Geological safety risk assessment of underground space utilization in Xiongan New Area
-
摘要:
地质环境是地下空间的承载体,明显制约地下空间开发利用。识别地下空间利用的地质安全风险及其主要影响要素可为地下空间合理规划、地下空间设施安全保障提供科学依据。以雄安新区为例,从空间、资源、环境、灾害 4 个层面,分析了不同类型地质安全风险隐患,遴选含水砂层厚度、土体承载力特征值、土体压缩模量、地面高程、地下水位埋深、地面沉降速率和砂土液化指数等定量指标,构建指标体系进行地质安全风险评价。针对现有评价方法在客观赋权方面存在的不足,在考虑数据相关性、离散性和相对性(冲突性)的基础上,引入基于指标相关性的指标权重确定法(criteria importance through intercriteria correlation,CRITIC),提出了CRITIC-Entropy组合确权法,使得赋权更为科学与合理。研究结果表明,雄安新区地下空间地质安全风险呈现出深部层位小于浅部层位的特征,且Ⅰ级和Ⅱ级风险区主要位于白洋淀及周边、南张镇东和大营镇东等区域,浅层(0~15 m)、次浅层(15~30 m)、次深层(30~50 m)、深层(50~100 m)地下空间Ⅰ级和Ⅱ级风险区累计面积占比分别为54.49%、42.51%、41.06%和42.18%。不同层位地下空间地质安全风险的主要影响要素有所差异,总体来说,土体压缩模量、土体承载力特征值、地面高程和地下水位埋深影响权重较高。同时,需要关注地面沉降、地下水位动态演变和不同施工方式引起的风险变化。成果可为雄安新区地下空间利用规划科学优化和防灾减灾提供地学依据,也可为其他地区相关研究提供借鉴。
-
关键词:
- 地下空间 /
- 地质安全风险 /
- CRITIC-Entropy组合确权 /
- 雄安新区
Abstract:The utilization of underground space is related to geological environment. Identifying the geological safety risk and their influencing factors of underground space utilization can provide scientific basis for underground space management and the safety of underground space facilities. Previous studies have utilized various methods including analytic hierarchy process (AHP), fuzzy mathematics, and neural network to analyze the geological environment conditions of urban underground space. However, their methods have limitations in terms of objective weighting. To address this, considering the data correlation, discreteness, and relativity (conflict), an improved analytic hierarchy process incorporating the criteria importance through intercriteria correlation (CRITIC) method was introduced. The CRITIC-Entropy combination weighting method, which made the weights more scientific and reasonable, was proposed to evaluate the geological safety risk of underground space utilization. In Xiongan New Area, the geological safety risks related to stress variation, bearing capacity, submergence and anti-floating, soil pressure change, and sand liquefaction were analyzed. The evaluation focused on four aspects: space, resources, environment, and disaster. Quantitative indicators, such as aquifer thickness, characteristic value of soil bearing capacity, compression modulus of soil, ground elevation, buried depth of groundwater level, land subsidence rate, and sand liquefaction index were selected to construct the geological safety risk evaluation index system for shallow (0−15 m), sub-shallow (15−30 m), sub-deep (30−50 m), and deep (50−100 m) underground spaces. The study reveals that the geological safety risk of underground space in the study area follows a pattern that deep layers have a lower risk compared to shallow layers. The areas with Ⅰ and Ⅱ risk grades are predominantly located at Baiyangdian and its surrounding areas, east of Nanzhang town, and east of Daying town. The cumulative acreage of Ⅰ and Ⅱ risk grades in shallow, sub-shallow, sub-deep, and deep underground space accounts for 54.49%, 42.51%, 41.06%, and 42.18%, respectively. Additionally, the dominant factors influencing the geological safety risk vary across different layers of underground space, while compression modulus of soil, characteristic value of soil bearing capacity, ground elevation, and buried depth of groundwater level show high weights. It is also important to consider the risk changes caused by the potential changes of land subsidence rate, buried depth of groundwater level, and different excavation ways in the future research. These findings provide a geological foundation for the scientific optimization of underground space utilization and disaster prevention and mitigation in Xiongan New Area and other similar areas.
