Processing math: 33%
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

旱区不同层状结构土壤的水分运移过程与模拟

王强民, 赵明, 彭鸿杰, 胡贵明, 马开峰, 郭珂珂, 刘璞

王强民,赵明,彭鸿杰,等. 旱区不同层状结构土壤的水分运移过程与模拟[J]. 水文地质工程地质,2023,50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076
引用本文: 王强民,赵明,彭鸿杰,等. 旱区不同层状结构土壤的水分运移过程与模拟[J]. 水文地质工程地质,2023,50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076
WANG Qiangmin, ZHAO Ming, PENG Hongjie, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076
Citation: WANG Qiangmin, ZHAO Ming, PENG Hongjie, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076

旱区不同层状结构土壤的水分运移过程与模拟

基金项目: 国家自然科学基金项目(42007179);大学生创新创业训练计划项目(G202210710131)
详细信息
    作者简介:

    王强民(1989-),男,博士研究生,助理研究员,主要从事矿区生态修复研究。E-mail:wangqiangmin@cctegxian.com

    通讯作者:

    赵明(1992-),男,博士,讲师,主要从事旱区生态水文研究。E-mail:934517520@qq.com

  • 中图分类号: P641;S156.1

Water transport process and simulation of layered soils with different configurations in an arid region

  • 摘要:

    针对位于干旱-半干旱气候带的我国西北部矿区生态修复过程中重构层状土壤水分运移规律不清等问题,通过设置不同层状结构土壤进行水分运移入渗试验,监测土壤剖面水分变化,采用Hydrus-1D模拟降雨入渗过程,从土壤水分、水势和水通量3个方面揭示层状土壤水分运移特征,并基于优化后的模型进行情景模拟,探究夹层特征对浅层土壤水分运移的影响。研究结果表明,夹层明显改变了土壤水分的分配与运移过程,土壤水势在夹层界面连续分布,而土壤水分在夹层界面发生突变;虽然黄土夹层和风化砂岩夹层都阻滞了土壤水分的下渗,但其阻滞原理不同,前者表现为黏质夹层渗透性能差导致夹层以上土壤水分滞留,后者归因于粗质夹层土壤基质势小造成水分持留在上部黏质土壤中;根据不同夹层属性的情景模拟结果,提出在风积沙40 cm深度处设置20 cm厚的黄土夹层有利于提高夹层以上土壤水分以供植被利用。研究探明了风积沙区充填黄土对土壤水分运动的影响,并为土壤类型以风积沙和黄土为主的我国西北部矿区在生态修复中的土壤重构方式提供了参考依据。

    Abstract:

    The mining area in northwest China is located in the arid and semi-arid zone, in which the surface water resource is sparse and the ecological environment is fragile. Coupled with the exploitation of mineral resources, the land has been degraded seriously. How to realize the efficient reclamation of soil and the effective utilization of soil water is an urgent scientific and technical problem. In this study, the layered soil with different configurations is set up for water transport and infiltration test to monitor the moisture changes in the soil profile. Hydrus-1D is used to simulate the rainfall infiltration process and reveal the water transport characteristics of layered soil from three aspects: soil moisture, water potential and water flux. The scenario simulation is conducted based on the optimized model to explore the effect of interlayer characteristics on shallow soil water. The results show that the interlayer significantly changes the distribution and transport of soil water, and the soil water potential is continuously distributed at the interlayer interface, while the soil water abruptly changes at the interlayer interface. Although loess interlayer and weathered sandstone interlayer both block the infiltration of soil water, the principle and the source of water increase are different. The former is the retention of soil water above the interlayer due to

    the poor permeability of loess, while the latter is the retention of water above the interlayer due to the small matrix potential of the coarser interlayer. According to the results of the model, it is suggested that setting loess interlayer of 20 cm thick at the depth of 40 cm of aeolian sand is conducive to increase soil moisture above the interlayer for vegetation utilization. Summarily, the results can provide a theoretical basis for understanding and mastering the layered soil hydrological process in arid regions and optimizing the soil reconstruction mode in the process of land reclamation and ecological restoration.

  • 位于干旱-半干旱的中国西北部矿区面临着2个主要生态环境问题,其一是气候干旱,地表水资源短缺,年降水量不足且分布不均,陆地生态环境极其脆弱[1-2];其二是矿产资源的开发,大面积的土地被破坏,进一步加剧了生态退化[3-4]。土地复垦是保护土地资源、改善区域环境的重要手段,而土壤重构又是土地复垦的核心内容,其关键在于土壤剖面重构[5-6]。然而对于我国西北部矿区土壤水的气候条件,土壤水分是改良土壤的首要因子,因其是物质传输和转化的载体,也是维持植被和农作物生存和生长的关键制约因素。研究表明土壤中的层状结构对土壤水分的入渗过程起到减渗作用[7-12],影响了水的分布状况。不同的用地类型进行的土壤重构对土壤水分运移影响的侧重点不同,例如:对于生态用地应减少地表径流,平衡土壤蒸发、植被耗水和地下水补给之间的关系,以期维持水文生态系统的长期稳定[13];对于农业用地应提高耕作层土壤的持水能力,减少深层渗漏以保障作物需水量[314]

    层状土壤水分运移过程较均质土壤而言,发生了较大的变异,土壤水分的入渗过程变得更为复杂,主要是由于夹层处土壤的水力性质发生了突变,如进气值、基质势和非饱和渗透系数等。根据土壤质地的差异,可将层状土壤分为上粗下细和上细下粗2种类型,然而两者结构的层状土对水分运移的影响机理又截然不同:对于上粗下细型,由于渗透性能的差异,水分达到交界面时受到导水障碍[15-16];对于上细下粗型,上层细质土的土壤水吸力使水分不能进入粗相土,也就是形成了毛细屏障[17-20],只有当交界面细质土土水势大于粗相土土水势时,毛细屏障被打破,水流才能继续向下移动。夹层的位置、数量、厚度和夹层土壤质地等对土壤水的入渗过程都有一定的影响:王文焰等[21]发现当湿润锋穿过界面后入渗率变为常数,且与上层土壤饱和导水率成正比。李毅等[22]指出夹层的层位越靠上,相应的累积入渗量越小;王晓彤等[23]通过正交试验发现夹层厚度对持水系数影响最大,而夹层位置对持水系数影响最小。马蒙蒙等[24]指出层状土壤中湿润锋随时间的推进方式由非线性过渡至线性,入渗率逐渐减小。

