2.  Particle aggregate model for the triaxial compression simulation test

    多次调整颗粒的微观参数,使之表现出与宏观相似的参数,图3图4给出了最终的颗粒微观参数对应的三轴压缩模拟试验结果。由三轴压缩模拟试验曲线可计算出黏结的颗粒体表现出的宏观参数(表3),可知颗粒最终的参数取值下的宏观参数与工程实际较接近,表明微观参数取值合理。

    图  3  3种围压下试样轴向应力-轴向应变曲线
    Figure  3.  Axial stress- axial strain curve of specimen under three confining pressures
    图  4  3种围压下试样横向应变-轴向应变曲线
    Figure  4.  Transverse strain- axial strain curve of the specimen under three confining pressures
    表  3  围岩参数标定结果
    Table  3.  Calibration parameters of surrounding rock
    颗粒微观参数 黏结有效模量/ GPa 有效模量/GPa 黏结刚度比 刚度比 平行黏结内摩擦角/(°) 摩擦系数 平行黏结抗拉强度/MPa 平行黏结黏聚力/MPa
    5 5 4 4 40 0.5 3 3
    对应宏观参数内摩擦角/(°黏聚力/MPa泊松比弹性模量/GPa
    37.041.940.216.11
    下载: 导出CSV 
    | 显示表格

    基于室内三轴压缩模拟试验,获取与依托工程的宏观连续介质围岩参数的微观离散介质参数。为进一步验证微观离散参数在模型整体中的合理性,通过建立连续介质模型与离散-连续耦合模型来对标定后的结果进行验证。

    为提高计算效率,选取比实际工程小的模型进行参数验证。两个模型尺寸均为高40 m、宽20 m、厚5 m(图5)。所建立的耦合模型离散区尺寸定为宽20 m、高10 m,粒径比根据上文选取1.66,颗粒粒径选取0.1 m,具体颗粒微观的参数见表3

    图  5  验证模型地应力等值线图
    Figure  5.  Contour map of geostress in the validation model

    当地应力处于平衡时,地应力$ \sigma $应为:

    $$ \sigma =\gamma H=2\;600\;\mathrm{kg}/{\mathrm{m}}^{3}\times 9.8\;\mathrm{m}/{\mathrm{s}}^{2}\times 40\;\mathrm{m}=1\;019\;\mathrm{kPa} $$

    式中:γ——土体的重度;

    H——土体深度。

    两个模型初始地应力平衡后获得模型地应力等值线图,见图5

    两个模型初始地应力平衡后获得模型竖向位移,见图6。可见,耦合模型的竖向位移等值线与连续模型基本一致,数值也接近,由此表明选取的离散介质参数在模型计算中的合理性。

    图  6  验证模型竖向位移等值线图
    Figure  6.  Contour map of vertical displacement in the verification model

    综上,室内三轴压缩模拟试验获得的离散介质参数与工程实际参数较接近(表1表3),且离散介质参数在整体的耦合模型计算中的结果也与连续模型基本相同,总体结果表明了标定的离散介质参数的合理性。

    通过对承压溶腔位于隧道下方时的情况进行三维离散-连续耦合模型建立,用于研究防突岩体的破坏过程。隧道及溶腔周围的地层模拟为离散域,接触采用平行黏结模型。地层模型选择摩尔-库仑模型,其余地层模拟为连续介质进行建模。

    本次模拟的计算模型尺寸为宽116 m×高123 m×厚4 m,模型的离散介质尺寸为宽16 m×高25 m×厚4 m。隧道宽度为14 m,高为11.6 m,隧道埋深49 m。对于模型的边界条件采用以下方式进行约束:对模型的前后左右4个边界进行水平约束,对模型的底部边界进行水平与竖直方向约束。所建立的模型如图7所示。调整溶腔水压力值和防突岩体的厚度值,研究防突岩体不同的破坏过程,根据不同的裂缝发生形式对破坏模式进行分类。

    图  7  三维离散-连续耦合模型
    Figure  7.  Three-dimensional discrete continuous coupled model