-
近几十年来,我国城市化进程不断加快,一定程度上引发了交通拥堵、土地资源紧缺等“城市病” [1]。为解决这些问题,地下空间的科学利用成为一条有效途径[2 − 3]。地质环境作为地下空间的承载体[4 − 5],是制约地下空间利用的基础要素,有效认识地质环境对地下空间利用的制约、识别地下空间利用的地质安全风险要素及其影响程度,可以指导规避或改造不利的地质条件,从而提升拟规划地下空间设施的安全保障程度。因此,开展地下空间利用地质安全风险研究具有重要的理论意义和实用价值。
已有研究显示,城市地下空间开发利用中面临地质问题复杂、已有空间改扩建、深层空间安全开发利用、开发利用诱发灾害防控等地质方面的挑战[6],尚缺乏科学评价与安全利用理论方法与技术路径[7]。目前,相关学者基于城市地下空间的地质环境条件以银川等城市为案例开展了地质安全风险探索研究[5],以重庆[8]、北京[9]、广州[10]等地区为实例进行了地质适宜性评价。因不同地区地质环境条件存在差异,目前尚未形成统一的评价指标体系,但常见的影响因素为活动断裂、地面沉降、地下水位、岩土体承载力、地面高程、砂土液化、软土等。常见的评价方法主要包括层次分析法(analytic hierarchy process,AHP)[5, 11]、模糊数学法[9, 12]、神经网络法[13 − 14]、熵权法(Entropy)[15]、逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)[16 − 17]等。各类评价方法各有优缺,但影响因素权重的合理确定是其关键[18 − 19]。
鉴于现有评价方法在客观赋权方面存在一定不足,本次在考虑影响因素数据相关性、离散性和相对性(冲突性)基础上,基于改进层次分析法,引入在其他研究领域使用的基于指标相关性的指标权重确定法(criteria importance through intercriteria correlation,CRITIC)[20 − 21],提出CRITIC-Entropy组合确权法进行地下空间利用地质安全风险评价研究。同时,针对目前地下空间地质安全风险分层研究案例较少的问题,基于雄安新区地质环境调查数据,从空间、资源、环境、灾害视角出发,研判应力异变、承载力、淹没与抗浮、土体压变、砂土液化等地质安全风险隐患,进行地下空间分层利用地质安全风险评价,以期为地下空间利用规划科学优化和防灾减灾提供地学依据。
1. 研究区概况
1.1 区域概况
雄安新区位于太行山东缘、河北平原中部,辖容城、雄县、安新3县及周边部分区域,面积约
1770 km2(图1)。雄安新区将规划形成“一主、五辅、多节点”的城乡空间布局,其中,“一主、五辅”是指主城区和外围 5 个功能组团。雄安新区属暖温带季风性气候,多年平均降水量480.8 mm,多年平均气温12.6 °C。地面高程小于26 m,地势西北高、东南低,平均坡降小于2‰,属堆积平原地貌类型。第四系地层普遍发育[22],厚度一般大于100 m,以冲洪积、冲湖积相为主。大致以安新—雄县城区为界,以北区域上部发育冲积物和洼地堆积物,下部发育冲洪积物;以南区域主要发育冲湖积物。第四系孔隙水赋存地下,可划分为浅层和深层两类[23],其中100 m以浅属浅层地下水类型。地表河流较为发育,域内分布白洋淀。研究区地处冀中台陷,隐伏断裂较为发育,但现代活动强度微弱[24 − 25]。100 m以浅地层工程地质条件良好[26],但存在地面沉降、砂土液化等地质环境问题[24]。1.2 地质安全风险要素分析
因地质环境背景不同,不同地区地下空间利用的主要地质约束因素有所差异[27 − 28]。本次根据雄安新区地质环境条件和已有调查数据资料[29],从空间、资源、环境、灾害4个层面考虑,将可能影响100 m深度内地下空间利用的主要地质安全风险划分为应力异变风险、承载力风险、淹没与抗浮风险、土体压变风险和砂土液化风险等类型(图2)。本次所指的地质安全风险要素是指地下空间利用安全风险的地质影响因素。
1.2.1 应力异变地质安全风险要素
研究区第四系地层发育含水砂层,为地下水赋存提供有利空间。但在地下空间工程施工扰动破坏含水层结构时,局部地下水流场会发生明显变化,引发应力异变,易诱发突涌水、流砂等问题[30]。含水砂层越厚,在受到扰动破坏时产生的地质安全风险相对越大[31]。
