ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

区域地面沉降研究进展与展望

朱琳, 宫辉力, 李小娟, 周超凡, 叶淼, 王海刚, 张可, 韩苗苗

朱琳,宫辉力,李小娟,等. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,2024,51(4): 167-177. DOI: 10.16030/j.cnki.issn.1000-3665.202212043
引用本文: 朱琳,宫辉力,李小娟,等. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,2024,51(4): 167-177. DOI: 10.16030/j.cnki.issn.1000-3665.202212043
ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167-177. DOI: 10.16030/j.cnki.issn.1000-3665.202212043
Citation: ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167-177. DOI: 10.16030/j.cnki.issn.1000-3665.202212043

区域地面沉降研究进展与展望

基金项目: 国家自然科学基金项目(42271082;42271487;42201081)
详细信息
    作者简介:

    朱琳(1980—),女,博士,教授,主要从事水循环、地质灾害过程模拟和风险评价。E-mail:lin.zhu@cnu.edu.cn

    通讯作者:

    宫辉力(1956—),男,博士,教授,主要从事地理信息系统和遥感、信息水文地质的教学与交叉研究。E-mail:4039@cnu.edu.cn

  • 中图分类号: P642.26

Research progress and prospect of land subsidence

  • 摘要:

    地面沉降是全球性重大地质环境问题,区域差异性地面沉降已经对城市基础设施、线性轨道交通和地下空间开发利用形成重大威胁,制约着经济和社会的可持续发展。围绕区域地表形变信息获取、地面沉降演变机制和模拟方面的研究进展进行系统阐述,重点分析了InSAR形变监测和多源形变数据融合的区域地表形变信息获取技术,基于室内土工试验数据和长时序观测数据,利用相关分析、统计分析和机器学习等方法分析地面沉降演变与各影响因素的关系。在此基础上,探讨了地下水流场—土体变形模型、数理统计模型和机器学习模型等地面沉降过程模拟模型的优缺点。发现多源形变数据融合能够提高区域地表形变信息的时空分辨率,地质构造、地层岩性、地下水开采和动静载荷等影响因素的差异性是造成地面沉降差异性演化的机制,地面沉降数学模型的计算效率与可解释性难以兼顾是当前沉降模拟存在的主要问题。据文献检索,当前研究主要关注地下水超量开采引发的地面沉降。进而提出未来区域地面沉降研究方向:在气候变化叠加新水情、新数据背景下,充分融合遥感大数据与野外观测站实测小数据集,耦合基于物理机制的模型和机器学习模型,优化集成InSAR、GeoAI、云平台等技术的最新进展,揭示全球气候变化和人类活动综合作用下的区域地面沉降演变机制,为区域地面沉降防控和城市安全提供技术支撑。

    Abstract:

    Land subsidence is a worldwide geological hazard. Differential land subsidence has posed the major threat to urban infrastructure, linear rail transit and underground space development and utilization, and also restricted the sustainable development of the economy and society. This paper systematically elaborates on the research progresses on land deformation acquisition, evolution mechanism and simulation of land subsidence, and focuses on the land deformation acquisition technology based on InSAR monitoring and multi-source deformation data fusion, as well as the correlation analysis, statistical analysis, machine learning and other methods to analyze the relationship between the evolution of land subsidence and various influencing factors based on geotechnical experiment and long time series observation data. On this basis, the advantages and disadvantages of land subsidence simulation models such as groundwater flow field-land deformation model, mathematical statistical model and machine learning model are explored. It is found that multi-source deformation data fusion can improve the spatiotemporal resolution of land deformation. The differences in geological structure, lithology, groundwater exploitation, and dynamic and static loads are factors contributing to the differential evolution of land subsidence. The difficulty in balancing the computational efficiency and interpretability of mathematical models for land subsidence is the main problem in simulation. According to the literature review, the current researches mainly focus on land subsidence caused by groundwater over-exploitation. This paper further proposes the future research directions for land subsidence, under the background of climate change, new hydrological condition and dataset, and based on the fusion of data through remote sensing and field observations, integrating the latest progress of InSAR, GeoAI, cloud platform and other technologies to reveal the evolution mechanism of land subsidence considering the climate change and anthropic activities and provide technical support for regional land subsidence prevention and urban safety.

  • 地面沉降是地面高程缓慢降低的环境地质现象[1],超量开采地下水导致的地面沉降常伴生地裂缝,制约着经济和社会的可持续发展。在全球150多个国家地区,例如中国西安[2]、北京[3]、长江三角洲[4],美国加州中央谷[5],伊朗德黑兰平原[6]等均出现地面沉降及地裂缝现象。随着全球变暖、极端天气气候事件频发、海平面升高、人口增加和城市化进程的加快,地面沉降问题愈加突出,其复杂性、危险性与不确定性加强。联合国教科文组织地面沉降国际倡议工作组研究发现2040年地面沉降可能影响全球19%的人口,中国华北平原是受地面沉降影响最严重的区域之一[7]

    高精度高时空分辨率区域形变信息获取是地面沉降演化机制研究的基础。合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)技术相比于传统地层形变信息监测方法(水准测量、GPS监测、分层标监测和野外勘查等),具有监测范围广、精度高的特点[8]。如何结合多种监测手段的优缺点进行多源数据融合是目前有效获取地表形变信息的研究重点。

    地面沉降是多影响因素综合作用下的地质灾害,地质条件、地层岩性、地下水开采和动静载荷等要素的差异性造成了不同的地面沉降演化特征和机制。国内外学者通过室内试验、InSAR技术与水文地质工程地质学科的交叉研究,开展地下水位变化下的土体变形机制和地面沉降的主控因素等方面的研究。现有的研究主要是针对地下水超量开采引起的地面沉降及其诱发的地裂缝。

    地面沉降过程模拟和预测是沉降防控的基础。构建数学模型是研究地面沉降演化的重要手段,通常包括基于数据驱动的模型和基于物理机制的模型。其中,基于物理机制的模型需要设置众多参数、初边值、源汇项等,且通常需要多种假设。基于数据驱动的模型是从历史观测数据中发现隐含特征以实现演变过程模拟,模型的可解释性差。提高地面沉降演变过程的模拟精度以及解析能力对于地面沉降防控具有重要价值。

    在收集国内外相关研究文献的基础上,针对区域地表形变信息获取、地面沉降演变机制和演变过程模拟3方面进行阐述,在此基础上,提出综合遥感大数据与野外观测站实测小数据集,联合GeoAI和云平台的最新进展,解析全球气候变化和人类活动综合作用下的地面沉降演变机制。

    InSAR是获取区域长时间序列高精度地表形变信息的有效手段[8],已经成为水准测量、GPS监测、分层标监测和野外勘查等传统地表形变信息获取的重要补充。多时相合成孔径雷达干涉测量(Multi-Temporal InSAR, MT-InSAR)技术能够降低大气延迟、时空失相干等带来的测量误差,监测精度达到厘米或毫米级,在角反射器的辅助下监测精度可达亚毫米级。永久散射体干涉测量(Persistent Scatterer InSAR, PS-InSAR)技术能够有效降低时间和空间失相干影响,获取目标点长时间序列的高精度形变信息。小基线集干涉测量(Small Baseline Subset InSAR, SBAS-InSAR)技术相较于PS-InSAR技术克服了需要大量影像的限制,确保失相干和地形相位误差较小,得到稳定可靠的时间序列形变。相干目标(Coherent Target-InSAR, CT-InSAR)时序分析技术则集成PS-InSAR和SBAS-InSAR技术的优点,以短基线为准则构建差分干涉相位图,利用点目标识别算法提取相干目标[9]。学者们利用这些方法,处理ENVISAT、TerraSAR、ERS、Sentinel-1A等多种SAR数据,获取北京[10-11]、天津[12]、上海[13]、沧州[14]、西安[15]等地区的形变信息,监测结果与水准观测数据或GPS形变监测结果有较好的一致性。区域的季节性沉降和回弹特征也被捕捉到[16-17]

