Application of long and short pile combined support to deep soft soil foundation pit
-
摘要:
基坑的支护桩通常采用等桩长布置,而在深厚软土地区的基坑工程中,围护桩需要嵌入软土以下的好土,所以桩长较长,等桩长布置的情况下经济性较差。为了研究部分围护桩嵌入好土的长短桩组合支护在深厚软土基坑中的作用及表现,采用现行设计方法计算全长桩支护和全短桩支护情况下围护桩的结构内力和变形,由此估计采用长短桩组合支护情况下围护桩的变形应介于全长桩支护和全短桩支护之间;进一步通过三维数值模拟对不同长度的长短桩组合支护进行对比分析,确定了合适的短桩桩长,然后将分析结果用于指导实际项目设计并对项目展开监测。研究表明:(1)长短桩组合支护的短桩桩长可截取至全长桩支护条件下围护桩弯矩计算的第二个反弯点,实现短桩与长桩共同受力、协调变形;(2)论文中给出的基于现行设计计算软件的长短桩组合支护设计计算方法是可行的;(3)长短桩组合支护设计方法可有效节约工程造价。研究成果可为深厚软土基坑工程提供参考。
Abstract:The retaining piles for foundation pits are usually arranged with equal pile lengths. However, in foundation pit projects in deep and soft soil areas, the retaining piles need to be embedded in good soil below the soft soil, so the pile lengths are longer. The economy is poor when the pile lengths are arranged with equal pile lengths. In order to examine the effect and performance of long and short pile combined support with partial retaining piles embedded in good soil in deep soft soil foundation pits, current design methods are used to calculate the structural internal force and deformation of retaining piles under the conditions of full length pile support and full short pile support. Therefore, it is estimated that the deformation of retaining piles under the condition of using long and short pile combined support should be between full length pile support and full short pile support. Through 3D numerical simulation, a comparative analysis is conducted on the combined support of long and short piles with different lengths to determine the appropriate length of short piles, and the analysis results are used to guide the actual project design and monitor the project. The research results show: (1) The length of the short pile supported by the combination of long and short piles can be taken as the second inflection point for calculating the bending moment of the retaining pile under the condition of full length pile support, achieving joint stress and coordinated deformation of the short pile and long pile. (2) The design and calculation method for long short pile combined support based on current design and calculation software presented in the paper is feasible. (3) The design method of long and short pile combination support can effectively save project costs. The monitoring data show that the application of long and short pile composite support in the project is successful, and the research results can provide references for deep soft soil foundation pit engineering.
-
在我国东南沿海地区,由于河流的冲积作用,地表浅层分布着软塑-流塑状淤泥或淤泥质土[1 − 3]。在深厚软土地层中的基坑工程,由于土体具有高含水率、高灵敏度、高压缩性等特点,施工难度大,工程风险较大,变形控制要求严格,所以深厚软土条件下的基坑工程是岩土工程的一个难点和热点。
目前针对软土压力计算、支护结构变形、坑底土隆起及对周边环境影响等方面的研究已经取得很大进展。土压力计算从最初简单的分布假设[4 − 5]到现在流行的数值模拟[6],计算手段越来越丰富,但是只有选用了合适的本构关系,获取了可靠的土体强度指标[7],才能准确计算出土压力。支护结构的变形通常采用实测分析[8 − 9]和数值模拟[10 − 11]2种方式,实测分析的方式适用于简单均质地层,数值模拟需要采用合适的本构关系及强度指标。项目实施过程中发现支护结构的变形与施工组织关系密切,完善的施工组织能够有效地控制软土深基坑的变形[12]。坑底隆起是软土基坑破坏的典型模式,影响因素较多[13],是软土基坑支护设计的重要内容。数值方法和针对传统理论的改进[14 − 15]是主要的研究方向,但是适用范围比较有限;目前离心机模型试验[16]是研究基坑抗隆起稳定的新思路。软土基坑对周边的影响是贯穿项目实施过程的重点问题,专家学者采用项目实测[17 − 18]、数值模拟[19 − 20]等手段研究基坑开挖的影响,提出不同的控制基坑周边环境变形的方法和设计理念[21 − 22],其关键是合理的支护设计和施工组织。