研究区100 m以浅可划分为6个较为连续的含水砂层,埋深分别处于0~15 m、15~30 m、30~50 m、50~65 m、65~80 m和80~100 m范围。空间分布呈现不均一性,大部分地区单层厚度小于2.5 m(图3)。
1.2.2 承载力地质安全风险要素
若土体的承载力偏小、压缩性偏大,在地下空间设施荷载等作用下会加剧形变[32],发生差异性沉降,威胁地下空间设施安全。土体的承载力越大、压缩性越小,在受到外力作用时产生的地质安全风险相对越小[33]。
研究区100 m以浅地层沉积韵律较稳定,主要岩性为粉质黏土、粉土、粉细砂等。垂向上,由浅及深,土体承载力特征值呈增大趋势;平面上,土体承载力特征值呈西北部高、东南部低的特征(表1)。与土体承载力特征值分布特征有所差异,不同深度土体的压缩模量未呈现出明显的递变规律(表2)。
深度/m 特征 0~5 80<f≤100 100<f≤130 f >130 同口镇南、龙华镇东北、赵北口镇周边、
昝岗镇西、苟各庄镇—鄚州镇镇沿线以南等地区雄安新区
其他地区5~10 100<f≤130 130<f≤160 f >160 双堂乡—米家务镇北—北沙口乡北—晾马台镇西—朱各庄镇
南—平王乡南—大王镇西北—小里镇东—老河头镇北一
线以南、容城县城北、大河镇西北等地区雄安新区
其他地区容城县城西—南张镇北一带 10~15 110<f≤130 130<f≤170 f >170 同口镇南、刘李庄镇—端村镇一线周边、鄚州镇南、
赵北口镇西北、苟各庄镇西北、张岗乡南等地区雄安新区
其他地区寨里乡西北、小里镇南、容城县城
西—南张镇西—小里镇东北一带15~30 130<f≤160 160<f≤200 f >200 安州镇西、寨里乡西南、北沙口乡北—大营镇东—
雄县县城西—龙湾镇南—圈头乡西北—端村镇—
同口镇南一线东南部大部分地区雄安新区
其他地区容城县城西北—南张镇—小里镇
西一带、容城县城东南、安新县
城西、大河镇—晾马台镇一带30~50 130<f≤160 160<f≤200 f >200 芦庄乡、老河头镇东北、苟各庄镇西、双堂乡西—
龙湾镇北—晾马台镇—八于乡—容城县城东—
三台镇—安县县城东—平王乡南一带雄安新区
其他地区50~100 130<f≤160 160<f≤200 f >200 寨里乡北、龙湾镇东南、苟各庄镇南、
圈头乡—鄚州镇西一带雄安新区
其他地区注:表中f为土体承载力特征值;空白为无此项。 深度/m 特征 E≤4 4<E≤11 11<E≤15 E >15 0~5 南张镇西北
局部地区寨里乡南—安州镇西北—老河头镇北一带 雄安新区
其他地区贾光乡西部分地区、安新县城北局部地区 5~10 南张镇西北局部地区 雄安新区
其他地区端村镇北局部地区、大营镇西南 10~15 雄安新区
其他地区安州镇东部分地区、安新县城东北局部地区、
南张镇东等局部地区15~30 小里镇西及西南局部地区 雄安新区
其他地区端村镇西部分地区 30~50 双堂乡南—昝岗镇—朱各庄镇北—雄县县城西—龙湾镇南—
苟各庄镇北一线以东、南张镇西北、小里镇西南局部地区雄安新区
其他地区50~100 双堂乡南—昝岗镇—朱各庄镇西—雄县县城西—张北口镇北—
圈头乡—七间房乡南一线以东、南张镇东等局部地区雄安新区
其他地区同口镇西南部分地区、八于乡南局部地区 注:表中E为土体压缩模量;空白为无此项。 1.2.3 淹没与抗浮地质安全风险要素
白洋淀具有蓄洪滞沥的防洪功能,但若受到丰水期强降雨影响,淀内水位超过设防洪(潮)水位9 m[34],城市发生洪涝灾害时,地下空间设施易产生淹没风险[35]。因此,地面高程对地下空间设施淹没地质安全风险具有重要影响。此外,若地下水位埋深较浅,会对地下空间设施产生较大的浮托作用,当地下水位升高时,可能造成地下空间设施失稳破坏[36 − 37]。故而,地下水位埋深越深,地下空间设施的抗浮地质安全风险相对越小。
DEM高程数据显示,研究区地面高程多介于6~10 m,其中,小里镇—安新县县城北—平王乡—龙湾镇西北—张岗乡—米家务镇一线以北,及刘李庄镇—龙华乡一线等地区高程大于9 m;最高处位于容城县贾光乡一带,约26 m;白洋淀周边相对较低,一般小于5 m。区域上,地面高程总体呈现西北部偏高、东南部偏低特征。水位统测数据显示,浅层地下水位埋深一般介于5~20 m。区域上,地下水位埋深呈现出自白洋淀附近向周边逐渐加深趋势(图4)。