    综上分析,学者们主要是对层状土在水分入渗过程中湿润锋、入渗量以及入渗速率等指标的表述,而欠缺对不同结构层状土壤剖面的土壤水分运移机理的揭示。并且对位于陕北的风积沙与黄土过渡带,亟需在受损矿区进行土壤重构过程中提出科学高效的重构技术参数。因此,本文拟通过可控的室内层状土壤水分入渗试验并结合数值模拟揭示夹层土壤水分运移的影响机制等相关问题,研究成果在旱区层状土壤水分运移理论研究和土地整治应用上都具有重要意义。

    本研究以干旱-半干旱区的陕北榆神矿区为研究区。区内大部分地区地下水位埋深在3~10 m[25],非均质土壤结构普遍存在,据调查主要表现为2种形式:天然沙盖黄土和土地整治后的非均质体。本文以区内典型的风积沙、沙盖黄土和风化砂岩为研究对象,通过野外获取土壤样在室内进行颗粒分析,得到3种多孔介质的物理性质,见表1。风积沙的粒径主要分布在0.075~0.25 mm之间,占比为85%以上,属于粉细砂;风化砂岩的粒径主要分布在0.075~0.5 mm之间,占比为95%以上,属于中砂;黄土的粒径主要分布在0.002~0.25 mm之间,占比为92%以上,属于砂壤土。

    表  1  多孔介质的物理特性
    Table  1.  Physical properties of porous media in the experiment
    多孔
    介质
    颗粒组成/%干容重/(g·cm−3孔隙度定名
    <0.02 mm0.02~
    <0.05 mm
    0.05~
    <0.075 mm
    0.075~ <0.25 mm0.25~
    0.5 mm
    风积沙8.888.23.01.450.37粉细砂
    风化砂岩4.863.531.71.320.30中砂
    黄土19.934.525.120.30.21.65砂壤土
    下载: 导出CSV 
    | 显示表格

    试验装置由蒸渗仪、马氏瓶、降雨喷淋器及数据采集系统构成,见图1。降雨装置由3组独立供水系统的降雨喷淋器组成,喷淋高度为30 cm,喷淋面积100π cm2,喷淋强度可调节。有压入渗装置主体为马氏瓶,其工作原理见文献[26]。蒸渗仪为透明有机玻璃材质,内径20 cm,高110 cm;上部开口,底部由滤网、溢流口和排气口组成;蒸渗仪侧壁留有圆形孔,用于传感器引线。本次研究设置均质风积沙(US)、风积沙-黄土-风积沙(SLS)和风积沙-风化砂岩-风积沙(SMS)3组蒸渗仪。其中,2组层状结构土柱的夹层位置在40~60 cm,厚度为20 cm。回填过程中,按测定土样容重,20 cm/层进行填装,通过注排水进行密实,并进行打毛处理。每装填至预留圆形孔时,安装土壤含水率传感器(从土壤表层往下深度依次为0,10,20,30,50,80 cm),并连接EM50数采设备,监测频率为10 min/次。填装完成后,土壤表面覆盖滤纸,底部排水口打开并静置1个月,使土壤剖面含水率稳定在一个较低的水平,继而开始入渗试验。本试验土壤样品取样点的地下水水位埋深较大,超过8.2 m,因此土柱下边界设计成自由排水形式。

    图  1  试验装置示意图
    Figure  1.  Schematic diagram of test device

    (1)有压入渗试验

    试验过程维持水头恒定在20 mm,供水时间为10 min,之后停止马氏瓶供水,连续监测土壤水入渗过程,10 d后试验结束。

    (2)降雨入渗试验

    按照我国气象部门一般采用的降雨强度标准,设置小雨、中雨和大雨3种降雨强度,即5,15,25 mm/h,降雨时长为1 h。每组降雨试验连续监测土壤水入渗过程超过12 d。

    根据水力参数的实测值,结合有压入渗试验,利用Hydrus-1D及Inverse Solution模块,反演不同结构土柱的最优水力参数值。基于优化的水力参数值,模拟不同降雨强度下土壤水分运移过程,揭示层状土壤降雨入渗机理以及夹层对土壤水分再分配的影响机制,最后,综合考虑夹层厚度、位置和数量等因素,模拟多种结构情景下土壤水分运移过程,率定夹层属性对土壤水分运移的影响。

    非饱和土壤水分运移方程如下:

    c(h)ht=z[K(h)hz]K(h)z (1)

    式中:h——压力水头/cm;

    c(h)——容水度/cm−1

    K(h)——非饱和渗透系数/(cm·d−1);

    z——空间垂直坐标;

    t——时间。

    式中涉及非饱和土壤水力特性c(h)和K(h)采用van Genuchten(VG)[27]方程表示:

    w(h)={wr+wswr[1+|αh|n]11n,h<0ws,h (2)
    K\left(h\right)=\frac{{K}_{\mathrm{s}}{\left[1-\left({\left|\alpha h\right|)}^{n-1}{\left[\left(1+{\left|\alpha h\right|}^{n}\right)\right]}^{-m}\right.\right]}^{2}}{{\left[\left(1+{\left|\alpha h\right|}^{n}\right)\right]}^{m/2}} (3)

    式中:w(h)——非饱和含水率/(cm3·cm−3);

    ws——饱和含水率/(cm3·cm−3);

    wr——残余含水率/(cm3·cm−3);

    Ks——饱和渗透系数/(cm·min−1);

    α——进气参数/cm−1

    n——孔径分布参数/(cm·cm−1);

    m——经验参数,数值上等于1-1/n

    利用Ku-pF非饱和渗透系数测量系统测量原状土的压力水头-土壤含水率数据,用Matlab对VG公式进行拟合,得到参数值αn,见表2

    表  2  VG公式水力参数的拟合值
    Table  2.  Fitting values of hydraulic parameters of VG formula
    多孔介质wr/(cm3·cm−3ws/(cm3·cm−3α/cm−1nKs/(cm·min−1
    风积沙0.030.340.0173.120.28
    黄土0.100.460.0381.210.03
    风化砂岩0.010.300.0264.080.57
    下载: 导出CSV 
    | 显示表格

    模型的初始条件、边界条件和步长设置如下:

    (1)初始条件

    有压入渗模型和不同降雨强度入渗模型的初始条件为室内试验开始的实测土壤剖面含水率。情景模拟的初始条件设置为田间持水率。

    (2)边界条件

    有压入渗模型的上边界条件为第三类边界条件,有压入渗时设置为定水头,入渗结束后为定通量边界。不同降雨强度入渗模型的上边界条件为定通量边界。情景模拟的上边界条件设置为大气边界。模型的下边界设置为自由排水边界。

    (3)时间、空间步长

    有压入渗模型和不同降雨强度入渗模型的时间步长设置为1 min;情景模拟的时间步长设置为1 d,总模拟时长为365 d。所有模型的空间步长为1 cm,有压入渗模型和不同降雨强度入渗模型的土壤剖面模型深度为100 cm;情景模拟的土壤剖面模型深度为200 cm。

    情景模拟设置的土壤厚度为200 cm,以SLS的厚度、位置和数量为试验的变量因素,每个因素选取4~5个水平。考虑研究区植物的根系分布特征,设计上层土壤厚度为40 cm,夹层厚度按照递增规律依次设置为4,10,20,40,80,100 cm;夹层数量设置为1,2,3,4层,见图2。SMS的情景试验设计与SLS一样。

    图  2  情景模拟试验设计示意图
    Figure  2.  Schematic diagram of the scenario simulation test design

    利用实测变量对模型进行校正的逆建模方法,是反演水力参数的常用方法。Hydrus-1D包括Marquardt-Levenberg型参数优化算法,其通过最小化目标函数进行运算 [28-29]。本次研究基于该方法,利用含水率实测值进行逆建模,实现模型参数的反演与优化。从图3表3中土壤剖面含水率的模拟值和实测值(对于 SLS,10 cm 处的传感器故障,数据缺失) 的对比关系可以看出模拟效果良好,且土壤深度越深,模拟的结果越接近实测值。所以,经过研究认为可以将反演得到的土壤水力参数值作为最优值用于降雨入渗正演模型和情景模拟中。

    图  3  有压入渗试验土壤含水率实测值与模拟值(第一行US;第二行SLS;第三行SMS)
    Figure  3.  Measured and simulated values of soil moisture content in the pressure infiltration test (row 1: US; row 2: SLS; row 3: SMS)
    表  3  反演水力参数误差分析
    Table  3.  Error analysis of the inversed hydraulic parameters
    深度/cmUSSLSSMS
    均方根
    误差
    平均绝对
    误差
    均方根
    误差
    平均绝对
    误差
    均方根
    误差
    平均绝对
    误差
    00.0480.2070.0400.1170.0340.251
    100.0320.2070.0210.170
    200.0140.0860.0210.0670.0160.121
    300.0100.0390.0090.0140.0080.046
    500.0120.0650.0090.0480.0110.025
    800.0100.0120.0030.0100.0230.035
    下载: 导出CSV 
    | 显示表格

    Hydrus-1D反演模型得到的3种层状结构土壤优化后的土壤水力参数见表4。其中,饱和渗透系数Ks的实测值与优化值存在一定的差异,并且同种介质在不同层状土壤中的水力参数值也不尽相同。这主要是由于回填土的容重不易控制与原状土完全一致,且层状结构的综合渗透性与单一介质渗透性存在异参同效,导致层状结构土壤不同介质的水力参数的实测值与优化值存在一定的差异。

    表  4  优化的各层状结构土壤的水力参数
    Table  4.  Optimized hydraulic parameters of porous media for each soil configuration
    土壤
    结构
    多孔
    介质
    wr/(cm3·cm−3ws/(cm3·cm−3α/
    cm−1
    nKs/(cm·min−1
    US风积沙0.040.310.0163.720.225
    SLS风积沙0.030.320.0205.120.17
    黄土0.120.430.0411.270.09
    风积沙0.030.320.0205.010.12
    SMS风积沙0.020.340.0154.370.13
    风化砂岩0.030.310.0551.740.25
    风积沙0.020.340.0153.890.11
    下载: 导出CSV 
    | 显示表格

    图4显示了3种层状结构土壤在不同强度降雨事件下实测土壤水分演化过程。图4(a)显示US表层处土壤含水率对降雨响应最为显著,波动范围为0.12~0.20 cm3/cm3,且随着降雨强度的增加,波动幅度也增加;降雨结束后,土壤含水率快速下降,之后缓慢下降至初始状态水平;10 cm处的含水率对降雨响应程度明显下降,并在0.02 cm3/cm3左右波动;20~30 cm处的含水率对降雨的响应出现明显的滞后效应,降雨强度越大,滞后时间越小;50~80 cm处的含水率对5,12 mm/h的降雨事件几乎没有响应,仅对25 mm/h的降雨事件有响应。图4(b)显示的SLS土壤表层至30 cm深度处的含水率演化趋势与US相似,但是波动幅度有所减小;50 cm处的含水率一直维持在0.335 cm3/cm3的较高水平且相对稳定;80 cm处的含水率也仅对25 mm/h的降雨事件有响应。从图4(c)可以发现,对于SMS,0~50 cm处的土壤含水率和US表现出相似的演变规律,而80 cm处的含水率在3种雨强下皆表现出升高的趋势,且降雨强度越大,含水率升高的越快。

    图  4  土壤水分演化特征
    Figure  4.  Characteristics of soil water evolution

    图5显示了US、SLS和SMS 3种土壤结构在降雨强度为12 mm/h下的土壤剖面含水率、总水头(基质势与位置势之和)和水分通量(向下为负,向上为正)的模拟结果。对于US,土壤剖面含水率连续分布,且可分为三个区:0~40 cm为剧烈变动区,其值在0.08~0.18 cm3/cm3之间波动;40~60 cm为过渡区,含水率变化相对较小,在0.15~0.18 cm3/cm3之间;60 cm以下为稳定区,含水率随土壤深度线性增加,且几乎不受降雨入渗的影响。土壤剖面总水头呈光滑连续分布。初始时刻,土壤剖面总水头呈发散型(0~30 cm)和汇聚型(30~60 cm)模式分布;降雨后,土壤剖面总水头分布向单一汇聚型转变,并最终呈入渗型分布。从土壤剖面水分通量可以看出,降雨发生后,0~30 cm内的水分向下传输,30 cm以深的水向上传输,随着时间的推移,土壤剖面水分通量逐渐减小,最终,整个土壤剖面的水分通量皆向下且随深度线性减小。