在基础工程和地基处理工程中,长短桩组合的布桩方式应用效果良好且有较好的经济性,因此“长短桩组合”近年来也开始在基坑工程中受到关注。郑刚等[23]进行了长短桩悬臂式支护模型试验,揭示了悬臂不等长基坑围护桩的作用机理,由长桩起嵌固与抗倾覆作用,短桩起挡土和传递土压力的作用。李竹等[24]进行了砂土条件下单支点工况下长短桩组合支护的模型试验,发现在一定开挖深度范围,不等长桩与等长桩的水平位移相近,长桩比短桩分担更多的弯矩。丁士龙等[25]在杭州某基坑工程应用了长短桩组合的支护技术,基坑支护形式为灌注桩+两道钢筋混凝土支撑。周燕锋[26]在漳州某基坑工程中采用SMW工法桩+预应力锚索支护,应用了长短桩组合的支护技术。吴铭炳等[27]在原设计基坑完成施工情况下,通过增设长桩与原有基坑形成长短桩组合支护,成功完成了加层地下室的基坑支护。成守泽[28]采用二维和三维的方法进行了长短桩的数值模拟,并提出短桩桩数根据桩身弯矩确定。王恒力[29]采用三维数值模拟软件,分析了短桩桩长、桩径配比、短桩配比对支护结构的影响,提出了长短桩组合支护的控制性要点。冯晓腊等[30]采用数值方法分析了基坑开挖过程中长短桩的受力和变形情况,发现相比于实际监测数据,模拟过程中短桩存在明显“踢脚”现象。
综合目前的研究情况,“长短桩组合”支护的要点是长桩与短桩通过冠梁和腰梁连接形成整体,长桩的桩长满足整体稳定性、抗倾覆稳定性和抗隆起稳定性要求,短桩的桩长满足支护结构内力及变形控制要求。但是现有的分析大都采用数值模拟,计算结果受土体参数影响较大,无法应用于常规的设计,且对于短桩的桩长取值方法仍不明确。本文依托实际工程,通过理论计算、数值模拟和现场实测进行相互对比分析,总结出长短桩支护设计的一般方法,给出了短桩桩长的取值方法,并指导实际项目顺利完工。
1. 工程概况
福州某工程地上拟建13座17~18层建筑,设有一层地下室,基坑面积约19000 m2,周长约900 m。东侧靠近售楼部位置开挖深度5.2~7.7 m,其余位置开挖深度4.4~5.5 m。基坑与周边环境的位置关系见图1。
场地土层自上而下依次为:①杂填土,厚2.1~7.5 m;②粉质黏土,厚0.4~2.2 m;③淤泥,厚19.4~27.2 m;④中砂,厚0.9~5.0 m;⑤粉质黏土。基坑的坑底位于③淤泥层。典型地层剖面见图2。
2. 桩长分析
采用理正深基坑计算软件进行全长桩和全短桩支护的计算分析。计算步骤如下:
(1)输入设计剖面基本信息。其中基坑深度7.7 m,桩长30 m,桩间距1.2 m,桩顶标高相对坡顶为−2 m,围护桩穿透淤泥质土,进入中砂-粉质黏土层约3 m。
(2)输入土层信息,主要参数详见表1。
表 1 土层的计算参数Table 1. Calculation parameters of the soil layer序号 土层 本构
模型重度
/(kN·m−3)厚度
/m黏聚力
/kPa内摩擦角
/(°)弹性模量
/MPa1 杂填土 修正
摩尔
库仑17.7 4.3 3.0 18.0 4.0 2 粉质黏土 18.5 1.2 22.7 15.5 3.5 3 淤泥 16.0 23.0 8.7 4.0 2.7 4 中砂 18.0 2.2 2.0 22.0 9.0 5 粉质黏土 18.5 7.3 20.0 12.0 6.0 (3)输入支锚信息,在桩顶冠梁位置设置一道内支撑。
(4)进行计算。
剖面计算结果如下:整体滑动稳定安全系数为2.250,抗倾覆安全系数为1.201,坑底抗隆起安全系数为2.686,均满足《建筑基坑支护技术规程》(JGJ 120—2012)[31](以下简称《规程》)要求。此时嵌固深度超过了3h(h为基坑的开挖深度),远远大于《规程》要求的单支点支挡结构最小嵌固深度0.3h。围护桩内力及变形结果见图3。
分析桩身内力和变形可以发现以下规律:
(1)围护桩的变形呈“弓”形。桩顶位置受支撑的约束,位移较小,水平位移最大值发生在坑底位置,为27.39 mm。嵌入土层后,桩身变形逐渐减小,直至进入稳定土层,变形逐渐趋于0,桩顶的支点起到明显的限制位移作用。
(2)桩身最大弯矩在坑底位置附近,最大值为784.82 kN·m。桩身弯矩存在多个反弯点,第1个反弯点在深度11.65 m(约位于坑底下0.5h),第2个反弯点在深度22.76 m(约位于坑底下2h)。在第2个反弯点以下的弯矩较小,最大值为70.61 kN·m,所以在第2个反弯点以下深度范围桩身强度的安全性富余度较高。
(3)同时分析桩身内力和变形,在第2个反弯点以下深度的桩身弯矩较小,最大弯矩为桩身弯矩最大值的9.0%,最大水平位移变形3.12 mm(深度22.76 m),为桩身最大水平位移值的13.7%。
根据全长桩支护的计算结果可知,当深度达到22.76 m(约位于坑底下2h)时,桩身的内力及弯矩较小,因此截取22 m作为短桩的桩长,计算全短桩支护时围护桩的变形和内力,计算结果见图3(桩长22 m,其余条件同全长桩支护)。
从图3可以看出,全短桩(22 m)支护计算的最大位移为27.36 mm,弯矩最大值为786.29 kN·m,与全长桩支护的结果相差分别为0.11%、0.19%。全短桩(22 m)支护的桩端位移2.78 mm,与全长桩支护相同深度的计算结果相差10.9%。
根据上述计算结果,全长桩支护与全短桩支护的结构内力和变形是相近的。当采用长短桩组合(长桩30 m、短桩22 m)时,支挡结构的变形应介于全长桩支护与全短桩支护的计算结果之间。通过冠梁和腰梁连接形成整体,可以使得长桩与短桩共同受力,协调变形。
综上所述,选取全长桩支护计算时桩身弯矩的第2个反弯点作为短桩的截取长度是合适的,此时短桩的嵌固深度约为2倍的基坑开挖深度。
3. 数值模拟
为进一步分析长短桩组合支护的内力分布和变形规律,研究不同长度的长短桩组合对基坑的影响,采用有限元分析软件MIDAS GTS对基坑开挖进行三维数值模拟。
3.1 计算模型
基坑开挖深度为7.7 m,围护桩采用直径800 mm灌注桩,桩间距1.2 m,在冠梁位置采用一道直径609 mm的钢管支撑。
模型的四周边界距离基坑坡顶为3倍的基坑开挖深度,模型的底边界距离桩端大于5倍的围护桩桩径且为稳定土层,模型的四周和底面设置位移固定约束。基坑模型及支护结构模型图见图4和图5。
基坑坡顶的施工荷载为20 kPa,土层的分布及物理力学参数根据勘察报告选用,见表1。
共进行了以下3种不同桩长组合的模拟。
(1)组合一:采用常规的设计方法,全长桩支护,桩长30 m。
(2)组合二:采用长短桩组合,一长一短布置,长桩30 m,短桩22 m,短桩桩长对应第2节桩长分析计算结果的第2个反弯点位置。
(3)组合三:采用长短桩组合,一长一短布置,长桩30 m,短桩11.5 m,短桩桩长对应第2节桩长分析计算结果的第1个反弯点位置。
3.2 计算结果