1.2.4 土体压变地质安全风险要素
受地下水开采等影响[38],地层土体会发生压缩形变,易引发地下空间设施不均匀沉降、变形[39],威胁地下空间设施安全。地面沉降速率越大,地下空间土体压变的地质安全风险相对越大。
目前,研究区地面沉降相对较轻,绝大部分区域地面沉降速率小于10 mm/a,仅晾马台镇南—大河镇东—平王乡西一线、大营镇西—北沙口乡西、南张镇东等局部地区超过30 mm/a,大营镇西南等零星地区超过50 mm/a。
1.2.5 砂土液化地质安全风险要素
砂土液化会引起土层形变、地层喷冒水[40],导致地基失稳,破坏地下空间设施[41]。因此,砂土液化指数越大,受外力扰动时砂土液化地质安全风险相对越大。
现状水位条件下,砂土液化指数在区域上呈中西部和白洋淀周边大、其他区域小的特征,大部分区域砂土液化指数小于6(图5)。
2. 地质安全风险评价方法
2.1 地下空间层位划分
《河北雄安新区规划纲要》明确了浅层、次浅层、次深层和深层 4 个开发利用层位[42]。现有城市地下空间规划标准指出[43],地下空间可按浅层(0~15 m)、次浅层(15~30 m)、次深层(30~50m)和深层(50 m以下) 4 层进行规划利用。本次参照上述层位与深度划分方法,开展地下空间分层地质安全风险评价研究。
2.2 评价方法与指标等级
2.2.1 评价方法
本次采用加权平均综合指数法进行地下空间地质安全风险评价。通过进行评价指标赋值和权重计算,获得地质安全风险综合指数(ISI),计算模型如下:
$$ I_{\mathrm{SI}}=\sum_{j=1}^nf_jw_j,\; \; j=\mathrm{1,2},\cdots,n $$ (1) 式中:wj——第j个评价指标权重;
fj——第j个评价指标赋值评分;
n——评价指标数量。
2.2.2 指标体系与评价等级
根据研究区地质环境条件和潜在的地质安全风险要素分析,确定影响地下空间利用的应力异变、承载力、淹没与抗浮等地质安全风险要素指标为含水砂层厚度、土体承载力特征值、土体压缩模量、地面高程、地下水位埋深、地面沉降速率和砂土液化指数等。
对于地质安全风险等级划分,参照赵银鑫等[5]的 4 类分法,按照风险相对由高到低的程度划分为Ⅰ~Ⅳ级。相关指标等级划分依据见表3,浅层(L1,0~15 m)、次浅层(L2,15~30 m)、次深层(L3,30~50 m)和深层(L4,50~100 m)对应的评价指标体系见表4。
风险类型 评价指标 风险等级 应用层位 I II III IV 应力异变
地质安全风险0~15 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L1 15~30 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L2 30~50 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L3 50~65 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 65~80 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 80~100 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 承载力
地质安全风险0~5 m土体承载力特征值/kPa f≤80 80<f≤100 100<f≤130 f>130 L1 5~10 m土体承载力特征值/ kPa f≤100 100<f≤130 130<f≤160 f>160 L1 10~15 m土体承载力特征值/ kPa f≤110 110<f≤130 130<f≤170 f>170 L1 15~30 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L2 30~50 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L3 50~100 