    图  5  降雨强度为12 mm/h下US(Ⅰ)、SLS(Ⅱ)和SMS(Ⅲ)含水率、总水头和水分通量的剖面分布
    Figure  5.  Profile distribution of soil moisture content, hydraulic head and water flux at rainfall intensity of 12 mm/h (Ⅰ: US, Ⅱ: SLS, Ⅲ: SMS)

    对于SLS,土壤剖面含水率表现出明显的不连续分布特征,含水率在夹层界面处发生了突变,夹层内的含水率明显高于夹层两侧的含水率;夹层以上的土壤含水率在0.08~0.20 cm3/cm3之间波动,尤其20~40 cm处的含水率要高于US对应位置的含水率,出现了“积水”的现象,而夹层以下土壤含水率不受降雨入渗影响。土壤剖面总水头是连续分布的,在降雨发生时,仅夹层以上土壤剖面总水头发生了变化,且夹层上界面处的总水头出现了明显升高,夹层及夹层以下土壤剖面的总水头几乎不发生变化。从剖面水分通量变化可以看出,降雨发生后,夹层以上的土壤水分以向下运动为主,且随着时间的推移,土壤剖面水分通量逐渐减小;而夹层及夹层以下几乎无水分通量。

    对于SMS,土壤含水率在夹层界面处也发生了突变,夹层内的含水率几乎无变化,且要低于夹层两侧的含水率;夹层以上土壤含水率值及波动幅度皆小于US、SLS对应位置的含水率;夹层以下的含水率略微减少。土壤剖面总水头从降雨前的发散型(0~30 cm)和汇聚型(30~60 cm)模式,在降雨后向单一汇聚型转变,并最终呈蒸发型分布。在降雨发生后,在0~30 cm内水分向下运动,30 cm以深的水分向上运动;随着时间的推移,剖面水分皆向上传输,且水分通量随深度不断减小。

    有别于均质土壤水分运动规律,非均质土壤对水分运动的影响主要是由于土体中的异质层,造成了水流阻滞效应,使得夹层界面处的土壤孔隙和水力学性质出现明显的变化,水分滞留在夹层以上的土壤层,从而影响整个土体剖面水分的运移和分布,进而加剧了降水入渗水流过程的复杂性。

    从试验和模拟结果可以发现,黄土夹层和风化砂岩夹层都显著改变了土壤剖面水势的分布,水分运移在夹层界面处受到阻滞(图5)。崔浩浩等[30]指出非均质层状结构对水分运移的阻滞起到了“储水蓄能”的作用,并且一定程度上对单次降雨的脉冲式影响起到滤波作用,使得多次降雨的影响叠加到一起,当夹层界面处的水分克服了阻力后才能向下运移。虽然2种质地夹层的土壤都对土壤水分表现出阻滞作用,但其原理截然不同:当土壤水向下运移时,对于黄土夹层,由于其渗透性能较差,相当于隔水层阻滞了水分向下迁移;对于风化砂岩夹层,由于上部细粒介质对水分的吸持力较大,使得夹层以上土壤总水头低于夹层处土壤总水头,造成土壤水分运移受阻,且研究表明降雨强度越大,阻滞作用越强,归因于降雨强度越大,雨水入渗时的水驱气过程越强烈。

    本研究继而探索饱和导水率进气参数的变异性对夹层阻滞效应的影响。图6显示了夹层上界面水分通量对饱和渗透系数(Ks)和进气参数(α)的敏感性。对于黄土夹层,夹层上界面水分通量与Ks呈线性正相关,且对 Ks的变化较为敏感,意味着夹层介质的渗透性能越差,土壤的滞水能力越强;而夹层上界面水分通量与α呈对数相关,且对α 的变化较为敏感,意味着进气参数越小,土壤的滞水能力越强。对于风化砂岩夹层,夹层上界面水分通量与Ks呈对数相关,意味着夹层介质的渗透性能越强,其滞水能力也越强;而夹层上界面水分通量对α的敏感性较低。由此可知,夹层的质地对于土壤水分运移会产生影响,对于黄土夹层,渗透性能越差起到的隔水效果越强;而对于风化砂岩夹层,其是通过提高水分的向上传输间接起到阻滞水分向下传输的效果。

    图  6  夹层上界面水分通量(向上为正,向下为负)对饱和导水率和进气参数敏感性分析
    Figure  6.  Sensitivity analysis of interfacial water flux (positive upward and negative downward) to Ks and α on the interlayer

    西北内陆地区天然植被对土壤水具有强烈的依赖性,而包气带岩性结构对土壤水的分布具有明显影响,与单一岩性相比,多种岩性的组合结构有效持水量较大,生态效应更强。层状土壤对水分运移的阻滞效应可以为旱区植被生态恢复和水资源管理提供依据。例如,在毛乌素风沙滩地,由于潜在蒸发强烈,降水稀少,并以小强度降水事件居多,导致入渗的降水在未运移到深部土层时就被蒸发损失掉,形成了无效的降水;对于强降水,入渗的雨水迅速运移至深部土层,发生漏失,不能有效持留在浅部土层被植被利用。研究认为可以通过风沙滩地土壤结构重构,在某深度处设置黏质层,构造层状土壤结构,当土壤水向下运移时,由于细粒的渗透性能较差,水分运移速度会减缓,从而加强了包气带滞水效应,包气带持有的有效水分能够供给植被,发挥浅层包气带水的生态功能[31],同时又可以通过打断毛细上升高度抑制蒸发[32]。陶正平等[33]指出鄂尔多斯盆地风积沙覆基岩型包气带结构有利于土壤水分的富集与保持,对维持当地生态系统具有重要作用。另外,在煤矿塌陷区、地裂缝、露天煤场等区域的生态修复和土地复垦过程中,通过设置夹层改善土壤水分的分布特征和运移规律,可以改善土壤环境,促进植物生长[3]

    由较细颗粒层覆盖较粗颗粒层组成的岩土结构称之为毛细屏障系统(capillary barrier system,CBS),也可以实现水屏蔽效果,以减少或限制雨水的渗透[1517-18]。这种特性依靠在土壤界面形成毛细管破裂,防止雨水的重力流进入深层[11]。入渗的雨水储存在上覆的细层中,随着入渗量的增加,水分在界面处积累,界面处的吸力逐渐减小,当吸力足够小时,水就会从细层突破到粗层,出现渗水现象,导致CBS失效[19-20]。CBS的性能受降雨模式、强度、土壤特性和坡角等多种因素的影响[17],其机理研究尚不完善。因而,后续可以加强对毛细屏障效应机理及其生态学方面的应用研究。