基坑开挖到坑底时,3种组合的围护桩位移及弯矩计算结果见图6、图7,组合一、二、三的围护桩最大位移值依次为32,33,53 mm,围护桩桩身最大弯矩依次为723.05,723.96,889.09 kN·m。
3种组合中相同位置的围护桩内力及变形的计算结果见图8、图9,其中组合二和组合三为短桩部位。3种组合的围护桩最大位移值依次为30,31,47 mm,桩端的水平位移依次为0,3,47 mm;桩身最大弯矩依次为682.40,683.31,449.05 kN·m。
从计算结果可以看出:
(1)根据桩身变形的计算结果,组合一与组合二在22 m(短桩长度)深度范围内桩身水平位移相近,最大值仅相差3.3%。而组合三的桩身变形最大值相对组合一增大了56.7%,且桩端位置位移大于桩顶位置,相比组合一相同深度位置处的水平位移增大了80.7%,存在变形过大和踢脚破坏的风险。
(2)根据弯矩的计算结果,组合一与组合二在22 m深度范围内桩身弯矩水平相近,最大值仅相差0.13%,说明组合二的短桩可以与长桩共同受力,起到支挡作用。而组合三的短桩桩身弯矩最大值比组合一长桩相同位置的弯矩值减小了34.2%,且组合三的最大弯矩相对组合一增大了22.9%,说明长短桩组合时,短桩的设置可能会导致应力重分布,其中短桩的桩身弯矩会减小,长桩的桩身弯矩会增大。
(3)对比数值模拟和弹性支点法的结果,桩身弯矩的规律一致,桩身存在多个反弯点,当深度达到第2个反弯点后,桩身弯矩绝对值较小。围护桩的深层水平变形规律一致,位移最大值出现在坑底附近,当深度达到第2个反弯点后,位移较小。
4. 项目实施及基坑监测
根据数值模拟的计算结果,采用长短桩组合支护时,选取全长桩支护时第2个反弯点作为短桩桩端控制深度,此时计算剖面的最大位移相比于全长桩支护增大3.3%,桩身弯矩增大0.13%,说明长短桩可以共同受力,协调变形。另外,围护桩的最大水平位移31 mm,满足《规程》要求,桩身最大弯矩683.31 kN·m,在结构的承载能力范围以内。因此,选取全长桩支护时第2个反弯点作为短桩桩端控制深度是合理的,能够满足结构承载及变形控制要求,本项目据此进行基坑支护设计。
4.1 长短桩设计方案
售楼部周边的基坑开挖深度5.2~7.7 m,采用直径800 mm的灌注桩支护,桩间距1.2 m,灌注桩一长一短布置,长桩桩长30 m,短桩选取全长桩支护时桩身弯矩的第2个反弯点作为桩端,计算求得桩长为15~22 m,桩间采用直径600 mm的双重管高压旋喷桩挡土止水。
4.2 基坑监测
本项目建立了完善的监测系统,对基坑土体深层水平位移、坡顶沉降、支撑的轴力、周边建筑的沉降和倾斜、周边道路的沉降等进行监测。图10为售楼部南侧基坑的监测点平面布置图。
(1)土体深层水平位移
图11、图12是测点C1和C2的数据曲线。从图中可以看出,在基坑的开挖阶段受桩顶支撑的约束,土体深层变形呈“弓”形,最大水平位移发生在坑底附近,深层位移的形态与理论计算一致,开挖到坑底位置时,C1、C2最大变形分别为4.20,4.17 mm,主要变形区域发生在3倍开挖深度范围内。当浇筑底板拆除支撑后,坑底以上变形迅速增大,最大的水平位移在桩顶位置达到9.34 mm(C1)、18.19 mm(C2)。
(2)其他监测内容
基坑各项监测测点在开挖前完成安装并取得基准读数,监测发现基坑坡顶各水平位移测点累计位移量为5.90~28.26 mm,坡顶各沉降测点累计沉降量为3.87~24.65 mm,周边建筑的各沉降测点累计沉降量为0.16~19.41 mm,周边道路及地表各测点累计沉降量为12.23~19.11 mm,周边建筑累计倾斜变化值为−0.20‰~0.20‰,各支撑轴力测点的支撑最大值为952.37~254.25 kN,地下水位累计变化量为0.243~0.612 m。
综合各项监测结果,在基坑的开挖及地下室施工期间,各项监测指标结果正常。总体上,基坑开挖施工未对周边环境造成明显影响,基坑支护设计是安全合理的。
5. 分析与讨论
(1)实际监测与数值模拟结果对比
根据监测结果,C2测点在基坑开挖到坑底时,实测最大位移4.17 mm,发生在坑底位置,而组合二数值模拟相似位置的最大位移为30.04 mm,差别较大,结果对比见图13。对比分析有以下原因:①数值模拟中开挖深度选取的是最不利的承台位置,挖深7.7 m,实际基坑承台范围有限,大部分位置挖深在5.5 m,计算模型与实际基坑存在差异;②计算值为围护桩的变形,监测值为土体的深层水平位移,两者的变形存在一定差异;③计算采用的水平地层模型,未能真实反映地层空间分布;④计算基于地勘报告提供的参数,部分经验参数未能准确反映土层性质。
(2)短桩以下土体稳定性
采用长短桩组合支护时,由于长桩的间距较大(《规程》要求桩间距不大于2d),短桩悬于软土之上,短桩以下的软土存在从长桩中间挤出的风险,尤其是采用一长两短、一长多短的情况。因此采用长短桩组合支护时,应分析短桩桩端的土体稳定性。对于灌注桩,可参考《规程》中对挡土构件桩端土体的抗隆起稳定验算模型。对于SMW(新型钢水泥土搅拌墙)工法桩,可考虑搅拌桩对土体的加固作用。
(3)经济性分析
本项目采用长短桩组合支护,围护桩为直径800 mm的灌注桩,桩间距1.2 m,灌注桩一长一短布置,长桩桩长30 m,短桩桩长根据全长桩支护计算时桩身弯矩的第2个反弯点深度确定,桩长为15~22 m。相比全长桩支护设计,长短桩组合支护的总桩长减少约20%,造价节约400万元,工期也有所减少。
6. 结论
(1)在深厚的软土基坑中,围护桩可采用长短桩组合支护。对于单支点支挡结构,短桩的桩长可截取至全长桩支护时桩身弯矩计算的第2个反弯点,短桩满足这个长度时,短桩的变形、内力与长桩支护的情况相近,可实现短桩与长桩共同受力,协调变形。
(2)实际设计过程,因为现行《规程》及辅助设计软件没有长短桩支护形式,可以参考本文的分析步骤,先根据基坑稳定性要求确定长桩桩长,再结合短桩来分析结构的内力及变形。与《规程》相比,不能仅根据长桩的计算确定支挡结构的内力及变形,需同时结合短桩的计算结果整体分析。
(3)本项目的成功实践表明,通过长短桩组合的支护设计,既能保证基坑的安全和稳定,也能节约工程造价和工期,设计方法可以在类似工程中推广。
(4)长短桩组合支护可运用于锚拉式支挡结构和桩撑式支挡结构。对于悬臂桩支护、多支点桩锚(撑)支护同样也有参考价值。
-
表 1 土层的计算参数
Table 1 Calculation parameters of the soil layer
序号 土层 本构
模型重度
/(kN·m−3)厚度
/m黏聚力
/kPa内摩擦角
/(°)弹性模量
/MPa1 杂填土 修正
摩尔
库仑17.7 4.3 3.0 18.0 4.0 2 粉质黏土 18.5 1.2 22.7 15.5 3.5 3 淤泥 16.0 23.0 8.7 4.0 2.7 4 中砂 18.0 2.2 2.0 22.0 9.0 5 粉质黏土 18.5 7.3 20.0 12.0 6.0 -