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L4 0~5 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 5~10 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 10~15 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 15~30 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L2 30~50 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L3 50~100 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L4 淹没与抗浮
地质安全风险地面高程/m H≤8 8<H≤8.5 8.5<H≤9 H>9 L1,L2,L3,L4 地下水位埋深/m D≤5 5<D≤10 10<D≤15 D>15 L1,L2,L3,L4 土体压变地质安全风险 地面沉降速率/(mm·a−1) R≥50 30≤R<50 10≤R<30 R<10 L1,L2,L3,L4 砂土液化地质安全风险 砂土液化指数 I≥18 6≤I<18 0<I<6 I=0 L1 注:H为地面高程,R为地面沉降速率。 2.3 指标权重计算
本次采用CRITIC-Entropy组合法进行地下空间地质安全风险评价指标确权,计算方法如下。
2.3.1 CRITIC权重计算
①建立评价指标矩阵:
$$ \boldsymbol{X}=({\boldsymbol{X}}_{ij})_{m\times n} $$ (2) 式中:m——评价单元数量;
i——第i个评价单元;
X——评价指标矩阵。
②进行矩阵归一化:
$$ \boldsymbol{Y}=(\boldsymbol{Y}_{ij})_{m\times n} $$ (3) 式中:Y——归一化后矩阵。
其中,Yij需要进行正向化或逆向化处理。
③计算第j个指标的标准差(Sj):
$$ {S} _{j}=\sqrt{\frac{\displaystyle\sum _{i=1}^{m}{\left({{\boldsymbol{Y}}}_{ij}-{\bar{{\boldsymbol{Y}}}}_{j}\right)}^{2}}{n-1}} $$ (4) ④计算第b个和第j个指标的相关系数(rbj):
$$ r_{bj}=\frac{\displaystyle\sum_{b=1,j=1}^n(\boldsymbol{Y}_{ib}-\overline{\boldsymbol{Y}}_b)(\boldsymbol{Y}_{ij}-\overline{\boldsymbol{Y}}_j)}{\sqrt{\displaystyle\sum_{b=1}^n(\boldsymbol{Y}_{ib}-\overline{\boldsymbol{Y}}_b)^2\displaystyle\sum_{j=1}^n(\boldsymbol{Y}_{ij}-\overline{\boldsymbol{Y}}_j)^2}} $$ (5) ⑤计算第b个和第j个指标的冲突系数(Aj):
$$ {A}_{j}=\sum _{b=1}^{n}(1-{r}_{bj}) $$ (6) ⑥计算第j个指标的信息量(Cj):
$$ {C} _{ {j} }= {S} _{ {j} } {A} _{ {j} } $$ (7) ⑦计算第j个指标的权重(uj):
$$ {u}_{j}=\frac{{C}_{j}}{\displaystyle\sum _{j=1}^{n}{C}_{j}} $$ (8) 2.3.2 Entropy权重计算
⑧基于步骤②,计算第i个评价单元相对第j个指标的比重(Pij):
$$ {P}_{ij}=\frac{{{\boldsymbol{Y}}}_{ij}}{\displaystyle\sum _{i=1}^{m}{{\boldsymbol{Y}}}_{ij}} $$ (9) ⑨计算第j个指标的熵值(Ej):