    溶腔跨度设置为8 m。溶腔内模拟水压力为0.8 MPa,隧道与溶腔之间的防突岩体厚度为1.3 m。

    离散区域中,可以通过观察模型分析过程中平行黏结接触的发展情况来确定防突岩体的破坏进度。模型分析中的“1”表示平行黏结接触所引起的张拉破坏,“2”为剪切破坏,“3”表示未破坏。弯折模式破坏过程如图8,模型的接触力链见图9

    图  8  防突岩体弯折破坏
    Figure  8.  Bending failure of outburst prevention rock mass
    图  9  接触力链图
    Figure  9.  Chain diagram of contact force

    图9(a)知,计算至1000步时,防突岩体受拉区主要分布在防突岩体溶腔两端部,形成连续分布域。此时由图8(a)的接触状态可知,防突岩体已局部破坏,根据计算模型显示,模型产生了3条裂缝,中间的1条从隧道靠近防突岩体侧开始产生裂缝,向防突岩体侧发展。左右的两条裂缝,从溶腔的两侧开始产生裂缝,向隧道的拱脚位置进行发展。从图9(a)中可以发现,产生中部裂缝的位置位于模型的中部受拉区,产生端部裂缝位置位于模型的端部受拉区,故该位置产生裂缝的原因就是水压产生的拉压力大于防突岩体的容许拉应力,即会造成防突岩体的破坏形成。

    图8(b)中可以看出,当模型处于2000步,中部裂缝先贯通于左右两侧的裂缝,防突岩体处于最薄位置发生突水。当模型处于6000步时,3条裂缝已经全部贯通。从图9(b)看出,防突岩体的两端受拉区被裂缝贯通。与计算至1000步相比,防突岩体靠近隧道端大范围由受拉区改变为受压区。

    在水压力的持续作用下,计算至14000步时,如图8(d)所示,防突岩体在3个裂隙的起裂端处均发生开裂,且裂缝口不断扩大,最终导致防突岩体的垮塌,发生突水事故。

    溶腔跨度设置为8 m,溶腔水压力为3.2 MPa,隧道与溶腔之间的防突岩体厚度为3.5 m。防突岩体剪切破坏模式如图10

    图  10  防突岩体剪切破坏
    Figure  10.  Shear failure of prevention burst rock mass

    图10(a)知,计算至1000步时,隧道与溶腔之间的防突岩体从溶腔两侧开始产生裂缝。和弯折破坏模式的初始阶段如(图8a)相比不同的是,防突岩体在隧道侧中间处几乎未见裂缝。

    图10(b)可知,当计算至3000步时,位于隧道与溶腔之间的防突岩体左端部裂缝已经出现贯通现象,位于防突岩体右端部的裂缝也出现即将贯通的特征,此时防突岩体隧道侧中部也开裂。随后,右侧裂缝于6000步时(图10c)贯通防突岩体。相比3000步时,可见中间裂缝并未继续发育。

    两端的裂缝从溶腔处向隧道拱脚处发生贯通,同时受到高水压的持续作用,当计算到10000步(图10d)及14000步时(图10f),可见防突岩体已沿已有破裂面呈现整体剪切破坏模式,导致突水的发生。

    溶腔的跨度设置为8 m,溶腔内水压力为2.0 MPa,隧道与溶腔之间的防突岩体厚度为2.5 m。

    计算至1000步时(图11a),与弯折破坏模式相似,防突岩体出现局部开裂,发育三条明显裂缝。随着高压水持续,当计算至4000步时(图11b),产生的3条裂缝已经从隧道与溶腔之间的防突岩体处发生贯通特征。

    图  11  防突岩体复合破坏
    Figure  11.  Compound failure of outburst prevention rock mass

    模拟的复合破坏模式与弯折破坏模式和剪切破坏模式相比不同的是该模式下,从隧道侧中部与溶腔两侧产生的3条裂缝几乎同时从隧道与溶腔之间的防突岩体处贯通。弯折破坏模式下裂缝贯通首先发生在防突岩体中部的裂缝,剪切破坏模式下裂缝贯通首先发生在溶腔两侧的裂缝。当模型计算至6000步时(图11c),出现的3条裂缝均已从隧道与溶腔之间的防突岩体处发生贯通。