    然而大区域尺度上,由于SAR影像获取时间、天气条件等具有较大差异性,影像拼接的准确性会影响形变解算精度。一些学者采用经典相干斑滤波器、按列梯度最大法、模板匹配方法和灰度融合方法进行SAR影像拼接[18],运用分割的完全二叉树模型进行SAR影像的并行拼接[19],集成尺度不变特征变换和快速傅里叶变换算法进行SAR影像快速拼接[20];利用迭代最近点算法消除影像拼接过程中不同轨道主影像选取的参考基准不一致、不同轨道垂直基线不同等因素的影响[21];采用极坐标格式算法解决大斜视角引起的距离方位耦合严重及大幅尺寸场景精确实时成像困难等问题[22]

    由于SAR传感器侧视成像的特点,InSAR监测的地表形变为视线 (line-of-sight, LOS) 方向的形变,为了获取三维形变信息,学者们通常利用同一时段不同升降轨数据,结合不同几何视角建立线性方程组解算,获取水平向和垂直向的形变信息。例如:胡俊等[23]基于2003年伊朗Bam地震信息利用升降轨SAR干涉相位和幅度信息分别获取LOS向位移量和方位向位移量,采用最小二乘准则和Helmert方差分量对其进行融合获取地震引起的地表三维形变场,与Okada模型模拟的形变在上下和东西方向上一致,南北向存在约5 cm的偏差。刘国祥等[24]利用TerraSAR、ASAR和ALOS影像,采用最小二乘法解算天津市西北部2007年至2010年三维形变场,垂直形变速率精度达毫米级,水平形变速率与GPS监测结果基本一致。

    考虑到分层标/基岩标、位移传感装置监测精度高,监测频率达到准实时;水准测量技术监测频率为每年或每个季度,监测覆盖范围广,监测精度高;连续工作模式下GPS技术监测的水平向形变精度达到毫米级,将这些技术与InSAR监测的形变信息进行有效融合是目前提高地表形变时空分辨率的有效手段。一些学者采用局部最优化迭代算法[25]、网平差方法[26]等实现GPS和InSAR监测结果融合,采用集合卡尔曼滤波[27]实现水准测量数据和InSAR监测结果融合,利用卡尔曼滤波[28]、最小二乘法[29]实现水准数据、GPS和InSAR监测结果融合,获得高时空分辨率地面沉降序列场。

    根据太沙基有效应力原理,地下水开采导致土体中孔隙水压力减小,有效应力增加,土层压缩;当地下水位抬升时,有效应力减小,但是土层是否回弹以及回弹程度与土层属性、所处应力历史及当前状态有关。一些学者结合室内土工实验、分层标和地下水位数据、应力—应变图解法,分析不同水位变化下的土体变形特征。Wei等[30]利用GDS固结试验研究粉质黏土、粉砂岩和细砂在地下水开采和回灌条件下的变形情况,发现3类土体均表现出弹塑性变形特征,同一土体在孔隙水压力下降后期的蠕变效应比下降前期更明显。薛禹群等[131]利用分层标、地下水位和回灌数据等发现华北平原和长江三角洲在水位恢复期和基本稳定期土体主要为弹性变形,在水位下降期则表现为明显的塑性变形。罗跃等[32]结合水位和分层标数据研究上海市典型区不同土层在水位回升条件下的变形特征,发现水位持续大幅抬升过程中,土体变形与水位变化具有同步或滞后现象,呈现线弹性变形和弹塑性变形。Zhang等[33]结合应力—应变图解法和土体固结试验发现北京平原不同深度土层随着地下水位变化引发的变形特征存在较大的差异,在地下水位升降过程中,第一承压含水层呈现弹性形变,第二和第三承压含水层呈现弹塑性形变,第一弱透水层呈现弹塑性形变、第二弱透水层呈现黏弹塑性形变、第三弱透水层呈现塑性形变、第四弱透水层呈现弹塑性形变。主灿等[34]在天津滨海新区对承压含水层开展单井定流量抽水试验,发现黏土层以塑性变形为主且存在蠕变现象,而砂层既存在弹性变形,也存在一定的塑性变形和蠕变性。研究表明,不同的土层在地下水位变化下的形变过程复杂,呈现弹性、塑性、弹塑性等多种变形特征,部分土层变形与水位变化存在滞后现象。

    针对地面沉降机制方面,学者们开展基于InSAR技术和水文地质的交叉研究,利用相关分析、统计分析、GIS空间分析等方法分析地面沉降与各影响因素的关系。张勤等[35]结合GPS和InSAR技术发现西安地区地下水过量抽取和大规模施工建设是不均匀沉降的重要成因。Bonì等[36]基于InSAR技术,发现西班牙南部1992—2012年最大沉降发生在可压缩层厚度最大的区域。宫辉力等[3738]集成InSAR、GPS和GRACE技术,发现地下水长期超量开采是北京地区地面沉降的主要原因,严重沉降区的载荷密度与不均匀沉降速率存在一定的正相关关系。然而,区域地面沉降与其影响因素之间的关系复杂,如何解析多个影响因素同时变化对地面沉降的影响是研究的重点,一些学者尝试利用机器学习方法开展地面沉降归因分析。Zhou等[39]基于InSAR技术获取的北京平原区2003—2015年地面沉降信息,结合梯度提升决策树模型,定量识别动静载荷信息、地下水位变化、可压缩层厚度对地面沉降的作用,发现地下水位和可压缩层厚度对地面沉降的贡献率超过60%。曹鑫宇等[40]基于注意力机制研究了2011—2016年北京平原东部地区不同层位地下水位对地面沉降的影响,发现第二承压含水层水位对地面沉降的贡献率最大,注意力权重最大为0.62。以上研究均表明,地下水超量开采通常是地面沉降的主要诱因,不同含水层地下水开采对地面沉降的贡献率不同,可压缩层厚度和地表动静载荷也会对地面沉降产生一定的影响。

    为了进一步探明时间序列的地面沉降与地下水位之间的关系,一些学者联合地理探测器和小波变换方法[41]、利用动态时间规整方法[42]定量分析地下水位变化对地面沉降的影响程度。Chen等[41]发现北京平原区第二承压含水层组水位变化与地面沉降相关性最强,但在南水北调中线工程运营后呈现减弱趋势,二者相关性从2014年的0.52减小到2018年的0.36。Sun等[42]发现南水北调中线工程运营前,100~180 m和250 m以深的地下水位与地面沉降量的波形曲线相似度为75%和64%,南水北调后,上述两个值分别达到83%和81%,侧面反映出南水北调后这两个层位对地面沉降的影响程度增大。综合上述,地下水位对地面沉降的影响程度在水位下降和回升条件下不同,呈现出区域性、差异性和复杂性。

    在特殊的地质背景下,不均匀地面沉降能够灾变成地裂缝,国内外众多学者探索了不同地区地面沉降演变为地裂缝的机制,包括:先存断层[43]、基岩起伏[44]、含水层厚度差异性分布[4546]等引起差异性沉降,以及含水层压缩产生水平应变[47]诱发地裂缝。例如:汾渭盆地地下水开采导致断裂沿线地面沉降差异性明显,地裂缝常与地面沉降相伴生,且平行于断裂走向,延伸较长,规模较大[4348]。华北平原由于大规模抽取地下水引起地面沉降,在拉张/剪切应力超过最大极限后地层沿断层面发生开裂,诱发地裂缝[4950]。苏锡常地区由于地下水位快速下降以及基底起伏共同引起差异性沉降,从而诱发地裂缝[5152]