[1] 刘慧明. 闽东南沿海地区软土物理力学性质研究[D]. 福州:福州大学,2005. [LIU Huiming. Physics mechanical characteristics of soft soil in coastal region of southeast Fujian Province[D]. Fuzhou:Fuzhou University,2005. (in Chinese with English abstract)] LIU Huiming. Physics mechanical characteristics of soft soil in coastal region of southeast Fujian Province[D]. Fuzhou: Fuzhou University, 2005. (in Chinese with English abstract)
[2] 周翠英,牟春梅. 珠江三角洲软土分布及其结构类型划分[J]. 中山大学学报(自然科学版),2004,43(6):81 − 84. [ZHOU Cuiying,MU Chunmei. Distribution and microstructure classification of soft clay in the Pearl River Delta[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2004,43(6):81 − 84. (in Chinese with English abstract)] ZHOU Cuiying, MU Chunmei . Distribution and microstructure classification of soft clay in the Pearl River Delta[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2004 ,43 (6 ):81 −84 . (in Chinese with English abstract)[3] 么玉鹏,姚坚毅,唐世雄. 珠江口地区岩土层工程地质特征及物理力学性质研究[J]. 水文地质工程地质,2022,49(2):64 − 70. [YAO Yupeng,YAO Jianyi,TANG Shixiong. A study of the engineering geological characteristics and physicomechanical property of rock and soil layers in the Pearl River mouth area[J]. Hydrogeology & Engineering Geology,2022,49(2):64 − 70. (in Chinese with English abstract)] YAO Yupeng, YAO Jianyi, TANG Shixiong . A study of the engineering geological characteristics and physicomechanical property of rock and soil layers in the Pearl River mouth area[J]. Hydrogeology & Engineering Geology,2022 ,49 (2 ):64 −70 . (in Chinese with English abstract)[4] 高大钊. 软土深基坑支护技术中的若干土力学问题[J]. 岩土力学,1995,16(3):1 − 6. [GAO Dazhao. Some soil mechanics problems on supporting technique of deep excavation in soft soils[J]. Rock and Soil Mechanics,1995,16(3):1 − 6. (in Chinese with English abstract)] GAO Dazhao . Some soil mechanics problems on supporting technique of deep excavation in soft soils[J]. Rock and Soil Mechanics,1995 ,16 (3 ):1 −6 . (in Chinese with English abstract)[5] 吴明. 深基坑工程若干土力学问题研究[D]. 杭州:浙江大学,2009. [WU Ming. Study on some soil mechanics problems in deep foundation pit engineering[D]. Hangzhou:Zhejiang University,2009. (in Chinese with English abstract)] WU Ming. Study on some soil mechanics problems in deep foundation pit engineering[D]. Hangzhou: Zhejiang University, 2009. (in Chinese with English abstract)
[6] 赵洲,宋晶,刘锐鸿,等. 各向异性对软土力学特性影响的离散元模拟[J]. 水文地质工程地质,2021,48(2):70 − 77. [ZHAO Zhou,SONG Jing,LIU Ruihong,et al. Discrete element simulation of the influence of anisotropy on the mechanical properties of soft soil[J]. Hydrogeology & Engineering Geology,2021,48(2):70 − 77. (in Chinese with English abstract)] ZHAO Zhou, SONG Jing, LIU Ruihong, et al. Discrete element simulation of the influence of anisotropy on the mechanical properties of soft soil[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 70 − 77. (in Chinese with English abstract)
[7] 马郧,李松,徐光黎,等. 武汉某超深基坑软土抗剪强度指标选取及应用研究[J]. 岩土力学,2014,35(增刊2):306 − 312. [MA Yun,LI Song,XU Guangli,et al. Selection and application research on shear strength index of soft soil for ultra deep foundation pit in Wuhan[J]. Rock and Soil Mechanics,2014,35(Sup 2):306 − 312. (in Chinese with English abstract)] MA Yun, LI Song, XU Guangli, et al. Selection and application research on shear strength index of soft soil for ultra deep foundation pit in Wuhan[J]. Rock and Soil Mechanics, 2014, 35(Sup 2): 306 − 312. (in Chinese with English abstract)