    影响层状土壤水分运移的因素有很多,层状土壤的质地和分层次序对降雨入渗过程和土壤水分再分布有显著影响[82234]。许尊秋等[35]证实了不同的土层排序引起累计入渗量和入渗速率有明显的差异。吴奇凡等[16]结合晋陕蒙接壤区自然条件,粗质沙土越向上,累积入渗量和入渗速率越大。王晓彤等[23]根据不同夹层厚度、位置和数量对重构土壤入渗和蒸发特性的影响,优化了黄河泥沙充填复垦夹层式土壤剖面设计。陕北风沙滩区大部分优势植被的根系主要分布在40 cm以浅的土壤层,该范围内的土壤水也是根系耗水的主要来源[36]。本研究基于黄土夹层对重构土壤水分入渗阻滞的特征,模拟夹层上界面位置在40 cm时,不同夹层厚度和数量对夹层以上土壤水储量的影响,通过对模拟结果的预分析得到,土壤水分入渗对夹层的数量不敏感,而与夹层的厚度呈对数增长关系。从图7可以看出,随着夹层厚度的增加,夹层以上土壤水储量呈对数函数的增加趋势,当夹层厚度在0~20 cm之间时,土壤水储量处于快速上升阶段;当夹层厚度超过20 cm以后,夹层以上土壤水储量的增加趋势逐渐放缓。分析认为,在一定厚度范围内,随着黏质夹层厚度的增加,水驱气受到的阻力变大,水分越不容易向下入渗;当黏质夹层达到一定厚度时,受到的阻力接近最大值,不再受厚度的影响。也就意味着在风积沙深度40 cm处布设厚度为20 cm左右的黄土夹层可以提高浅层土壤的有效水分,有利于植被的根系吸收,因而可以作为土壤改良的技术参数,以提高植被的成活率。对于处在干旱-半干旱区的中国西北部矿区,分布着广袤的沙盖黄土区,所构建的土壤结构不仅符合研究区的实际情况,又可针对受损土地进行就地取材加以修复。因此,所构建的土壤岩性结构在类似地区具有典型性和推广性。

    图  7  夹层厚度对夹层以上土壤储水量的影响
    Figure  7.  Trend diagram of influence of interlayer thickness on soil water storage above the interlayer

    土壤作为旱区重要的“水库”,是水文循环过程中的一个关键带,对植被的生存和生长发挥着重要作用。土壤质地和结构通过对蒸发、降雨入渗以及储存等过程的影响,控制土壤水分的再分配,进而影响植被生态系统的结构和功能。黏质及其他夹层有助于水分持留在根区,为干旱条件下的植物生长创造有利的土壤水分条件。同时,在一定程度上抑制深层土壤水或地下水向上的传输,减少土壤蒸发和根系吸水造成的损失,通过改变水分收支状况,间接保护地下水资源。

    (1)层状土壤剖面含水率表现出不连续的特征,含水率在夹层处发生了突变,而土壤剖面负压呈连续分布,且在降雨发生时,仅引起夹层以上土壤剖面的基质势变化,降雨强度越大,变化幅度也就越大。然而,黄土夹层和风化砂岩夹层对于土壤水分运移的影响机制不同:前者表现为黏质夹层渗透性能差导致夹层以上土壤水分的滞留,而后者归因于粗相夹层土壤基质势小、进气值大造成水分持留在夹层以上质地相对较细的土壤中。

    (2)探明了夹层土壤质地和结构对土壤水分运移的影响。对于黄土夹层,渗透性能越差所起到的隔水效果越强,而对于风化砂岩夹层,其是通过提高水分的向上传输而间接起到阻滞水分向下传输的效果,2种结构对土壤水的阻滞效果以黄土夹层表现突出。黄土夹层的厚度对土壤水分的阻滞作用有明显的影响,随着夹层厚度增加,阻滞作用增强。

    (3)从提高浅层土壤水分有效性角度考虑,得出在风积沙深度40 cm处设置20 cm厚的黄土夹层是理想的土壤重构技术参数,可以提高夹层以上土壤的保水性,充分发挥“土壤水库”的作用,满足旱区植被的生态需水。

  • 图  1   试验装置示意图

    Figure  1.   Schematic diagram of test device

    图  2   情景模拟试验设计示意图

    Figure  2.   Schematic diagram of the scenario simulation test design

    图  3   有压入渗试验土壤含水率实测值与模拟值(第一行US;第二行SLS;第三行SMS)

    Figure  3.   Measured and simulated values of soil moisture content in the pressure infiltration test (row 1: US; row 2: SLS; row 3: SMS)

    图  4   土壤水分演化特征

    Figure  4.   Characteristics of soil water evolution

    图  5   降雨强度为12 mm/h下US(Ⅰ)、SLS(Ⅱ)和SMS(Ⅲ)含水率、总水头和水分通量的剖面分布

    Figure  5.   Profile distribution of soil moisture content, hydraulic head and water flux at rainfall intensity of 12 mm/h (Ⅰ: US, Ⅱ: SLS, Ⅲ: SMS)

    图  6   夹层上界面水分通量(向上为正,向下为负)对饱和导水率和进气参数敏感性分析

    Figure  6.   Sensitivity analysis of interfacial water flux (positive upward and negative downward) to Ks and α on the interlayer

    图  7   夹层厚度对夹层以上土壤储水量的影响

    Figure  7.   Trend diagram of influence of interlayer thickness on soil water storage above the interlayer

    表  1   多孔介质的物理特性

    Table  1   Physical properties of porous media in the experiment

    多孔
    介质
    颗粒组成/%干容重/(g·cm−3孔隙度定名
    <0.02 mm0.02~
    <0.05 mm
    0.05~
    <0.075 mm
    0.075~ <0.25 mm0.25~
    0.5 mm
    风积沙8.888.23.01.450.37粉细砂
    风化砂岩4.863.531.71.320.30中砂
    黄土19.934.525.120.30.21.65砂壤土
    下载: 导出CSV