    上述研究主要针对地下水超量开采引起的地面沉降问题,针对地下水位回升背景下的变形研究相对较少。据文献检索,罗跃等[32]利用分层标数据,发现上海在地下水位大幅抬升条件下的土层变形特征包括:一种是变形和水位变化基本同步,变形可概化为线弹性变形;另一种是压缩速率逐渐减小,无明显持续回弹趋势,有较大残余压缩量且存在变形滞后现象,变形可概化为弹塑性变形。Zhu等[3]基于InSAR监测的形变信息,发现北京平原区北部潮白河河道回补地下水的区域南部沉降速率减缓约10 mm/a,部分区域尽管水位回升,由于弱透水层的延迟释水,地面沉降仍在继续。Lyu等[53]利用PS-InSAR技术监测的地表形变信息,发现南水北调后北京平原部分地区沉降速率减缓或不变,最大沉降速率降低约25 mm/a。针对地下水位回升背景下的地面沉降演变机制需要深入探讨。

    地面沉降过程模拟是地面沉降灾害防控的基础,构建数学模型是模拟该过程的重要手段,模型主要包括:基于物理机制建立地下水流场—土体变形模型、基于数据特征利用数理统计方法或人工智能算法建立地面沉降模型。

    基于物理机制的地面沉降模型由地下水渗流模型和土体变形模型组成,根据两个模型的耦合程度分为两步计算模型[54]、考虑土体压缩系数及渗透系数非线性变化的部分耦合模型[55]和完全耦合模型。两步计算和部分耦合模型能够较好地模拟地下水开采引起的地面沉降过程,但是此类模型土层固结过程中渗流与土体变形并非同步发生,与实际情况不符。基于Biot的多孔介质固结理论,学者们提出完全耦合模型,发现模拟的水头下降和地面沉降比两步计算模型的模拟结果能更快地趋于稳定[56]。近年来众多学者利用完全耦合模型模拟美国加州[57]、意大利艾米利亚—罗马涅[58]、伊朗德黑兰[59]、我国上海[60]、苏锡常[61]、天津[62]、北京[63]和沧州[64]等区域的地面沉降。但是,构建完全耦合模型需要大量的模型参数,因此,建立一种理论上相对严密且涉及参数少的模型尤为必要。一些学者提出修正的Merchant模型刻画瞬时弹性、瞬时塑性变形以及黏弹性、黏塑性变形[1]。然而,基于物理机制的地面沉降模型普遍存在模型参数多、计算效率低的问题,对于大范围尺度的地面沉降过程模拟存在不足。

    在特殊地质条件下,不均匀地面沉降灾变形成的地裂缝是空间不连续形变,传统基于连续介质力学理论的有限元法、有限差分法等,在面临不连续问题时存在求解微分方程产生奇异解的不足。一些学者提出在应力集中区域放置界面元来模拟地裂缝的萌生和发展过程[4],Li等[65]采用上述方法在地裂缝潜在萌生位置放置多个界面元模拟无锡光明村地区的3条地裂缝。但是,应用界面元方法需要预先知道裂缝的位置,在裂缝扩展过程中必须重新划分网格,计算结果具有强烈的网格依赖性。近场动力学(Peridynamics, PD)理论能够克服上述问题,对于从连续到非连续、微观到宏观的力学行为具有统一的表述,能够用于研究均质与非均质目标体的形变、损伤和断裂等,实现裂纹萌生、扩展直至结构破坏的全过程模拟[66]。李江涛[67]利用态型PD模型模拟1980—2000年无锡市光明村地面沉降灾变成地裂缝的过程,结果与界面元模拟结果较为一致。张可等[68]利用态型PD模型模拟2007—2010年北京东部地区地面沉降过程,逐年沉降量模拟结果与实测值的平均绝对误差为18 mm。针对PD模型求解计算成本高的问题,学者们提出将PD理论与局部理论结合,例如:对建模空间进行分区域处理,开展PD与有限元法或扩展有限元的耦合建模[6970]

    基于数据驱动的地面沉降模型是利用时序数据分析沉降演化特点及其与影响因素的关系,进而实现地面沉降模拟预测。通常采用回归分析、灰色模型等数理统计方法以及机器学习方法。其中机器学习方法将地面沉降单变量或地面沉降及其影响因素(例如:可压缩层厚度、建筑物面积、地下水位)多变量的时间序列作为输入数据,通过学习数据内在特征模拟预测地面沉降。常用的方法包括:随机森林[7172]、梯度提升决策树[73]、极限梯度提升决策树[74]和支持向量机[7576]模型。此外,一些学者通过构建组合模型来模拟和预测地面沉降。例如利用遗传算法改进人工神经网络算法[77]模拟北京密怀顺地区1955—2005年地面沉降,联合小波变化和随机森林方法预测2018—2020年津保高铁沿线地面沉降[71]。与浅层机器学习算法相比,深度学习模型具有多个隐层节点,更能学习到重要的特征,从而提升模型准确性。例如长短时记忆网络(Long Short-Term Memory, LSTM)模型[78]、门控循环单元(Gated Recurrent unit,GRU)网络模型[79],以上这些模型拟合效果较好,但是迁移性、可解释性不足。考虑到物理模型可靠的外推能力和机器学习模型强大的拟合能力,国内外学者在地学领域中尝试将物理模型与机器学习模型进行耦合。沈焕峰等[80]总结了物理模型与机器学习模型耦合的3种范式框架,包括物理模型级联机器学习模型、机器学习模型嵌入物理模型、物理模型融进机器学习模型。在地面沉降模型方面,目前学者主要将具有物理意义的参数作为机器学习模型的输入因子来实现物理模型与机器学习模型的耦合。曹鑫宇等[40]考虑不同含水层水位与地面沉降的响应关系,构建注意力机制LSTM模型,对北京不同沉降发育地区的形变进行模拟,该模型模拟精度比LSTM模型的模拟精度最高可提升22%。李蕙君[81]将地下水位变化和含水层非弹性释水系数作为地理空间加权的LSTM模型输入因子,相比于LSTM模型,模拟的地面沉降变化量与PS-InSAR监测结果之间的R2由0.44提升到0.95。此外,Gazzola等[82]提出将基于物理机制的地面沉降模型和数据同化技术进行结合,提高计算效率的同时提高模型结果的可靠性。

    综上所述,目前区域地面沉降研究仍存在一些问题,主要体现在以下3个方面:

    (1)针对获取高时空分辨率的地表形变信息方面,目前主要是通过最小二乘、卡尔曼滤波等方法将InSAR和水准、GPS监测的形变数据进行融合,这些方法均为线性模型,忽略了多源形变数据之间的非线性关系,影响了融合结果的准确性。

    (2)针对地面沉降演化机制方面,全球气候变化、人工调水、地下水超采综合治理等新水情背景下,区域水循环发生变化,改变了地下水渗流场,地面沉降响应机制呈现新的规律。目前,在二元水循环框架下的地面沉降演化机制研究相对较少,缺乏统一时空框架体系下对多要素相互作用机制的探讨。

    (3)针对地面沉降模型方面,耦合物理模型与机器学习模型是研究热点,目前是将物理模型输出参数作为机器学习模型的输入变量,但这种耦合方式不是真正意义上的耦合,提高模型的模拟精度并同步增强模型的可解释性方面需要进一步探索。

    当前研究主要面临的问题是如何充分利用多源数据获取地表形变信息,如何有效开展地面沉降演化特征识别以及如何提高地面沉降演化机制解析能力等。未来需要进一步加强遥感、水文地质、人工智能等多学科的交叉研究,构建基于云平台的复杂环境区域地面沉降模拟系统,实现本地端和云端的数据集融合、信息挖掘和过程模拟。

    (1)融合多源信息和机器学习的地面沉降演变机制研究

    众多的SAR卫星资源、GPS监测、野外监测和室内试验等多源数据积累了高密度、长时序形变信息,利用机器学习从大量数据中识别和提取显性或隐性规律,特别是当时间序列中缺失数据较多时,能够挖掘时间序列数据潜在规律并加以学习、归纳和利用,实现对缺失数据的补全。机器学习技术的最新进展,一方面为充分利用不同来源的时空形变数据融合获取区域高精度高时空分辨率形变信息提供技术支持;另一方面为从大量离散/连续的时空数据中识别和提取显性或隐性规律提供了有效手段。