    10000步时(图11d),防突岩体左端裂缝处岩体已整体剪切破坏,隧道侧中部裂缝继续发育。15000步时(图11e),右端部裂缝贯通,岩体整体剪切破坏。此时,防突岩体中部裂缝出现弯折破坏。

    应用内置Fish语言,编写统计3种破坏模式中防突岩体裂隙数的变化的函数(图12)。可见,3种破坏模式所引起的裂缝发育规律基本相似,均可分成3个变化阶段:初始阶段、快速发育阶段和平缓发育阶段。

    图  12  3种破坏模式下防突岩体裂隙数
    Figure  12.  The number of fracture in the outburst prevention rock mass under three failure modes

    在隧道修建过程中,处于隧道侧的防突岩体产生临空效果,使得防突岩体强度不足以抵挡水压力,从而进入破坏初始阶段,初始阶段时防突岩体内裂隙数较少;随着水压力维持,防突岩体裂缝数激增进入快速发育阶段;再随着防突岩体内裂缝大量贯通,裂隙数量进入平缓发育阶段,最终防突岩体整体垮塌。

    应用离散-连续介质耦合模型,研究了岩溶隧道中下伏溶腔与隧道围岩形成的防突岩体在水压作用下的破坏过程。结论如下:

    (1)根据不同的破坏形态与特点,防突岩体在溶腔水压下的有3种破坏模式:弯折破坏模式、剪切破坏模式和复合破坏模式。

    (2)弯折破坏模式表现为,位于接触力链的受拉区的防突岩体中间处和两端部发生裂缝贯通的拉伸破坏。剪切破坏模式表现为,防突岩体两端产生剪切贯通裂缝而发生破坏,而中部未贯通。复合破坏模式包含前两种模式的特点,同时在防突岩体两端出现剪切破坏,中部出现弯折破坏。

    (3)3种破坏模式的裂隙发展规律相似,分为3个阶段:初始阶段、裂隙快速发展阶段、裂隙平缓发展阶段。初始阶段防突岩体内裂隙数较少;随着水压持续,防突岩体进入裂隙快速发育阶段,裂缝发育程度加剧;再随着防突岩体内裂缝产生大范围贯通效果,裂隙数量进入平缓发育阶段,最终使得防突岩体整体垮塌。

    (4)研究中3种模式下对应选取的防突岩体的厚度及水压力不同。今后可进一步探讨防突岩体在溶腔水压作用下的安全厚度、水压力等因素对破坏模式的影响,为岩溶隧道安全施工提供参考。

  • 图  1   隧道仰拱下伏溶腔

    Figure  1.   Underground cavity of tunnel invert

    图  2   三轴压缩模拟试验颗粒集合体模型

    Figure  2.   Particle aggregate model for the triaxial compression simulation test

    图  3   3种围压下试样轴向应力-轴向应变曲线

    Figure  3.   Axial stress- axial strain curve of specimen under three confining pressures

    图  4   3种围压下试样横向应变-轴向应变曲线

    Figure  4.   Transverse strain- axial strain curve of the specimen under three confining pressures

    图  5   验证模型地应力等值线图

    Figure  5.   Contour map of geostress in the validation model

    图  6   验证模型竖向位移等值线图

    Figure  6.   Contour map of vertical displacement in the verification model

    图  7   三维离散-连续耦合模型

    Figure  7.   Three-dimensional discrete continuous coupled model

    图  8   防突岩体弯折破坏

    Figure  8.   Bending failure of outburst prevention rock mass

    图  9   接触力链图

    Figure  9.   Chain diagram of contact force

    图  10   防突岩体剪切破坏

    Figure  10.   Shear failure of prevention burst rock mass

    图  11   防突岩体复合破坏

    Figure  11.   Compound failure of outburst prevention rock mass

    图  12   3种破坏模式下防突岩体裂隙数

    Figure  12.   The number of fracture in the outburst prevention rock mass under three failure modes