$$ {E}_{j}=-k\sum _{i=1}^{m}{P}_{ij}\mathrm{l}\mathrm{n}{P}_{ij} $$ (10) 其中,k=1/lnm。
⑩计算第j个指标的效用值(Gj):
$$ {G} _{ {j} } {=1-} {E} _{ {j} } $$ (11) ⑪计算第j个指标的权重(vj):
$$ {v}_{j}=\frac{{G}_{j}}{\displaystyle\sum _{j=1}^{n}{G}_{j}} $$ (12) (3)组合权重计算
⑫根据上述 2 种方法分别确定的权重uj和vj,计算第j个指标的组合权重(wj):
$$ {w}_{j}=\frac{{{u}_{j}v}_{j}}{\displaystyle\sum _{j=1}^{n}{{u}_{j}v}_{j}} $$ (13) 3. 地质安全风险综合评价结果
3.1 权重计算结果
以浅层(0~15 m)地下空间为例,CRITIC和Entropy权重计算过程结果见表5、表6。不同层位地下空间指标权重计算结果见图6。
风险类型 评价指标 标准差 冲突系数 信息量 CRITIC权重/% 应力异变地质安全风险 0~15 m含水砂层厚度/m 0.304 10.366 3.155 11.89 承载力地质安全风险 0~5 m土体承载力特征值/kPa 0.345 9.083 3.137 11.82 5~10 m土体承载力特征值/kPa 0.255 8.473 2.161 8.14 10~15 m土体承载力特征值/ kPa 0.191 8.892 1.701 6.41 0~5 m土体压缩模量/ kPa 0.192 8.801 1.693 6.38 5~10 m土体压缩模量/ kPa 0.129 9.689 1.251 4.71 10~15 m土体压缩模量/ kPa 0.092 10.892 0.998 3.76 淹没与抗浮地质安全风险 地面高程/m 0.439 8.352 3.666 13.82 地下水位埋深/m 0.415 8.069 3.349 12.62 土体压变地质安全风险 地面沉降速率/( mm·a−1) 0.228 11.165 2.550 9.61 砂土液化地质安全风险 砂土液化指数 0.350 8.221 2.875 10.84 风险类型 评价指标 熵值 效用值 Entropy权重/% 应力异变地质安全风险 0~15 m含水砂层厚度/m 0.9788 0.0212 1.70 承载力地质安全风险 0~5 m土体承载力特征值/ kPa 0.9710 0.0290 2.34 5~10 m土体承载力特征值/ kPa 0.7707 0.2293 18.46 10~15 m土体承载力特征值/ kPa 0.9759 0.0241 1.94 0~5 m土体压缩模量/ kPa 0.9660 0.0340 2.73 5~10 m土体压缩模量/ kPa 0.5948 0.4052 32.63 10~15 m土体压缩模量/ kPa 0.6823 0.3177 25.58 淹没与抗浮地质安全风险 地面高程/m 0.9281 0.0719 5.79 地下水位埋深/m 0.9330 0.0670 5.39 土体压变地质安全风险 地面沉降速率/(mm·a−1) 0.9903 0.0097 0.78 砂土液化地质安全风险 砂土液化指数 0.9671 0.0329 2.65 3.2 综合评价结果
3.2.1 浅层地下空间评价结果
浅层地下空间评价结果(图7)显示,Ⅲ级风险区面积最大,约627.09 km2,主要分布于雄县中北部、容城县东部、安新县西北部区域及芦庄乡北、龙化乡南等部分地区;Ⅰ级风险区面积次之,约499.59 km2,分布于白洋淀及周边区域;再次为Ⅱ级风险区,面积约464.79 km2,主要分布于Ⅰ级风险区周边区域及老河头镇东南、龙湾镇南、双堂乡南、大营镇东等局部地区;Ⅳ级风险区面积最小,约178.46 km2,主要分布于容城县城—南张镇—小里镇一带、晾马台镇北、朱各庄镇北和米家务镇西北等地区。主要影响因素为土体压缩模量(权重40.37%)、土体承载力特征值(权重28.75%),其次为地面高程(权重12.09%)、地下水位埋深(权重10.27%)等。以承载力地质安全风险为主,其次为淹没与抗浮地质安全风险。浅层地下空间中,Ⅰ级风险区主要分布冲湖积相沉积物,土体承载力较周边区域偏小,土体压缩性较周边区域偏大;地面高程整体偏低,普遍小于8 m;地下水位埋深较浅,以小于5 m为主。Ⅱ级风险区主要分布于Ⅰ级风险区周边,土体承载力和压缩性特征与其相似;地面高程普遍小于8.5 m;地下水位埋深普遍小于10 m;地下空间开发利用时存在地基变形失稳、坑底突涌和砂土液化等地质安全风险隐患。此外,Ⅲ级风险区部分区域还存在土体不均匀沉降隐患。总体上,Ⅰ级风险区地下工程建设适宜性差,Ⅱ级风险区地下工程建设适宜性较差,在地下工程建设时应尽量避让Ⅰ级风险区、减少Ⅱ级风险区开发利用程度,若无法避让时应针对具体工程类型开展专项研究。