    表  2   VG公式水力参数的拟合值

    Table  2   Fitting values of hydraulic parameters of VG formula

    多孔介质wr/(cm3·cm−3ws/(cm3·cm−3α/cm−1nKs/(cm·min−1
    风积沙0.030.340.0173.120.28
    黄土0.100.460.0381.210.03
    风化砂岩0.010.300.0264.080.57
    下载: 导出CSV

    表  3   反演水力参数误差分析

    Table  3   Error analysis of the inversed hydraulic parameters

    深度/cmUSSLSSMS
    均方根
    误差
    平均绝对
    误差
    均方根
    误差
    平均绝对
    误差
    均方根
    误差
    平均绝对
    误差
    00.0480.2070.0400.1170.0340.251
    100.0320.2070.0210.170
    200.0140.0860.0210.0670.0160.121
    300.0100.0390.0090.0140.0080.046
    500.0120.0650.0090.0480.0110.025
    800.0100.0120.0030.0100.0230.035
    下载: 导出CSV

    表  4   优化的各层状结构土壤的水力参数

    Table  4   Optimized hydraulic parameters of porous media for each soil configuration

    土壤
    结构
    多孔
    介质
    wr/(cm3·cm−3ws/(cm3·cm−3α/
    cm−1
    nKs/(cm·min−1
    US风积沙0.040.310.0163.720.225
    SLS风积沙0.030.320.0205.120.17
    黄土0.120.430.0411.270.09
    风积沙0.030.320.0205.010.12
    SMS风积沙0.020.340.0154.370.13
    风化砂岩0.030.310.0551.740.25
    风积沙0.020.340.0153.890.11
    下载: 导出CSV
  • [1] 王文科,宫程程,张在勇,等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke,GONG Chengcheng,ZHANG Zaiyong,et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract)

    WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7): 702-718. (in Chinese with English abstract)

    [2]

    ZHAO Ming,WANG Wenke,WANG Zhoufeng,et al. Water use of Salix in the variably unsaturated zone of a semiarid desert region based on in-situ observation[J]. Journal of Hydrology,2020,591:125579. DOI: 10.1016/j.jhydrol.2020.125579

    [3] 胡振琪,多玲花,王晓彤. 采煤沉陷地夹层式充填复垦原理与方法[J]. 煤炭学报,2018,43(1):198 − 206. [HU Zhenqi,DUO Linghua,WANG Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materals[J]. Journal of China Coal Society,2018,43(1):198 − 206. (in Chinese with English abstract)

    HU Zhenqi, DUO Linghua, WANG Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materals[J]. Journal of China Coal Society, 2018, 43(1): 198-206. (in Chinese with English abstract)

    [4] 王强民,董书宁,王皓,等. 西部风沙区采煤塌陷地裂缝影响下的土壤水分运移规律及调控方法[J]. 煤炭学报,2021,46(5):1532 − 1540. [WANG Qiangmin,DONG Shuning,WANG Hao,et al. Influence of mining subsidence on soil water movement law and its regulation in blown-sand area of Western China[J]. Journal of China Coal Society,2021,46(5):1532 − 1540. (in Chinese with English abstract)

    WANG Qiangmin, DONG Shuning, WANG Hao, et al. Influence of mining subsidence on soil water movement law and its regulation in blown-sand area of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1532-1540. (in Chinese with English abstract)

    [5] 胡振琪,魏忠义,秦萍. 矿山复垦土壤重构的概念与方法[J]. 土壤,2005,37(1):8 − 12. [HU Zhenqi,WEI Zhongyi,QIN Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils,2005,37(1):8 − 12. (in Chinese with English abstract)

    HU Zhenqi, WEI Zhongyi, QIN Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils, 2005, 37(1): 8-12. (in Chinese with English abstract)

    [6] 郑礼全,胡振琪,赵艳玲,等. 采煤沉陷地土地复垦中土壤重构数学模型的研究[J]. 中国煤炭,2008,34(4):54 − 56. [ZHENG Liquan,HU Zhenqi,ZHAO Yanling,et al. A study on the soil restructure mathematical model for land reclamation in coal mining caused subsidence areas[J]. China Coal,2008,34(4):54 − 56. (in Chinese with English abstract)

    ZHENG Liquan, HU Zhenqi, ZHAO Yanling, et al. A study on the soil restructure mathematical model for land reclamation in coal mining caused subsidence areas[J]. China Coal, 2008, 34(4): 54-56. (in Chinese with English abstract)

    [7] 王春颖,毛晓敏,赵兵. 层状夹砂土柱室内积水入渗试验及模拟[J]. 农业工程学报,2010,26(11):61 − 67. [WANG Chunying,MAO Xiaomin,ZHAO Bing. Experiments and simulation on infiltration into layered soil column with sand interlayer under ponding condition[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(11):61 − 67. (in Chinese with English abstract)

    WANG Chunying, MAO Xiaomin, ZHAO Bing. Experiments and simulation on infiltration into layered soil column with sand interlayer under ponding condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 61-67. (in Chinese with English abstract)

    [8]

    ROOIJ G D. Methods of soil analysis part 4 physical methods[J]. Vadose Zone Journal,2004,3:722 − 723.

    [9]

    SI Bing,DYCK M,PARKIN G. Flow and transport in layered soils[J]. Canadian Journal of Soil Science,2011,91(2):127 − 132. DOI: 10.4141/cjss11501

    [10] 涂安国. 层状土壤水分入渗与溶质运移研究进展[J]. 江西农业大学学报,2017,39(4):818 − 825. [TU Anguo. Advances in water infiltration and solute transport in layered soil[J]. Acta Agriculturae Universitatis Jiangxiensis,2017,39(4):818 − 825. (in Chinese with English abstract)

    TU Anguo. Advances in water infiltration and solute transport in layered soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(4): 818-825. (in Chinese with English abstract)

    [11]

    HANKS R J,BOWERS S A. Numerical solution of the moisture flow equation for infiltration into layered soils[J]. Soil Science Society of America Journal,1962,26(6):530 − 534. DOI: 10.2136/sssaj1962.03615995002600060007x

    [12] 王文焰,张建丰,汪志荣,等. 砂层在黄土中的减渗作用及其计算[J]. 水利学报,2005,36(6):650 − 655. [WANG Wenyan,ZHANG Jianfeng,WANG Zhirong,et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering,2005,36(6):650 − 655. (in Chinese with English abstract) DOI: 10.3321/j.issn:0559-9350.2005.06.003

    WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering, 2005, 36(6): 650-655. (in Chinese with English abstract) DOI: 10.3321/j.issn:0559-9350.2005.06.003

    [13] 陈秋计,吴锦忠,侯恩科,等. 采煤塌陷裂缝区重构土壤水分特性研究[J]. 煤炭技术,2015,34(11):308 − 310. [CHEN Qiuji,WU Jinzhong,HOU Enke,et al. Reseach on moisture characteristic of reconstruction soil in area of coal mining subsidence crack[J]. Coal Technology,2015,34(11):308 − 310. (in Chinese with English abstract)

    CHEN Qiuji, WU Jinzhong, HOU Enke, et al. Reseach on moisture characteristic of reconstruction soil in area of coal mining subsidence crack[J]. Coal Technology, 2015, 34(11): 308-310. (in Chinese with English abstract)

    [14] 荣颖,王淳,孙光林,等. 不同重构土壤材料配比的土壤改良和苜蓿生长效应研究[J]. 金属矿山,2022(6):197 − 204. [RONG Ying,WANG Chun,SUN Guanglin,et al. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth[J]. Metal Mine,2022(6):197 − 204. (in Chinese with English abstract)

    RONG Ying, WANG Chun, SUN Guanglin, et al. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth[J]. Metal Mine, 2022(6): 197-204. (in Chinese with English abstract)

    [15]

    ZETTL J,LEE BARBOUR S,HUANG Mingbin,et al. Influence of textural layering on field capacity of coarse soils[J]. Canadian Journal of Soil Science,2011,91(2):133 − 147. DOI: 10.4141/cjss09117

    [16] 吴奇凡,樊军,杨晓莉,等. 晋陕蒙接壤区露天矿层状土壤水分入渗特征与模拟[J]. 土壤学报,2015,52(6):1280 − 1290. [WU Qifan,FAN Jun,YANG Xiaoli,et al. Experiment and simulation of infiltration from layered soils in open pit mine in Jin-shaan-Meng adjacent region[J]. Acta Pedologica Sinica,2015,52(6):1280 − 1290. (in Chinese with English abstract)

    WU Qifan, FAN Jun, YANG Xiaoli, et al. Experiment and simulation of infiltration from layered soils in open pit mine in Jin-shaan-Meng adjacent region[J]. Acta Pedologica Sinica, 2015, 52(6): 1280-1290. (in Chinese with English abstract)

    [17]

    LI Ning,JIANG Haohong,LI Xinzhen. Behaviour of capillary barrier covers subjected to rainfall with different patterns[J]. Water,2020,12(11):3133. DOI: 10.3390/w12113133

    [18]

    KIM B S. Evaluation of the water shielding performance of a capillary barrier system through a small-scale model test[J]. Applied Sciences,2021,11(11):5231. DOI: 10.3390/app11115231

    [19]

    SHENG Huatan,SHI Weiwong,DU Jiachin,et al. Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides[J]. Environmental Earth Sciences,2018,77(16):1 − 13.

    [20]

    ZHAN Liangtong,LI Guangyao,JIAO Weiguo,et al. Performance of a compacted loess/gravel cover as a capillary barrier and landfill gas emissions controller in Northwest China[J]. Science of the Total Environment,2020,718:137195. DOI: 10.1016/j.scitotenv.2020.137195

    [21] 王文焰,王全九,沈冰,等. 甘肃秦王川地区双层土壤结构的入渗特性[J]. 土壤侵蚀与水土保持学报,1998,12(2):36 − 40. [WANG Wenyan,WANG Quanjiu,SHEN Bing,et al. Infiltration characteristics of soil with double layer structure in Qinwangchuan area of Gansu Province[J]. Journal of Soil Water Conservation,1998,12(2):36 − 40. (in Chinese with English abstract)

    WANG Wenyan, WANG Quanjiu, SHEN Bing, et al. Infiltration characteristics of soil with double layer structure in Qinwangchuan area of Gansu Province[J]. Journal of Soil Water Conservation, 1998, 12(2): 36-40. (in Chinese with English abstract)

    [22] 李毅,任鑫,HORTON R. 不同质地和夹层位置对层状土入渗规律的影响[J]. 排灌机械工程学报,2012,30(4):485 − 490. [LI Yi,REN Xin,HORTON R. Influence of various soil textures and layer positions on infiltration characteristics of layered soils[J]. Journal of Drainage and Irrigation Machinery Engineering,2012,30(4):485 − 490. (in Chinese with English abstract)

    LI Yi, REN Xin, Horton Robert. Influence of various soil textures and layer positions on infiltration characteristics of layered soils[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(4): 485-490. (in Chinese with English abstract)

    [23] 王晓彤,胡振琪,梁宇生. 基于Hydrus-1D的黄河泥沙充填复垦土壤夹层结构优化[J]. 农业工程学报,2022,38(2):76 − 86. [WANG Xiaotong,HU Zhenqi,LIANG Yusheng. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(2):76 − 86. (in Chinese with English abstract)

    WANG Xiaotong, HU Zhenqi, LIANG Yusheng. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 76-86. (in Chinese with English abstract)

    [24] 马蒙蒙,林青,徐绍辉. 不同因素影响下层状土壤水分入渗特征及水力学参数估计[J]. 土壤学报,2020,57(2):347 − 358. [MA Mengmeng,LIN Qing,XU Shaohui. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica,2020,57(2):347 − 358. (in Chinese with English abstract)

    MA Mengmeng, LIN Qing, XU Shaohui. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica, 2020, 57(2): 347-358. (in Chinese with English abstract)

    [25] 侯光才, 张茂省, 刘方. 北京: 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008

    HOU Guangcai, ZHANG Maosheng, LIU Fang. Research on groundwater exploration in Ordos Basin [M]. Beijing: Geological Publishing House, 2008. (in Chinese)

    [26] 李婉歆,尹红美,王文科,等. 基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异[J]. 水文地质工程地质,2021,48(3):38 − 44. [LI Wanxin,YIN Hongmei,WANG Wenke,et al. Evaporation between saturated bare soil and water:An analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology,2021,48(3):38 − 44. (in Chinese with English abstract)

    LI Wanxin, YIN Hongmei, WANG Wenke, et al. Evaporation between saturated bare soil and water: An analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 38-44. (in Chinese with English abstract)

    [27]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892 − 898. DOI: 10.2136/sssaj1980.03615995004400050002x

    [28]

    ŠIMŮNEK J M, ŠEJNA AND M, TH VAN GENUCHTEN. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[C]// International Ground Water Modeling Center, Colorado School of Mines. Golden, Colorado, 1998: 162.