    表  1   工程实际围岩物理力学参数

    Table  1   Physical and mechanical parameters of actual surrounding rock

    参数 杨氏模量/GPa 泊松比 黏聚力/MPa 摩擦角/(°) 密度/(kg·m−3)
    取值 6 0.2 1.8 40 2600
    下载: 导出CSV

    表  2   三轴压缩试验颗粒参数

    Table  2   Particle parameters in the triaxial compression test

    参数 最小粒径/mm 粒径比 颗粒密度/(kg·m−3) 孔隙率 加载应变速率
    取值 1 1.66 2500 0.3 0.005
    下载: 导出CSV

    表  3   围岩参数标定结果

    Table  3   Calibration parameters of surrounding rock

    颗粒微观参数 黏结有效模量/ GPa 有效模量/GPa 黏结刚度比 刚度比 平行黏结内摩擦角/(°) 摩擦系数 平行黏结抗拉强度/MPa 平行黏结黏聚力/MPa
    5 5 4 4 40 0.5 3 3
    对应宏观参数内摩擦角/(°黏聚力/MPa泊松比弹性模量/GPa
    37.041.940.216.11
    下载: 导出CSV
  • [1] 钟祖良,高国富,刘新荣,等. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质,2020,47(4):97 − 106. [ZHONG Zuliang,GAO Guofu,LIU Xinrong,et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology,2020,47(4):97 − 106. (in Chinese with English abstract)]

    ZHONG Zuliang, GAO Guofu, LIU Xinrong, et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 474): 97106. (in Chinese with English abstract)

    [2] 曾斌, 陈植华, 邵长杰,等. 基于地下水流系统理论的岩溶隧道涌突水来源及路径分析[J]. 地质科技通报,2022,41(1):99 − 108. [ZENG Bin, CHEN Zhihua, SHAO Changjie, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology,2022,41(1):99 − 108.(in Chinese with English abstract)]

    ZENG Bin, CHEN Zhihua, SHAO Changjie, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology, 2022, 411): 99108.(in Chinese with English abstract)

    [3] 颜慧明, 常威, 郭绪磊, 等. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报,2022,41(1):127 − 136. [YAN Huiming, CHANG Wei, GUO Xulei, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology,2022,41(1):127 − 136.(in Chinese with English abstract)]

    YAN Huiming, CHANG Wei, GUO Xulei, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 411): 127136.(in Chinese with English abstract)

    [4] 李华明,张永辉,胡志平,等. 峨汉高速庙子坪隧道岩溶发育特征及工程效应分析[J]. 中国地质灾害与防治学报,2022,33(1):92 − 98. [LI Huaming,ZHANG Yonghui,HU Zhiping,et al. Analysis of Karst development characteristics and influence of Miaoziping tunnel in E-Han expressway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):92 − 98. (in Chinese with English abstract)]

    LI Huaming, ZHANG Yonghui, HU Zhiping, et al. Analysis of Karst development characteristics and influence of Miaoziping tunnel in E-Han expressway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 331): 9298. (in Chinese with English abstract)

    [5] 段天宇, 成建梅, 段勇, 等. 隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析[J]. 地质科技通报,2023,42(4):183 − 193. [DUAN Tianyu, CHENG Jianmei, DUAN Yong, et al. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology,2023,42(4):183 − 193.(in Chinese with English abstract)]

    DUAN Tianyu, CHENG Jianmei, DUAN Yong, et al. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology, 2023, 424): 183193.(in Chinese with English abstract)

    [6]

    YAN Changbin,XU Guoyuan,ZUO Yujun. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory[J]. Transactions of Nonferrous Metals Society of China,2006,16(3):735 − 740. DOI: 10.1016/S1003-6326(06)60130-1

    [7] 刘波,肖红飞. 隧道下伏溶洞顶板安全厚度确定方法[J]. 中国安全科学学报,2019,29(4):104 − 111. [LIU Bo,XIAO Hongfei. Method for determining safe thickness of cave roofs under a tunnel[J]. China Safety Science Journal,2019,29(4):104 − 111. (in Chinese with English abstract)]