    (2)基于云平台的地面沉降模拟系统构建

    遥感云计算平台的出现改变了传统遥感数据处理和分析模式,构建本地端—云端结合的一站式遥感大数据混合云平台,为二元水循环框架下的地面沉降演变过程提供数据资源和算法模型。对于台站监测的数据(如地下水位、钻孔、分层标数据等),经过再分析方法处理后,通过云桥上传到云端与其他遥感大数据联合,利用机器/深度学习算法模型分析复杂环境下的地面沉降演化机理以及确定沉降调控的水位阈值,联合数据驱动的机器学习模型和基于物理过程建模,实现复杂环境区域地面沉降模拟预测,为沉降调控提供方案。

    本文系统分析了地表形变信息获取、地面沉降演变机制及演变模拟的研究进展,并对未来研究进行了展望,提出需有效融合多源信息,刻画高时空分辨率形变信息;充分利用机器学习技术挖掘多影响因素叠加作用下的形变特征以及演化规律;在现代计算技术进展的基础上,利用云平台集成基于数据驱动和物理机制的沉降模拟技术,对复杂环境下的区域地面沉降演化过程进行模拟与预测。

  • [1] 薛禹群. 论地下水超采与地面沉降[J]. 地下水,2012,34(6):1 − 5. [XUE Yuqun. Discussion on groundwater overexploitation and ground settlement[J]. Ground Water,2012,34(6):1 − 5. (in Chinese with English abstract)]

    XUE Yuqun. Discussion on groundwater overexploitation and ground settlement[J]. Ground Water, 2012, 34(6): 1 − 5. (in Chinese with English abstract)

    [2]

    PENG Mimi,ZHAO Chaoying,ZHANG Qin,et al. Research on spatiotemporal land deformation (2012–2018) over Xi’an,China,with multi-sensor SAR datasets[J]. Remote Sensing,2019,11(6):664. DOI: 10.3390/rs11060664

    [3]

    ZHU Lin,GONG Huili,CHEN Yun,et al. Effects of Water Diversion Project on groundwater system and land subsidence in Beijing,China[J]. Engineering Geology,2020,276:105763. DOI: 10.1016/j.enggeo.2020.105763

    [4]

    YE Shujun,FRANCESCHINI A,ZHANG Yan,et al. A novel approach to model earth fissure caused by extensive aquifer exploitation and its application to the Wuxi case,China[J]. Water Resources Research,2018,54(3):2249 − 2269. DOI: 10.1002/2017WR021872

    [5]

    GUALANDI A,LIU Zhen. Variational Bayesian independent component analysis for InSAR displacement time-series with application to central California,USA[J]. Journal of Geophysical Research:Solid Earth,2021,126(4):e2020JB020845. DOI: 10.1029/2020JB020845

    [6]

    YOUSEFI R,TALEBBEYDOKHTI N. Subsidence monitoring by integration of time series analysis from different SAR images and impact assessment of stress and aquitard thickness on subsidence in Tehran,Iran[J]. Environmental Earth Sciences,2021,80(11):1 − 12.

    [7]

    HERRERA-GARCÍA G,EZQUERRO P,TOMÁS R,et al. Mapping the global threat of land subsidence[J]. Science,2021,371(6524):34 − 36. DOI: 10.1126/science.abb8549

    [8]

    GALLOWAY D L,HUDNUT K W,INGEBRITSEN S E,et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar,Antelope Valley,Mojave Desert,California[J]. Water Resources Research,1998,34(10):2573 − 2585. DOI: 10.1029/98WR01285

    [9] 周定义,左小清,赵志芳,等. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测[J]. 地质通报,2023,42(10):1774 − 1783. [ZHOU Dingyi, ZUO Xiaoqing, ZHAO Zhifang, et al. Prediction of urban land subsidence by SBAS-InSAR and improved BP neural network[J]. Geological Bulletin of China,2023,42(10):1774 − 1783. (in Chinese with English abstract)]

    ZHOU Dingyi, ZUO Xiaoqing, ZHAO Zhifang, et al. Prediction of urban land subsidence by SBAS-InSAR and improved BP neural network[J]. Geological Bulletin of China, 2023, 42(10): 1774 − 1783. (in Chinese with English abstract)

    [10] 宫辉力,张有全,李小娟,等. 基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J]. 自然科学进展,2009,19(11):1261 − 1266. [GONG Huili,ZHANG Youquan,LI Xiaojuan,et al. Study on land subsidence in Beijing based on radar interferometry with permanent scatterers[J]. Progress in Natural Science,2009,19(11):1261 − 1266. (in Chinese)]

    GONG Huili, ZHANG Youquan, LI Xiaojuan, et al. Study on land subsidence in Beijing based on radar interferometry with permanent scatterers[J]. Progress in Natural Science, 2009, 19(11): 1261 − 1266. (in Chinese)

    [11] 沙特, 罗勇, 雷坤超, 等. 基于分布式光纤传感技术的北京宋庄地面沉降和地裂缝综合监测[J]. 地质通报,2024,43(5):859 − 867. [SHA Te, LUO Yong, LEI Kunchao, et al. Comprehensive monitoring of land subsidence and ground fissures in Songzhuang, Beijing, based on distributed optical fiber sensing technology[J]. Geological Bulletin of China,2024,43(5):859 − 867.(in Chinese with English abstract)]

    SHA Te, LUO Yong, LEI Kunchao, et al. Comprehensive monitoring of land subsidence and ground fissures in Songzhuang, Beijing, based on distributed optical fiber sensing technology[J]. Geological Bulletin of China, 2024, 43(5): 859 − 867.(in Chinese with English abstract)

    [12] 卢旺达,韩春明,岳昔娟,等. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用,2020,35(2):416 − 423. [LU Wangda,HAN Chunming,YUE Xijuan,et al. Land subsidence monitoring in Tianjin with PS-InSAR technique based on sentinel-1 data[J]. Remote Sensing Technology and Application,2020,35(2):416 − 423. (in Chinese with English abstract)]

    LU Wangda, HAN Chunming, YUE Xijuan, et al. Land subsidence monitoring in Tianjin with PS-InSAR technique based on sentinel-1 data[J]. Remote Sensing Technology and Application, 2020, 35(2): 416 − 423. (in Chinese with English abstract)

    [13] 罗小军,黄丁发,刘国祥. 基于永久散射体雷达差分干涉测量的城市地面沉降研究——以上海地面沉降监测为例[J]. 测绘通报,2009(4):4 − 8. [LUO Xiaojun,HUANG Dingfa,LIU Guoxiang. On urban ground subsidence detection based on PS-DInSAR:A case study for Shanghai[J]. Bulletin of Surveying and Mapping,2009(4):4 − 8. (in Chinese)]

    LUO Xiaojun, HUANG Dingfa, LIU Guoxiang. On urban ground subsidence detection based on PS-DInSAR: A case study for Shanghai[J]. Bulletin of Surveying and Mapping, 2009(4): 4 − 8. (in Chinese)

    [14] 周洪月,汪云甲,闫世勇,等. 沧州地区地面沉降现状Sentinel-1A/B时序InSAR监测与分析[J]. 测绘通报,2017(7):89 − 93. [ZHOU Hongyue,WANG Yunjia,YAN Shiyong,et al. Land subsidence monitoring and analyzing of Cangzhou area sentinel-1A/B based time series InSAR[J]. Bulletin of Surveying and Mapping,2017(7):89 − 93. (in Chinese with English abstract)]

    ZHOU Hongyue, WANG Yunjia, YAN Shiyong, et al. Land subsidence monitoring and analyzing of Cangzhou area sentinel-1A/B based time series InSAR[J]. Bulletin of Surveying and Mapping, 2017(7): 89 − 93. (in Chinese with English abstract)

    [15] 彭米米,赵超英,张勤,等. 利用Sentinel-1A数据监测大西安2015—2017年地面沉降[J]. 地球物理学进展,2018,33(6):2264 − 2269. [PENG Mimi,ZHAO Chaoying,ZHANG Qin,et al. Monitoring Xi’an land subsidence during 2015—2017 using Sentinel-1A images[J]. Progress in Geophysics,2018,33(6):2264 − 2269. (in Chinese with English abstract)]