[8] 刘兴旺,施祖元,益德清,等. 软土地区基坑开挖变形性状研究[J]. 岩土工程学报,1999,21(4):456 − 460. [LIU Xingwang,SHI Zuyuan,YI Deqing,et al. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering,1999,21(4):456 − 460. (in Chinese with English abstract)] LIU Xingwang, SHI Zuyuan, YI Deqing, et al . Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering,1999 ,21 (4 ):456 −460 . (in Chinese with English abstract)[9] 李青. 软土深基坑变形性状的现场试验研究[D]. 上海:同济大学,2008. [LI Qing. Field test research on deformation behavior of deep foundation pit in soft clay area[D]. Shanghai:Tongji University,2008. (in Chinese with English abstract)] LI Qing. Field test research on deformation behavior of deep foundation pit in soft clay area[D]. Shanghai: Tongji University, 2008. (in Chinese with English abstract)
[10] 林迪斯. 富水软土地层地铁车站深基坑降水开挖支护稳定性研究[D]. 北京:北京交通大学,2019. [LIN Disi. Study on stability of dewatering and excavation for deep foundation pit of subway station in water-rich soft stratum[D]. Beijing:Beijing Jiaotong University,2019. (in Chinese with English abstract)] LIN Disi. Study on stability of dewatering and excavation for deep foundation pit of subway station in water-rich soft stratum[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)
[11] 李彦东,梁发云,褚峰. 软土地区深基坑变形特性三维数值模拟与验证[J]. 地下空间与工程学报,2011,7(6):1072 − 1077. [LI Yandong,LIANG Fayun,CHU Feng. 3D numerical simulation on the deformation behaviour of deep excavation in soft soils and its verification[J]. Chinese Journal of Underground Space and Engineering,2011,7(6):1072 − 1077. (in Chinese with English abstract)] LI Yandong, LIANG Fayun, CHU Feng . 3D numerical simulation on the deformation behaviour of deep excavation in soft soils and its verification[J]. Chinese Journal of Underground Space and Engineering,2011 ,7 (6 ):1072 −1077 . (in Chinese with English abstract)[12] 贾坚. 软土时空效应原理在基坑工程中的应用[J]. 地下空间与工程学报,2005,1(4):490 − 493. [JIA Jian. The practice of ‘time and space effect’ in soft clay excavations[J]. Chinese Journal of Underground Space and Engineering,2005,1(4):490 − 493. (in Chinese with English abstract)] JIA Jian . The practice of ‘time and space effect’ in soft clay excavations[J]. Chinese Journal of Underground Space and Engineering,2005 ,1 (4 ):490 −493 . (in Chinese with English abstract)[13] 张耀东,龚晓南. 软土基坑抗隆起稳定性计算的改进[J]. 岩土工程学报,2006,28(增刊1):1378 − 1382. [ZHANG Yaodong,GONG Xiaonan. Improvement on basal heave stability analysis for excavations in soft clay[J]. Chinese Journal of Geotechnical Engineering,2006,28(Sup 1):1378 − 1382. (in Chinese with English abstract)] ZHANG Yaodong, GONG Xiaonan. Improvement on basal heave stability analysis for excavations in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(Sup 1): 1378 − 1382. (in Chinese with English abstract)