    LIU Bo, XIAO Hongfei. Method for determining safe thickness of cave roofs under a tunnel[J]. China Safety Science Journal, 2019, 294): 104111. (in Chinese with English abstract)

    [8] 周栋梁,邹金锋. 岩溶区分岔隧道底板的安全厚度[J]. 中南大学学报(自然科学版),2015,46(5):1886 − 1892. [ZHOU Dongliang,ZOU Jinfeng. Safe thickness of floor of forked tunnel in Karst areas[J]. Journal of Central South University (Science and Technology),2015,46(5):1886 − 1892. (in Chinese with English abstract)] DOI: 10.11817/j.issn.1672-7207.2015.05.042

    ZHOU Dongliang, ZOU Jinfeng. Safe thickness of floor of forked tunnel in Karst areas[J]. Journal of Central South University (Science and Technology), 2015, 465): 18861892. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2015.05.042

    [9]

    HUANG Xin,LI Shucai,XU Zhenhao,et al. An attribute recognition model for safe thickness assessment between concealed Karst cave and tunnel[J]. Journal of Central South University,2019,26(4):955 − 969. DOI: 10.1007/s11771-019-4063-1

    [10]

    MEGUID M A,DANG H K. The effect of erosion voids on existing tunnel linings[J]. Tunnelling and Underground Space Technology,2009,24(3):278 − 286. DOI: 10.1016/j.tust.2008.09.002

    [11] 江学良,曹平,杨慧,等. 水平应力与裂隙密度对顶板安全厚度的影响[J]. 中南大学学报(自然科学版),2009,40(1):211 − 216. [JIANG Xueliang,CAO Ping,YANG Hui,et al. Effect of horizontal stress and rock crack density on roof safety thickness of underground area[J]. Journal of Central South University (Science and Technology),2009,40(1):211 − 216. (in Chinese with English abstract)]

    JIANG Xueliang, CAO Ping, YANG Hui, et al. Effect of horizontal stress and rock crack density on roof safety thickness of underground area[J]. Journal of Central South University (Science and Technology), 2009, 401): 211216. (in Chinese with English abstract)

    [12] 李浪,陈显波,程金星,等. 深长隧道突涌水灾害防突岩盘模型试验研究[J]. 岩石力学与工程学报,2020,39(增刊2):3278-3285. [LI Lang,CHEN Xianbo,CHENG Jinxing,et al. Model test to investigate waterproof-resistant slab for water inrush geohazards in deep buried and long tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3278-3285. (in Chinese with English abstract)]

    LI Lang, CHEN Xianbo, CHENG Jinxing, et al. Model test to investigate waterproof-resistant slab for water inrush geohazards in deep buried and long tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3278-3285. (in Chinese with English abstract)

    [13] 肖喜,赵晓彦,张巨峰,等. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报,2022,30(2):459 − 474. [XIAO Xi,ZHAO Xiaoyan,ZHANG Jufeng,et al. Classification of water inrush failure mode and rock thickness for preventing water inrush in Karst tunnels[J]. Journal of Engineering Geology,2022,30(2):459 − 474. (in Chinese with English abstract)]

    XIAO Xi, ZHAO Xiaoyan, ZHANG Jufeng, et al. Classification of water inrush failure mode and rock thickness for preventing water inrush in Karst tunnels[J]. Journal of Engineering Geology, 2022, 302): 459474. (in Chinese with English abstract)

    [14] 黄鑫. 隧道突水突泥致灾系统与充填溶洞间歇型突水突泥灾变机理[D]. 济南:山东大学,2019. [HUANG Xin. Water and Mud Inrush Hazard-Causing System and Disaster Mechanism of Intermittent Type of Water and Mud Inrush of Filled Karst Cave in Tunnel[D]. Jinan: Shandong University,2019]. (in Chinese with English abstract)]

    HUANG Xin. Water and Mud Inrush Hazard-Causing System and Disaster Mechanism of Intermittent Type of Water and Mud Inrush of Filled Karst Cave in Tunnel[D]. Jinan: Shandong University, 2019]. (in Chinese with English abstract)