    PENG Mimi, ZHAO Chaoying, ZHANG Qin, et al. Monitoring Xi’an land subsidence during 2015—2017 using Sentinel-1A images[J]. Progress in Geophysics, 2018, 33(6): 2264 − 2269. (in Chinese with English abstract)

    [16] 葛大庆, 殷跃平, 王艳, 等. 地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感,2014,26(1):103 − 109. [GE Daqing, YIN Yueping, WANG Yan, et al. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique: A case study of Dezhou, Shandong[J]. Remote Sensing for Natural Resources,2014,26(1):103 − 109.(in Chinese with English abstract)]

    GE Daqing, YIN Yueping, WANG Yan, et al. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique: A case study of Dezhou, Shandong[J]. Remote Sensing for Natural Resources, 2014, 26(1): 103 − 109.(in Chinese with English abstract)

    [17] 张梦南,程旭学,李志红,等. 三江平原建三江地下水位下降区地面形变监测、评估与预测[J]. 地质通报,2023,42(7):1211 − 1217. [ZHANG Mengnan, CHENG Xuxue, LI Zhihong, et al. Monitoring, evaluation and prediction of ground deformation in the groundwater level drop area of Jiansanjiang Area, Sanjiang Plain[J]. Geological Bulletin of China,2023,42(7):1211 − 1217.(in Chinese with English abstract)]

    ZHANG Mengnan, CHENG Xuxue, LI Zhihong, et al. Monitoring, evaluation and prediction of ground deformation in the groundwater level drop area of Jiansanjiang Area, Sanjiang Plain[J]. Geological Bulletin of China, 2023, 42(7): 1211 − 1217.(in Chinese with English abstract)

    [18] 郑世友,周晔,贺丰收,等. 有重叠区域的SAR图像序列拼接新方法[C]//中国自动化学会智能自动化专业委员会. 2009年中国智能自动化会议论文集(第三分册). 南京,2009:105 − 110. [ZHENG Shiyou,ZHOU Ye,HE Fengshou,et al. A new method for SAR image sequence splicing with overlapping regions[C]//Intelligent Automation Professional Committee of Chinese Association of Automation. 2009 China Intelligent Automation Conference (Volume 3). Nanjing,2009:105 − 110. (in Chinese with English abstract)]

    ZHENG Shiyou, ZHOU Ye, HE Fengshou, et al. A new method for SAR image sequence splicing with overlapping regions[C]//Intelligent Automation Professional Committee of Chinese Association of Automation. 2009 China Intelligent Automation Conference (Volume 3). Nanjing, 2009: 105 − 110. (in Chinese with English abstract)

    [19] 孙权,张华,荆于勤. SAR图像并行拼接方法研究与实现——基于改进完全二叉树模型[J]. 重庆工商大学学报(自然科学版),2015,32(7):75 − 80. [SUN Quan,ZHANG Hua,JING Yuqin. Parallel research and implementation of SAR image mosaic based on optimized complete binary tree model[J]. Journal of Chongqing Technology and Business University (Natural Science Edition),2015,32(7):75 − 80. (in Chinese with English abstract)]

    SUN Quan, ZHANG Hua, JING Yuqin. Parallel research and implementation of SAR image mosaic based on optimized complete binary tree model[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2015, 32(7): 75 − 80. (in Chinese with English abstract)

    [20] 罗湾,张红波,夏欣. 基于SIFT-FFT的大面积多视角SAR图像快速拼接方法[J]. 计算机工程与应用,2017,53(增刊2):340 − 344. [LUO Wan,ZHANG Hongbo,XIA Xin. Large-area multi-view SAR image quick mosaic method based on SIFT-FFT. Computer Engineering and Applications,2017,53(Sup 2):340 − 344. (in Chinese with English abstract)]

    LUO Wan, ZHANG Hongbo, XIA Xin. Large-area multi-view SAR image quick mosaic method based on SIFT-FFT. Computer Engineering and Applications, 2017, 53(Sup 2): 340 − 344. (in Chinese with English abstract)

    [21] 罗三明,单新建,朱文武,等. 多轨PSInSAR监测华北平原地表垂直形变场[J]. 地球物理学报,2014,57(10):3129 − 3139. [LUO Sanming,SHAN Xinjian,ZHU Wenwu,et al. Monitoring vertical ground deformation in the North China Plain using the multitrack PSInSAR technique[J]. Chinese Journal of Geophysics,2014,57(10):3129 − 3139. (in Chinese with English abstract)]

    LUO Sanming, SHAN Xinjian, ZHU Wenwu, et al. Monitoring vertical ground deformation in the North China Plain using the multitrack PSInSAR technique[J]. Chinese Journal of Geophysics, 2014, 57(10): 3129 − 3139. (in Chinese with English abstract)

    [22] 梁媚蓉,王晨沁,毛新华. 基于极坐标格式算法的大斜视条带SAR子孔径拼接成像算法[J]. 南京航空航天大学学报,2016,48(5):649 − 655. [LIANG Meirong,WANG Chenqin,MAO Xinhua. Subaperture mosaic imaging algorithm for highly squinted stripmap SAR based on polar format algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(5):649 − 655. (in Chinese with English abstract)]

    LIANG Meirong, WANG Chenqin, MAO Xinhua. Subaperture mosaic imaging algorithm for highly squinted stripmap SAR based on polar format algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(5): 649 − 655. (in Chinese with English abstract)

    [23] 胡俊,李志伟,朱建军,等. 融合升降轨SAR干涉相位和幅度信息揭示地表三维形变场的研究[J]. 中国科学:地球科学,2010,40(3):307 − 318. [HU Jun,LI Zhiwei,ZHU Jianjun,et al. Study on revealing the three-dimensional deformation field of the surface by fusing the phase and amplitude information of SAR interference in ascending and descending orbit[J]. Scientia Sinica (Terrae),2010,40(3):307 − 318. (in Chinese)] DOI: 10.1360/zd2010-40-3-307

    HU Jun, LI Zhiwei, ZHU Jianjun, et al. Study on revealing the three-dimensional deformation field of the surface by fusing the phase and amplitude information of SAR interference in ascending and descending orbit[J]. Scientia Sinica (Terrae), 2010, 40(3): 307 − 318. (in Chinese) DOI: 10.1360/zd2010-40-3-307

    [24] 刘国祥,张瑞,李陶,等. 基于多卫星平台永久散射体雷达干涉提取三维地表形变速度场[J]. 地球物理学报,2012,55(8):2598 − 2610. [LIU Guoxiang,ZHANG Rui,LI Tao,et al. Extracting 3D ground deformation velocity field by multi-platform persistent scatterer SAR interferometry[J]. Chinese Journal of Geophysics,2012,55(8):2598 − 2610. (in Chinese with English abstract)]

    LIU Guoxiang, ZHANG Rui, LI Tao, et al. Extracting 3D ground deformation velocity field by multi-platform persistent scatterer SAR interferometry[J]. Chinese Journal of Geophysics, 2012, 55(8): 2598 − 2610. (in Chinese with English abstract)

    [25] 胡俊,李志伟,朱建军,等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报,2013,56(1):117 − 126. [HU Jun,LI Zhiwei,ZHU Jianjun,et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics,2013,56(1):117 − 126. (in Chinese with English abstract)]

    HU Jun, LI Zhiwei, ZHU Jianjun, et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics, 2013, 56(1): 117 − 126. (in Chinese with English abstract)

    [26] 和柯,邹进贵. GPS与InSAR形变结果融合分析[J]. 测绘地理信息,2018,43(2):57 − 60. [HE Ke,ZOU Jingui. Fusion analysis of GPS and InSAR deformation results[J]. Journal of Geomatics,2018,43(2):57 − 60. (in Chinese with English abstract)]

    HE Ke, ZOU Jingui. Fusion analysis of GPS and InSAR deformation results[J]. Journal of Geomatics, 2018, 43(2): 57 − 60. (in Chinese with English abstract)