[14] 何超,陈沛,周顺华. 软土基坑宽度效应对坑底隆起的影响[J]. 华东交通大学学报,2015,32(6):82 − 87. [HE Chao,CHEN Pei,ZHOU Shunhua. Influence of width effect of soft soil excavation on basal heave[J]. Journal of East China Jiaotong University,2015,32(6):82 − 87. (in Chinese with English abstract)] HE Chao, CHEN Pei, ZHOU Shunhua . Influence of width effect of soft soil excavation on basal heave[J]. Journal of East China Jiaotong University,2015 ,32 (6 ):82 −87 . (in Chinese with English abstract)[15] 阳吉宝. 深厚软土地区基坑墙底抗隆起稳定性Prandlt计算式的讨论[J]. 水文地质工程地质,2021,48(2):61 − 69. [YANG Jibao. A discussion of the Prandlt calculation formula for anti-uplift stability of the bottom of a foundation pit wall in deep soft soil areas[J]. Hydrogeology & Engineering Geology,2021,48(2):61 − 69. (in Chinese with English abstract)] YANG Jibao . A discussion of the Prandlt calculation formula for anti-uplift stability of the bottom of a foundation pit wall in deep soft soil areas[J]. Hydrogeology & Engineering Geology,2021 ,48 (2 ):61 −69 . (in Chinese with English abstract)[16] 张飞,李镜培,孙长安,等. 软土狭长深基坑抗隆起破坏模式试验研究[J]. 岩土力学,2016,37(10):2825 − 2832. [ZHANG Fei,LI Jingpei,SUN Chang’an,et al. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay[J]. Rock and Soil Mechanics,2016,37(10):2825 − 2832. (in Chinese with English abstract)] ZHANG Fei, LI Jingpei, SUN Chang’an, et al . Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay[J]. Rock and Soil Mechanics,2016 ,37 (10 ):2825 −2832 . (in Chinese with English abstract)[17] 刘念武,陈奕天,龚晓南,等. 软土深开挖致地铁车站基坑及邻近建筑变形特性研究[J]. 岩土力学,2019,40(4):1515 − 1525. [LIU Nianwu,CHEN Yitian,GONG Xiaonan,et al. Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil[J]. Rock and Soil Mechanics,2019,40(4):1515 − 1525. (in Chinese with English abstract)] LIU Nianwu, CHEN Yitian, GONG Xiaonan, et al . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil[J]. Rock and Soil Mechanics,2019 ,40 (4 ):1515 −1525 . (in Chinese with English abstract)[18] 张建全,张克利,程贵方. 北京不同区域明挖基坑地表沉降变形特征研究[J]. 水文地质工程地质,2021,48(6):131 − 139. [ZHANG Jianquan,ZHANG Keli,CHENG Guifang. Characteristics of surface settlement and deformation of open cut foundation pit in different areas of Beijing[J]. Hydrogeology & Engineering Geology,2021,48(6):131 − 139. (in Chinese with English abstract)] ZHANG Jianquan, ZHANG Keli, CHENG Guifang . Characteristics of surface settlement and deformation of open cut foundation pit in different areas of Beijing[J]. Hydrogeology & Engineering Geology,2021 ,48 (6 ):131 −139 . (in Chinese with English abstract)[19] 鲁泰山,刘松玉,蔡国军,等. 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学,2021,42(2):565 − 573. [LU Taishan,LIU Songyu,CAI Guojun,et al. Study on the disturbance and recompression settlement of soft soil induced by foundation excavation[J]. Rock and Soil Mechanics,2021,42(2):565 − 573. (in Chinese with English abstract)] LU Taishan, LIU Songyu, CAI Guojun, et al . Study on the disturbance and recompression settlement of soft soil induced by foundation excavation[J]. Rock and Soil Mechanics,2021 ,42 (2 ):565 −573 . (in Chinese with English abstract)[20] 丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海:上海交通大学,2009. [DING Yongchun. Excavation-induced deformation and control in soft de-posits[D]. Shanghai:Shanghai Jiao Tong University,2009. (in Chinese with English abstract)] DING Yongchun. Excavation-induced deformation and control in soft de-posits[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese with English abstract)