    [15] 徐爽,朱浮声,张俊. 离散元法及其耦合算法的研究综述[J]. 力学与实践,2013,35(1):8 − 14. [XU Shuang,ZHU Fusheng,ZHANG Jun. A overview of the discrete element method and its coupling algorithms[J]. Mechanics in Engineering,2013,35(1):8 − 14. (in Chinese with English abstract)] DOI: 10.6052/1000-0879-12-269

    XU Shuang, ZHU Fusheng, ZHANG Jun. A overview of the discrete element method and its coupling algorithms[J]. Mechanics in Engineering, 2013, 351): 814. (in Chinese with English abstract) DOI: 10.6052/1000-0879-12-269

    [16] 谭鑫,胡政博,冯龙健,等. 软土中碎石桩模型试验的三维离散-连续介质耦合数值模拟[J]. 岩土工程学报,2021,43(2):347 − 355. [TAN Xin,HU Zhengbo,FENG Longjian,et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):347 − 355. (in Chinese with English abstract)] DOI: 10.11779/CJGE202102015

    TAN Xin, HU Zhengbo, FENG Longjian, et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 432): 347355. (in Chinese with English abstract) DOI: 10.11779/CJGE202102015

    [17] 严琼,吴顺川,周喻,等. 基于连续-离散耦合的边坡稳定性分析研究[J]. 岩土力学,2015,36(增刊2):47-56. [YAN Qiong,WU Shunchuan,ZHOU Yu,et al. Slope stability analysis based on technology of continuum-discrete coupling[J]. Rock and Soil Mechanics,2015,36(Sup 2):47-56. (in Chinese with English abstract)]

    YAN Qiong, WU Shunchuan, ZHOU Yu, et al. Slope stability analysis based on technology of continuum-discrete coupling[J]. Rock and Soil Mechanics, 2015, 36(Sup 2): 47-56. (in Chinese with English abstract)

    [18] 陈振华. 沉桩的离散-连续耦合数值分析[D]. 福州:福州大学,2013. [CHEN Zhenhua. Discrete-continuous coupling numerical analysis of pile sinking[D]. Fuzhou:Fuzhou University,2013. (in Chinese with English abstract)]

    CHEN Zhenhua. Discrete-continuous coupling numerical analysis of pile sinking[D]. Fuzhou: Fuzhou University, 2013. (in Chinese with English abstract)

    [19] 叶成银,龚维明,周马生,等. 沉桩过程三维离散-连续耦合数值模拟分析研究[J]. 公路,2019,64(4):61 − 67. [YE Chengyin,GONG Weiming,ZHOU Masheng,et al. Three-dimensional discrete-continuous coupling numerical simulation analysis of pile sinking process[J]. Highway,2019,64(4):61 − 67. (in Chinese)]

    YE Chengyin, GONG Weiming, ZHOU Masheng, et al. Three-dimensional discrete-continuous coupling numerical simulation analysis of pile sinking process[J]. Highway, 2019, 644): 6167. (in Chinese)

    [20] 刘波. 强夯的三维连续-离散耦合数值模拟[D]. 上海:同济大学,2018. [LIU Bo. Three-dimensional continuous-discrete coupling numerical simulation of dynamic compaction[D]. Shanghai:Tongji University,2018. (in Chinese with English abstract)]

    LIU Bo. Three-dimensional continuous-discrete coupling numerical simulation of dynamic compaction[D]. Shanghai: Tongji University, 2018. (in Chinese with English abstract)

    [21] 余宾赛. 基于离散-连续耦合方法的黄土隧道压力拱效应研究[D]. 西安:西安科技大学,2019. [YU Binsai. Study on pressure arch effect of loess tunnel based on discrete-continuous coupling method[D]. Xi’an:Xi’an University of Science and Technology,2019. (in Chinese with English abstract)]

    YU Binsai. Study on pressure arch effect of loess tunnel based on discrete-continuous coupling method[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)

    [22] 徐国文,何川,汪耀,等. 层状软岩隧道围岩破坏的连续-离散耦合分析[J]. 西南交通大学学报,2018,53(5):966 − 973. [[XU Guowen,HE Chuan,WANG Yao,et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model[J]. Journal of Southwest Jiaotong University,2018,53(5):966 − 973. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0258-2724.2018.05.013