    [27] 麻源源,左小清,麻卫峰,等. 利用数据同化技术实现InSAR和水准数据融合研究[J]. 工程勘察,2019,47(8):49 − 55. [MA Yuanyuan,ZUO Xiaoqing,MA Weifeng,et al. Study on data fusion of InSAR and leveling by using data assimilation technology[J]. Geotechnical Investigation & Surveying,2019,47(8):49 − 55. (in Chinese with English abstract)]

    MA Yuanyuan, ZUO Xiaoqing, MA Weifeng, et al. Study on data fusion of InSAR and leveling by using data assimilation technology[J]. Geotechnical Investigation & Surveying, 2019, 47(8): 49 − 55. (in Chinese with English abstract)

    [28] 李更尔,周元华. InSAR、水准及GPS数据融合处理方法[J]. 测绘通报,2017(9):78 − 82. [LI Genger,ZHOU Yuanhua. Study on fusion methods of InSAR,leveling and GPS data[J]. Bulletin of Surveying and Mapping,2017(9):78 − 82. (in Chinese with English abstract)]

    LI Genger, ZHOU Yuanhua. Study on fusion methods of InSAR, leveling and GPS data[J]. Bulletin of Surveying and Mapping, 2017(9): 78 − 82. (in Chinese with English abstract)

    [29]

    GUO Nannan,ZHAN Wei. Influence of different data fusion methods on the accuracy of three-dimensional displacements field[J]. Advances in Space Research,2020,65(6):1580 − 1590. DOI: 10.1016/j.asr.2019.12.017

    [30]

    WEI Yani,FAN Wen,CAO Yanbo. Experimental study on the vertical deformation of aquifer soils under conditions of withdrawing and recharging of groundwater in Tongchuan region,China[J]. Hydrogeology Journal,2017,25(2):297 − 309. DOI: 10.1007/s10040-016-1498-4

    [31] 薛禹群,张云,叶淑君,等. 我国地面沉降若干问题研究[J]. 高校地质学报,2006,12(2):153 − 160. [XUE Yuqun,ZHANG Yun,YE Shujun,et al. Research on the problems of land subsidence in China[J]. Geological Journal of China Universities,2006,12(2):153 − 160. (in Chinese with English abstract)]

    XUE Yuqun, ZHANG Yun, YE Shujun, et al. Research on the problems of land subsidence in China[J]. Geological Journal of China Universities, 2006, 12(2): 153 − 160. (in Chinese with English abstract)

    [32] 罗跃,叶淑君,吴吉春,等. 上海市地下水位大幅抬升条件下土层变形特征分析[J]. 高校地质学报,2015,21(2):243 − 254. [LUO Yue,YE Shujun,WU Jichun,et al. Characterization of land subsidence during recovery of groundwater levels in Shanghai[J]. Geological Journal of China Universities,2015,21(2):243 − 254. (in Chinese with English abstract)]

    LUO Yue, YE Shujun, WU Jichun, et al. Characterization of land subsidence during recovery of groundwater levels in Shanghai[J]. Geological Journal of China Universities, 2015, 21(2): 243 − 254. (in Chinese with English abstract)

    [33]

    ZHANG Youquan,GONG Huili,GU Zhaoqin,et al. Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city,China[J]. Hydrogeology Journal,2014,22(2):397 − 409. DOI: 10.1007/s10040-013-1069-x

    [34] 主灿,张云,何国峰,等. 天津滨海新区抽水引起地面沉降现场试验研究[J]. 水文地质工程地质,2018,45(2):159 − 164. [ZHU Can,ZHANG Yun,HE Guofeng,et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology,2018,45(2):159 − 164. (in Chinese with English abstract)]

    ZHU Can, ZHANG Yun, HE Guofeng, et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 159 − 164. (in Chinese with English abstract)

    [35] 张勤,赵超英,丁晓利,等. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报,2009,52(5):1214 − 1222. [ZHANG Qin,ZHAO Chaoying,DING Xiaoli,et al. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi’an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics,2009,52(5):1214 − 1222. (in Chinese with English abstract)]

    ZHANG Qin, ZHAO Chaoying, DING Xiaoli, et al. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi’an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 2009, 52(5): 1214 − 1222. (in Chinese with English abstract)

    [36]

    BONÌ R,HERRERA G,MEISINA C,et al. Twenty-year advanced DInSAR analysis of severe land subsidence:The Alto Guadalentín Basin (Spain) case study[J]. Engineering Geology,2015,198:40-52.

    [37] 宫辉力. 京津冀地面沉降演化规律及灾变机制研究[R]. 北京:首都师范大学,2015. [GONG Huili. Research on the evolution law and disaster mechanism of land subsidence in Beijing Tianjin Hebei [R]. Beijing:Capital Normal University,2015. (in Chinese)]

    GONG Huili. Research on the evolution law and disaster mechanism of land subsidence in Beijing Tianjin Hebei [R]. Beijing: Capital Normal University, 2015. (in Chinese)

    [38] 宫辉力,李小娟,潘云,等. 京津冀地下水消耗与区域地面沉降演化规律[J]. 中国科学基金,2017,31(1):72 − 77. [GONG Huili,LI Xiaojuan,PAN Yun,et al. Groundwater depletion and regional land subsidence of the Beijing-Tianjin-Hebei area[J]. Bulletin of National Natural Science Foundation of China,2017,31(1):72 − 77. (in Chinese with English abstract)]

    GONG Huili, LI Xiaojuan, PAN Yun, et al. Groundwater depletion and regional land subsidence of the Beijing-Tianjin-Hebei area[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(1): 72 − 77. (in Chinese with English abstract)

    [39]

    ZHOU Chaofan,GONG Huili,CHEN Beibei,et al. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain,China with machine learning technology[J]. Geomorphology,2019,335:48 − 61. DOI: 10.1016/j.geomorph.2019.03.017

    [40] 曹鑫宇,朱琳,宫辉力,等. AM-LSTM网络的北京平原东部地面沉降模拟[J]. 遥感学报,2022,26(7):1302 − 1314. [CAO Xinyu,ZHU Lin,GONG Huili,et al. Land subsidence simulation in the east of Beijing plain based on the AM-LSTM Network[J]. National Remote Sensing Bulletin,2022,26(7):1302 − 1314. (in Chinese with English abstract)] DOI: 10.11834/jrs.20211297

    CAO Xinyu, ZHU Lin, GONG Huili, et al. Land subsidence simulation in the east of Beijing plain based on the AM-LSTM Network[J]. National Remote Sensing Bulletin, 2022, 26(7): 1302 − 1314. (in Chinese with English abstract) DOI: 10.11834/jrs.20211297

    [41]

    CHEN Beibei,GONG Huili,CHEN Yun,et al. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China[J]. Science of the Total Environment,2020,735:139111. DOI: 10.1016/j.scitotenv.2020.139111

    [42]

    SUN Hanrui,ZHU Lin,GUO Lin,et al. Understanding the different responses from the similarity between displacement and groundwater level time series in Beijing,China[J]. Natural Hazards,2022,111(1):1 − 18. DOI: 10.1007/s11069-021-05041-9

    [43] 彭建兵. 渭河断裂带的构造演化与地震活动[J]. 地震地质,1992,14(2):113 − 120. [PENG Jianbing. Tectonic evolution and seismicity of Weihe fault zone[J]. Seismology and Geology,1992,14(2):113 − 120. (in Chinese with English abstract)]

    PENG Jianbing. Tectonic evolution and seismicity of Weihe fault zone[J]. Seismology and Geology, 1992, 14(2): 113 − 120. (in Chinese with English abstract)

    [44]

    ZHANG Yun,WANG Zhecheng,XUE Yuqun,et al. Mechanisms for earth fissure formation due to groundwater extraction in the Su-Xi-Chang area,China[J]. Bulletin of Engineering Geology and the Environment,2016,75(2):745 − 760. DOI: 10.1007/s10064-015-0775-0

    [45] 王艺伟,叶淑君,于军,等. 中国“采水型”地裂缝特征和成因分析[J]. 高校地质学报,2016,22(4):741 − 752. [WANG Yiwei,YE Shujun,YU Jun,et al. Features and mechanisms of earth fissures induced groundwater withdrawal in China[J]. Geological Journal of China Universities,2016,22(4):741 − 752. (in Chinese with English abstract)]

    WANG Yiwei, YE Shujun, YU Jun, et al. Features and mechanisms of earth fissures induced groundwater withdrawal in China[J]. Geological Journal of China Universities, 2016, 22(4): 741 − 752. (in Chinese with English abstract)

    [46]

    SUN Lin, WANG Shuaiwei, GUO Caijuan, et al. Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment[J]. Journal of Groundwater Science and Engineering,2022,10(1):87 − 98.