[21] 吴西臣,徐杨青. 深厚软土中超大深基坑支护设计与实践[J]. 岩土工程学报,2012,34(增刊1):404 − 408. [WU Xichen,XU Yangqing. Design and practice of large-scale deep excavations in deep soft soils[J]. Chinese Journal of Geotechnical Engineering,2012,34(Sup 1):404 − 408. (in Chinese with English abstract)] WU Xichen, XU Yangqing. Design and practice of large-scale deep excavations in deep soft soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Sup 1): 404 − 408. (in Chinese with English abstract)
[22] 罗成恒,魏建华. 减少软土深基坑周边环境初始位移的方法探讨[J]. 岩土工程学报,2012,34(增刊1):49 − 53. [LUO Chengheng,WEI Jianhua. Method for decreasing initial displacement of surrounding environment of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering,2012,34(Sup 1):49 − 53. (in Chinese with English abstract)] LUO Chengheng, WEI Jianhua. Method for decreasing initial displacement of surrounding environment of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Sup 1): 49 − 53. (in Chinese with English abstract)
[23] 郑刚,程雪松. 长短桩组合排桩悬臂支护工作机理试验研究[J]. 岩土工程学报,2008,30(增刊1):410 − 415. [ZHENG Gang,CHENG Xuesong. Experimental study on cantilever contiguous retaining piles with different lengths[J]. Chinese Journal of Geotechnical Engineering,2008,30(Sup 1):410 − 415. (in Chinese with English abstract)] ZHENG Gang, CHENG Xuesong. Experimental study on cantilever contiguous retaining piles with different lengths[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(Sup 1): 410 − 415. (in Chinese with English abstract)
[24] 李竹,郑刚,王海旭. 带水平支撑长短桩组合排桩工作性状模型试验研究[J]. 岩土工程学报,2010,32(增刊1):440 − 446. [LI Zhu,ZHENG Gang,WANG Haixu. Model tests on work behaviors of retaining piles with different lengths and horizontal support[J]. Chinese Journal of Geotechnical Engineering,2010,32(Sup 1):440 − 446. (in Chinese with English abstract)] LI Zhu, ZHENG Gang, WANG Haixu. Model tests on work behaviors of retaining piles with different lengths and horizontal support[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup 1): 440 − 446. (in Chinese with English abstract)
[25] 丁士龙,张昊,徐长节. 长短桩在深厚软土基坑中的应用[J]. 低温建筑技术,2014,36(9):130 − 131. [DING Shilong,ZHANG Hao,XU Changjie. Application of long and short piles in deep soft soil foundation pit[J]. Low Temperature Architecture Technology,2014,36(9):130 − 131. (in Chinese)] DING Shilong, ZHANG Hao, XU Changjie . Application of long and short piles in deep soft soil foundation pit[J]. Low Temperature Architecture Technology,2014 ,36 (9 ):130 −131 . (in Chinese).[26] 周燕锋. 长短SMW工法桩在深厚软土基坑中的应用[J]. 