    [XU Guowen, HE Chuan, WANG Yao, et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model[J]. Journal of Southwest Jiaotong University, 2018, 535): 966973. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.2018.05.013

    [23] 马亚丽娜,崔臻,盛谦,等. 正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究[J]. 岩土工程学报,2020,42(11):2088 − 2097. [MA Y,CUI Zhen,SHENG Qian,et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2088 − 2097. (in Chinese with English abstract)] DOI: 10.11779/CJGE202011014

    MA Y, CUI Zhen, SHENG Qian, et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 4211): 20882097. (in Chinese with English abstract) DOI: 10.11779/CJGE202011014

    [24] 高峰,谭绪凯,陈晓宇,等. 基于离散-连续耦合方法的隧道压力拱特性研究[J]. 计算力学学报,2020,37(2):218 − 225. [GAO Feng,TAN Xukai,CHEN Xiaoyu,et al. Research on tunnel pressure arch based on coupled discrete and continuous method[J]. Chinese Journal of Computational Mechanics,2020,37(2):218 − 225. (in Chinese with English abstract)] DOI: 10.7511/jslx20190427001

    GAO Feng, TAN Xukai, CHEN Xiaoyu, et al. Research on tunnel pressure arch based on coupled discrete and continuous method[J]. Chinese Journal of Computational Mechanics, 2020, 372): 218225. (in Chinese with English abstract) DOI: 10.7511/jslx20190427001

    [25] 袁海平,王昱博. 基于连续-离散耦合方法的小间距深埋硐室合理间距研究[J]. 矿业研究与开发,2021,41(8):16 − 21. [YUAN Haiping,WANG Yubo. Research on reasonable spacing of small spacing deep-buried chamber based on continuous-discrete coupled method[J]. Mining Research and Development,2021,41(8):16 − 21. (in Chinese with English abstract)]

    YUAN Haiping, WANG Yubo. Research on reasonable spacing of small spacing deep-buried chamber based on continuous-discrete coupled method[J]. Mining Research and Development, 2021, 418): 1621. (in Chinese with English abstract)

    [26] 刘波,杨亚刚. 基于离散裂隙网络与离散元耦合方法的礼让隧道岩体力学参数确定[J]. 科学技术与工程,2020,20(23):9567 − 9573. [LIU Bo,YANG Yagang. Determination of mechanical parameters on rock mass of Lirang tunnel based on discrete fracture network-discrete element method coupling technology[J]. Science Technology and Engineering,2020,20(23):9567 − 9573. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.23.045

    LIU Bo, YANG Yagang. Determination of mechanical parameters on rock mass of Lirang tunnel based on discrete fracture network-discrete element method coupling technology[J]. Science Technology and Engineering, 2020, 2023): 95679573. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.23.045

    [27] 胡杰,何满潮,李兆华,等. 基于三维离散-连续耦合方法的NPR锚索-围岩相互作用机理研究[J]. 工程力学,2020,37(7):27 − 34. [HU Jie,HE Manchao,LI Zhaohua,et al. Numerical study on npr cable-rock interaction using 3d discrete-continuous coupling method[J]. Engineering Mechanics,2020,37(7):27 − 34. (in Chinese with English abstract)] DOI: 10.6052/j.issn.1000-4750.2019.07.0390

    HU Jie, HE Manchao, LI Zhaohua, et al. Numerical study on npr cable-rock interaction using 3d discrete-continuous coupling method[J]. Engineering Mechanics, 2020, 377): 2734. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2019.07.0390

  • 期刊类型引用(1)

    1. 杨娥. 变权云模型在既有高速公路边坡健康评估中的应用研究. 安全与环境学报. 2024(12): 4552-4559 . 百度学术

    其他类型引用(0)

图(12)  /  表(3)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  6
  • PDF下载量:  23
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2023-01-05
  • 录用日期:  2023-02-27
  • 网络出版日期:  2024-01-19
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回
x 关闭 永久关闭