    [47]

    BURBEY T J. The influence of faults in basin-fill deposits on land subsidence,Las Vegas Valley,Nevada,USA[J]. Hydrogeology Journal,2002,10(5):525 − 538. DOI: 10.1007/s10040-002-0215-7

    [48] 彭建兵. 西安地裂缝灾害[M]. 北京:科学出版社,2012. [PENG Jianbing. Ground fissure disaster in Xi’ an[M]. Beijing:Science Press,2012. (in Chinese with English abstract)]

    PENG Jianbing. Ground fissure disaster in Xi’ an[M]. Beijing: Science Press, 2012. (in Chinese with English abstract)

    [49] 李志明,杨旭东,兰剑梅,等. 河北邢台柏乡地裂缝成因分析[J]. 水文地质工程地质,2010,37(2):135 − 138. [LI Zhiming,YANG Xudong,LAN Jianmei,et al. An analysis of earth fissure at Baixiang County,Xingtai City[J]. Hydrogeology & Engineering Geology,2010,37(2):135 − 138. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2010.02.029

    LI Zhiming, YANG Xudong, LAN Jianmei, et al. An analysis of earth fissure at Baixiang County, Xingtai City[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 135 − 138. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2010.02.029

    [50] 骆祖江,王琰,田小伟,等. 沧州市地下水开采与地面沉降地裂缝模拟预测[J]. 水利学报,2013,44(2):198 − 204. [LUO Zujiang,WANG Yan,TIAN Xiaowei,et al. Simulating and forecasting of groundwater exploitation,land subsidence and ground fissure in Cangzhou City[J]. Journal of Hydraulic Engineering,2013,44(2):198 − 204. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0559-9350.2013.02.011

    LUO Zujiang, WANG Yan, TIAN Xiaowei, et al. Simulating and forecasting of groundwater exploitation, land subsidence and ground fissure in Cangzhou City[J]. Journal of Hydraulic Engineering, 2013, 44(2): 198 − 204. (in Chinese with English abstract) DOI: 10.3969/j.issn.0559-9350.2013.02.011

    [51] 伍洲云,余勤,张云. 苏锡常地区地裂缝形成过程[J]. 水文地质工程地质,2003,30(1):67 − 72. [WU Zhouyun,YU Qin,ZHANG Yun. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology,2003,30(1):67 − 72. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2003.01.018

    WU Zhouyun, YU Qin, ZHANG Yun. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology, 2003, 30(1): 67 − 72. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2003.01.018

    [52] 于军,王晓梅,苏小四,等. 苏锡常地区地裂缝地质灾害形成机理分析[J]. 吉林大学学报(地球科学版),2004,34(2):236 − 241. [YU Jun,WANG Xiaomei,SU Xiaosi,et al. The mechanism analysis on ground fissure disaster formation in Suzhou-Wuxi-Changzhou area[J]. Journal of Jilin University (Earth Science Edition),2004,34(2):236 − 241. (in Chinese with English abstract)]

    YU Jun, WANG Xiaomei, SU Xiaosi, et al. The mechanism analysis on ground fissure disaster formation in Suzhou-Wuxi-Changzhou area[J]. Journal of Jilin University (Earth Science Edition), 2004, 34(2): 236 − 241. (in Chinese with English abstract)

    [53]

    LYU Mingyuan,KE Yinghai,GUO Lin,et al. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry[J]. GIScience & Remote Sensing,2020,57(1):140 − 156.

    [54]

    GAMBOLATI G,FREEZE R A. Mathematical simulation of the subsidence of Venice:1[J]. Water Resources Research,1973,9(3):721 − 733 DOI: 10.1029/WR009i003p00721

    [55]

    SHEN Shuilong,XU Yeshuang. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai[J]. Canadian Geotechnical Journal,2011,48(9):1378 − 1392. DOI: 10.1139/t11-049

    [56]

    LEWIS R W,SCHREFLER B. A fully coupled consolidation model of the subsidence of Venice[J]. Water Resources Research,1978,14(2):223 − 230. DOI: 10.1029/WR014i002p00223

    [57]

    HOFFMANN J,GALLOWAY D L,ZEBKER H A. Inverse modeling of interbed storage parameters using land subsidence observations,Antelope Valley,California[J]. Water Resources Research,2003,39(2):1031.

    [58]

    TEATINI P,FERRONATO M,GAMBOLATI G,et al. Groundwater pumping and land subsidence in the Emilia-Romagna coastland,Italy:modeling the past occurrence and the future trend[J]. Water Resources Research,2006,42(1):W01406.

    [59]

    MAHMOUDPOUR M,KHAMEHCHIYAN M,NIKUDEL M R,et al. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran,Iran[J]. Engineering Geology,2016,201:6 − 28. DOI: 10.1016/j.enggeo.2015.12.004

    [60] 骆祖江,李朗,姚天强,等. 松散承压含水层地区深基坑降水三维渗流与地面沉降耦合模型[J]. 岩土工程学报,2006,28(11):1947 − 1951. [LUO Zujiang,LI Lang,YAO Tianqiang,et al. Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering,2006,28(11):1947 − 1951. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2006.11.006

    LUO Zujiang, LI Lang, YAO Tianqiang, et al. Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1947 − 1951. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2006.11.006

    [61] 薛禹群,吴吉春,张云,等. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学(D辑:地球科学),2008,38(4):477 − 492. [XUE Yuqun,WU Jichun,ZHANG Yun,et al. Simulation study on regional land subsidence in the Yangtze River Delta (south)[J]. Science in China (Series D (Earth Sciences)),2008,38(4):477 − 492. (in Chinese)]

    XUE Yuqun, WU Jichun, ZHANG Yun, et al. Simulation study on regional land subsidence in the Yangtze River Delta (south)[J]. Science in China (Series D (Earth Sciences)), 2008, 38(4): 477 − 492. (in Chinese)

    [62] 李文运,崔亚莉,苏晨,等. 天津市地下水流-地面沉降耦合模型[J]. 吉林大学学报(地球科学版),2012,42(3):805 − 813. [LI Wenyun,CUI Yali,SU Chen,et al. An integrated numerical groundwater and land subsidence model of Tianjin[J]. Journal of Jilin University (Earth Science Edition),2012,42(3):805 − 813. (in Chinese with English abstract)]

    LI Wenyun, CUI Yali, SU Chen, et al. An integrated numerical groundwater and land subsidence model of Tianjin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 805 − 813. (in Chinese with English abstract)

    [63]

    ZHU Lin,FRANCESCHINI A,GONG Huili,et al. The 3-D facies and geomechanical modeling of land subsidence in the chaobai plain,Beijing[J]. Water Resources Research,2020,56(3):e2019WR027026. DOI: 10.1029/2019WR027026

    [64] 房浩,何庆成,宋建新,等. 基于地下水调控的沧州市地面沉降防治模拟研究[J]. 上海国土资源,2014,35(4):21 − 24. [FANG Hao,HE Qingcheng,SONG Jianxin,et al. Modeling land subsidence prevention based on groundwater regulation in Cangzhou[J]. Shanghai Land & Resources,2014,35(4):21 − 24. (in Chinese with English abstract)]