福建建设科技,2019(5):54 − 56. [ZHOU Yanfeng. Application of long-short SMW pile in excavation pit of deep soft soil[J]. Fujian Construction Science & Technology,2019(5):54 − 56. (in Chinese with English abstract)] ZHOU Yanfeng . Application of long-short SMW pile in excavation pit of deep soft soil[J]. Fujian Construction Science & Technology,2019 (5 ):54 −56 . (in Chinese with English abstract)[27] 吴铭炳,林颖孜,戴一鸣,等. 软土地基地下室加层的基坑支护[J]. 岩土工程学报,2010,32(增刊1):210-214. [WU Mingbing,LIN Yingzi,DAI Yiming,et al. Supports of a foundation pit of story-adding basement in soft soils[J]. Chinese Journal of Geotechnical Engineering,2010,32(Sup 1):210-214. (in Chinese with English abstract)] WU Mingbing, LIN Yingzi, DAI Yiming, et al. Supports of a foundation pit of story-adding basement in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup 1): 210-214. (in Chinese with English abstract)
[28] 成守泽. 长短桩组合围护结构工作机理研究[D]. 杭州:浙江大学,2013. [CHENG Shouze. The mechanism reseach on retaining structure with long and short pile combination[D]. Hangzhou:Zhejiang University,2013. (in Chinese with English abstract)] CHENG Shouze. The mechanism reseach on retaining structure with long and short pile combination[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
[29] 王恒力. 深厚软土区基坑桩撑式长短桩组合支护结构的研究与应用[D]. 广州:广州大学,2018. [WANG Hengli. Research and application of the supporting structure of the pile-supported long and short piles in deep soft soil area[D]. Guangzhou:Guangzhou University,2018. (in Chinese with English abstract)] WANG Hengli. Research and application of the supporting structure of the pile-supported long and short piles in deep soft soil area[D]. Guangzhou: Guangzhou University, 2018. (in Chinese with English abstract)
[30] 冯晓腊,李滕龙,张亮,等. 基坑工程中长短桩支护形式数值模拟研究[J]. 低温建筑技术,2019,41(4):96 − 99. [FENG Xiaola,LI Tenglong,ZHANG Liang,et al. Study on numerical simulation of long-short pile support in foundation pit engineering[J]. Low Temperature Architecture Technology,2019,41(4):96 − 99. (in Chinese with English abstract)] DOI: 10.13905/j.cnki.dwjz.2019.04.026 FENG Xiaola, LI Tenglong, ZHANG Liang, et al . Study on numerical simulation of long-short pile support in foundation pit engineering[J]. Low Temperature Architecture Technology,2019 ,41 (4 ):96 −99 . (in Chinese with English abstract) DOI: 10.13905/j.cnki.dwjz.2019.04.026[31] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程:JGJ 120—2012[S]. 北京:中国建筑工业出版社,2012. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for retaining and protection of building foundation excavations:JGJ 120—2012[S]. Beijing:China Architecture & Building Press,2012. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese).
-
期刊类型引用(7)
1. 张梦洋,陈帅光,郭敏贤. 深厚软土区基坑桩锚式长短桩组合支护结构施工技术. 建筑科技. 2025(01): 108-111 . 百度学术
2. 胡永祥,陈日晓,陈旺,杨成楼. 支护结构对基坑变形影响数值模拟研究. 城市建筑. 2025(06): 191-194 . 百度学术
3. 李金龙,武伟,汪太溢,段霄鹏,初欣雨. 多含水层体系下基坑支护施工技术研究. 粉煤灰综合利用. 2025(01): 60-64 . 百度学术
4. 王强,吴玄成,姚良浩,马少俊,蒋贤辉. 超高层建筑长短桩应用分析研究. 建筑科技. 2025(05): 131-134+139 . 百度学术
5. 张洋. 软土工程地质条件下桩基受力变形特征研究. 砖瓦. 2024(05): 78-80+83 . 百度学术
6. 陈新波. 安置房基坑工程中锚杆喷射混凝土支护的研究. 中国建筑金属结构. 2024(08): 102-104 . 百度学术
7. 覃鹏辉,戴兵,李丹立,王敏. 下穿既有建筑地铁明挖基坑变形特征及围护结构最大挠度的灰色关联分析. 南华大学学报(自然科学版). 2024(05): 41-49+77 . 百度学术
其他类型引用(3)