    [29]

    HOPMANS J W, J ŠIMŮNEK, N ROMANO, et al. Inverse modeling of transient water flow[M]//Methods of Soil Analysis. 3rd ed. Madison: SSSA, WI, 2002: 963-1008.

    [30] 崔浩浩,张光辉,张亚哲,等. 层状非均质包气带渗透性特征及其对降水入渗的影响[J]. 干旱地区农业研究,2020,38(3):1 − 9. [CUI Haohao,ZHANG Guanghui,ZHANG Yazhe,et al. Permeability characteristics of layered-heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas,2020,38(3):1 − 9. (in Chinese with English abstract)

    CUI Haohao, ZHANG Guanghui, ZHANG Yazhe, et al. Permeability characteristics of layered-heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 1-9. (in Chinese with English abstract)

    [31] 崔浩浩,张光辉,刘鹏飞,等. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质,2022,49(5):52 − 62. [CUI Haohao,ZHANG Guanghui,LIU Pengfei,et al. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology,2022,49(5):52 − 62. (in Chinese with English abstract)

    CUI Haohao, ZHANG Guanghui, LIU Pengfei, et al. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. (in Chinese with English abstract)

    [32] 吴奇凡,樊军,王继军. 晋陕蒙接壤区露天矿不同质地土壤水分运动特征与模拟[J]. 煤炭学报,2015,40(5):1134 − 1142. [WU Qifan,FAN Jun,WANG Jijun. Water movement and simulation of different soil textures at open pit mine in Jin-Shan-Meng adjacent region[J]. Journal of China Coal Society,2015,40(5):1134 − 1142. (in Chinese with English abstract)

    WU Qifan, FAN Jun, WANG Jijun. Water movement and simulation of different soil textures at open pit mine in Jin-Shan-Meng adjacent region[J]. Journal of China Coal Society, 2015, 40(5): 1134-1142. (in Chinese with English abstract)

    [33] 陶正平,黄金廷,崔旭东. 鄂尔多斯盆地北部风积沙覆基岩型包气带结构的生态意义[J]. 地下水,2007,29(6):54 − 55. [TAO Zhengping,HUANG Jinting,CUI Xudong. The eco-significance of the sand-sandrock vadose zone structure in the north of the Erdos Basin[J]. Ground Water,2007,29(6):54 − 55. (in Chinese with English abstract)

    TAO Zhengping, HUANG Jinting, CUI Xudong. The eco-significance of the sand-sandrock vadose zone structure in the north of the Erdos Basin[J]. Ground Water, 2007, 29(6): 54-55. (in Chinese with English abstract)

    [34]

    JIA Junchao,ZHANG Pingping,YANG Xiaofeng,et al. Feldspathic sandstone addition and its impact on hydraulic properties of sandy soil[J]. Canadian Journal of Soil Science,2018,98(3):399 − 406. DOI: 10.1139/cjss-2017-0111

    [35] 许尊秋,毛晓敏,陈帅. 层状土层序排列对水分运移影响的室内土槽试验[J]. 中国农村水利水电,2016(8):59 − 62. [XU Zunqiu,MAO Xiaomin,CHEN Shuai. Tank experiment on the influence of the sequence alignment on water movement in multi-layered soil[J]. China Rural Water and Hydropower,2016(8):59 − 62. (in Chinese with English abstract)

    XU Zunqiu, MAO Xiaomin, CHEN Shuai. Tank experiment on the influence of the sequence alignment on water movement in multi-layered soil[J]. China Rural Water and Hydropower, 2016(8): 59-62. (in Chinese with English abstract)

    [36] 赵明,王文科,王周锋,等. 半干旱区沙地沙蒿生物量及根系分布特征研究[J]. 干旱区地理,2018,41(4):786 − 792. [ZHAO Ming,WANG Wenke,WANG Zhoufeng,et al. Biomass of Artemisia ordosica in sand land and its root system distribution characteristics in the semiarid regions[J]. Arid Land Geography,2018,41(4):786 − 792. (in Chinese with English abstract)

    ZHAO Ming, WANG Wenke, WANG Zhoufeng, et al. Biomass of Artemisia ordosica in sand land and its root system distribution characteristics in the semiarid regions[J]. Arid Land Geography, 2018, 41(4): 786-792. (in Chinese with English abstract)

  • 期刊类型引用(7)

    1. 王皓,王强民,董书宁,王晓东,葛光荣,张溪彧,曹书苗,张全. 西部典型煤矿区采动水文生态效应及修复途径. 煤炭学报. 2025(01): 610-622 . 百度学术
    2. 亓国涛,王荣,史歆晔. 基于多领域协同视角下生态保护修复刍议. 世界有色金属. 2024(04): 130-133 . 百度学术
    3. 魏鹏,刘云,史歆晔. 基于多学科交叉背景的生态保护修复研究. 世界有色金属. 2024(06): 143-146 . 百度学术
    4. 李国营,李瑞冬,李文彦. 人工智能背景下生态修复规划发展路径探析. 世界有色金属. 2024(08): 177-180 . 百度学术
    5. 刘馨泽,高文皓,徐荣林,孙东,姜莉萍,唐淑,仁青周,徐梦宇,翟胜强. 四川黄龙高山柳灌丛区钙华彩池地表水渗漏机制探究. 水文地质工程地质. 2024(05): 195-206 . 本站查看
    6. 贾振江,吴洋洋,李王成,马东祥,陈继虹,高素素,牛宵宵,徐天渊. 隔层创建技术的土壤生态环境效应进展分析与发展展望. 水土保持学报. 2024(06): 1-12+22 . 百度学术
    7. 梁世伟,许领,胡而已. 露天矿山生态修复中的土壤重构试验. 地质科技通报. 2023(06): 242-248+256 . 百度学术

    其他类型引用(3)

图(7)  /  表(4)
计量
  • 文章访问数:  2575
  • HTML全文浏览量:  1738
  • PDF下载量:  296
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-11-27
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2023-07-14

目录

/

返回文章
返回