    FANG Hao, HE Qingcheng, SONG Jianxin, et al. Modeling land subsidence prevention based on groundwater regulation in Cangzhou[J]. Shanghai Land & Resources, 2014, 35(4): 21 − 24. (in Chinese with English abstract)

    [65]

    LI Yueting,TEATINI P,YU Jun,et al. Aseismic multifissure modeling in unfaulted heavily pumped basins:mechanisms and applications[J]. Water Resources Research,2021,57(10):e2021WR030127. DOI: 10.1029/2021WR030127

    [66] 黄丹,卢广达,章青. 准静态变形破坏的近场动力学分析[J]. 计算力学学报,2016,33(5):657 − 662. [HUANG Dan,LU Guangda,ZHANG Qing. A peridynamic study on quasi-static deformation and failure[J]. Chinese Journal of Computational Mechanics,2016,33(5):657 − 662. (in Chinese with English abstract)] DOI: 10.7511/jslx201605001

    HUANG Dan, LU Guangda, ZHANG Qing. A peridynamic study on quasi-static deformation and failure[J]. Chinese Journal of Computational Mechanics, 2016, 33(5): 657 − 662. (in Chinese with English abstract) DOI: 10.7511/jslx201605001

    [67] 李江涛. 基岩隆起条件下的地裂缝数值模拟——以无锡光明村为例[D]. 北京:首都师范大学,2022. [LI Jiangtao. Numerical simulation of ground fractures under bedrock uplift:A case study of Guangming Village,Wuxi [D]. Beijing:Capital Normal University,2022. (in Chinese with English abstract)]

    LI Jiangtao. Numerical simulation of ground fractures under bedrock uplift: A case study of Guangming Village, Wuxi [D]. Beijing: Capital Normal University, 2022. (in Chinese with English abstract)

    [68] 张可,宫辉力,李小娟,等. 近场动力学理论在区域地面沉降建模中的应用研究[J]. 地球信息科学学报,2023,25(1):49 − 62. [ZHANG Ke,GONG Huili,LI Xiaojuan,et al. Application of peridynamic theory in regional land subsidence modeling[J]. Journal of Geo-Information Science,2023,25(1):49 − 62. (in Chinese with English abstract)]

    ZHANG Ke, GONG Huili, LI Xiaojuan, et al. Application of peridynamic theory in regional land subsidence modeling[J]. Journal of Geo-Information Science, 2023, 25(1): 49 − 62. (in Chinese with English abstract)

    [69]

    MACEK R W,SILLING S A. Peridynamics via finite element analysis[J]. Finite Elements in Analysis and Design,2007,43(15):1169 − 1178. DOI: 10.1016/j.finel.2007.08.012

    [70]

    LIU Shuo,FANG Guodong,LIANG Jun,et al. A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems[J]. Theoretical and Applied Fracture Mechanics,2020,108:102573. DOI: 10.1016/j.tafmec.2020.102573

    [71] 周超凡,宫辉力,陈蓓蓓,等. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感,2021,33(4):34 − 42. [ZHOU Chaofan,GONG Huili,CHEN Beibei,et al. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources,2021,33(4):34 − 42. (in Chinese with English abstract)]

    ZHOU Chaofan, GONG Huili, CHEN Beibei, et al. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34 − 42. (in Chinese with English abstract)

    [72]

    POURGHASEMI H R,MOHSENI SARAVI M. Land-subsidence spatial modeling using the random forest data-mining technique[C]//Spatial Modeling in GIS and R for Earth and Environmental Sciences. Amsterdam:Elsevier,2019:147-159.

    [73]

    SALAZAR F,TOLEDO M Á,OÑATE E,et al. Interpretation of dam deformation and leakage with boosted regression trees[J]. Engineering Structures,2016,119:230 − 251. DOI: 10.1016/j.engstruct.2016.04.012

    [74]

    SHI Liyuan,GONG Huili,CHEN Beibei,et al. Land subsidence prediction induced by multiple factors using machine learning method[J]. Remote Sensing,2020,12(24):4044. DOI: 10.3390/rs12244044

    [75]

    SU Huaizhi,WU Zhongru,WEN Zhiping. Identification model for dam behavior based on wavelet network[J]. Computer-Aided Civil and Infrastructure Engineering,2007,22(6):438 − 448. DOI: 10.1111/j.1467-8667.2007.00499.x

    [76]

    RANKOVIĆ V,GRUJOVIĆ N,DIVAC D,et al. Development of support vector regression identification model for prediction of dam structural behaviour[J]. Structural Safety,2014,48:33 − 39. DOI: 10.1016/j.strusafe.2014.02.004

    [77]

    ZHU Lin,GONG Huili,LI Xiaojuan,et al. Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing,China[J]. Chinese Geographical Science,2013,23(2):237 − 248. DOI: 10.1007/s11769-013-0589-6

    [78] 刘青豪,张永红,邓敏,等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报,2021,50(3):396 − 404. [LIU Qinghao,ZHANG Yonghong,DENG Min,et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica,2021,50(3):396 − 404. (in Chinese with English abstract)]

    LIU Qinghao, ZHANG Yonghong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396 − 404. (in Chinese with English abstract)

    [79]

    LU Can,ZHU Lin,LI Xiaojuan,et al. Land subsidence evolution and simulation in the western coastal area of Bohai Bay,China[J]. Journal of Marine Science and Engineering,2022,10(10):1549. DOI: 10.3390/jmse10101549

    [80] 沈焕锋,张良培. 地球表层特征参量反演与模拟的机理-学习耦合范式[J]. 中国科学:地球科学,2023,53(3):546 − 560. [SHEN Huanfeng,ZHANG Liangpei. Mechanism-learning coupling paradigms for parameter inversion and simulation in earth surface systems[J]. Scientia Sinica(Terrae),2023,53(3):546 − 560. (in Chinese)]

    SHEN Huanfeng, ZHANG Liangpei. Mechanism-learning coupling paradigms for parameter inversion and simulation in earth surface systems[J]. Scientia Sinica(Terrae), 2023, 53(3): 546 − 560. (in Chinese)

    [81] 李蕙君. 区域地面沉降循环神经网络时空模拟及风险评估[D]. 北京:首都师范大学,2021. [LI Huijun. Spatio-temporal simulation and risk assessment of regional land subsidence cyclic neural network [D]. Beijing:Capital Normal University,2021. (in Chinese with English abstract)]

    LI Huijun. Spatio-temporal simulation and risk assessment of regional land subsidence cyclic neural network [D]. Beijing: Capital Normal University, 2021. (in Chinese with English abstract)

    [82]

    GAZZOLA L, FERRONATO M, TEATINI P, et al. Reducing uncertainty on land subsidence modeling prediction by a sequential data-integration approach. Application to the Arlua off-shore reservoir in Italy[J]. Geomechanics for Energy and the Environment,2023,33:100434.

  • 期刊类型引用(4)

    1. 张熠斌,宋金红,徐誉维,徐思瑜. 基于时序InSAR的吉林省煤炭采空区地表形变监测及时空演化态势分析. 水文地质工程地质. 2025(01): 202-213 . 本站查看
    2. 成思远,管志波,宫辉力,李小娟,张可,王彻,吕明苑,郭琳,王霖,刘一哲. 近场动力学与深度学习相结合的地面沉降建模和模拟方法. 地球信息科学学报. 2025(01): 181-192 . 百度学术
    3. 杨魁,邱亚辉,徐骏千,梁军,李文彬,孙国昱. 地面沉降立体监测数据融合方法. 测绘通报. 2025(02): 122-126+142 . 百度学术
    4. 秦同春,俞同云,王勇,宁迪,王海刚. 人工智能技术在地面沉降研究中的应用与展望. 水文地质工程地质. 2024(06): 232-240 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  856
  • HTML全文浏览量:  114
  • PDF下载量:  274
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-06-08
  • 录用日期:  2023-07-18
  • 网络出版日期:  2023-11-05
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回