3.2.2 次浅层地下空间评价结果
次浅层地下空间评价结果显示(图8),Ⅲ级风险区面积最大,约525.41 km2,主要分布于容城县东部、雄县南部一带及芦庄乡北、龙化乡西等部分地区;Ⅰ级风险区面积次之,约518.69 km2,分布于白洋淀及周边区域及双堂乡南等局部地区;再次为Ⅳ级风险区,面积约492.10 km2,主要分布于容城县西部、雄县中北部一带及晾马台镇—大河镇、龙华乡南等局部地区;Ⅱ级风险区面积最小,约233.74 km2,分布于Ⅰ级风险区周边及大营镇东、南张镇东等局部地区。主要影响因素为土体承载力特征值(权重32.25%)、地面高程(权重29.86%),其次为地下水位埋深(权重27.65%)、含水砂层厚度(权重7.40%)等。主要存在承载力地质安全风险、淹没与抗浮地质安全风险,其次为应力异变地质安全风险。次浅层地下空间中,Ⅰ、Ⅱ级风险区存在坑底突涌和地基变形失稳等地质安全风险隐患,地下工程建设适宜性较差,在地下工程建设时应减少Ⅰ、Ⅱ级风险区大规模开发利用。Ⅲ、Ⅳ级风险区应减少含水层结构破坏。
3.2.3 次深层地下空间评价结果
次深层地下空间评价结果显示(图9),Ⅳ级风险区面积最大,约617.46 km2,主要分布于容城县大部分、雄县中北部区域及芦庄乡、龙华乡局部地区;Ⅰ级风险区面积次之,约483.06 km2,分布于白洋淀及周边区域、双堂乡南局部地区;再次为Ⅲ级风险区,面积约425.73 km2,主要分布于雄县南部、容城县东南部及老河头镇—芦庄乡、龙化乡西、大营镇东等部分地区;Ⅱ级风险区面积最小,约243.69 km2,主要分布于Ⅰ级风险区周边区域及雄县西、大王镇东 、双堂乡南等局部地区。主要影响因素为土体承载力特征值(权重30.99%)、地面高程(权重26.70%),其次为地下水位埋深(权重25.44%)、土体压缩模量(权重10.74%)等。主要存在承载力地质安全风险及淹没与抗浮地质安全风险。次深层地下空间土体承载力和压缩性性能优于浅层和次浅层地下空间,但Ⅰ、Ⅱ级风险区同样存在坑底突涌和地基变形失稳等地质安全风险隐患,地下工程建设适宜性较差,在地下工程建设时应减少Ⅰ、Ⅱ级风险区开发利用程度。Ⅲ、Ⅳ级风险区应减少含水层结构破坏。
3.2.4 深层地下空间评价结果
深层地下空间评价结果显示(图10),Ⅲ级风险区面积最大,约547.18 km2,主要分布于容城县东部、雄县南部、安新县西南部区域及龙化乡北局部地区;Ⅰ级风险区面积次之,约499.98 km2,分布于白洋淀及周边区域;再次为Ⅳ级风险区,面积约476.27 km2,主要分布于容城县西部、雄县中北部区域及龙化乡南等局部地区;Ⅱ级风险区面积最小,约246.50 km2,主要分布于Ⅰ级风险区周边区域及双堂乡南、大营镇东、南张镇东等局部地区。主要影响因素为地面高程(权重36.34%)、地下水位埋深(权重35.23%),其次为土体压缩模量(权重16.52%)、含水砂层厚度(权重7.75%)等。以淹没与抗浮地质安全风险为主,其次为承载力地质安全风险、应力异变地质安全风险。深层地下空间中,Ⅰ、Ⅱ级风险区存在坑底突涌、淹没和地基不均匀沉降变形等地质安全风险隐患,地下工程建设适宜性相对较差,在地下工程建设时应降低Ⅰ、Ⅱ级风险区的开发利用程度。Ⅲ、Ⅳ级风险区应尽量避免对连续多层含水层结构的破坏。
4. 讨论
4.1 评价指标体系讨论
目前,地下空间利用地质安全风险评价研究尚处于探索阶段,本次基于雄安新区已有地质调查监测资料数据,在工程地质勘查技术相关要求框架内,选取相关的关键性地质影响指标来构建评价指标体系。其中,未选取活动断裂、软土、水土侵蚀等指标,主要原因有三方面,一是尽管雄安新区隐伏断裂较为发育,但活动性微弱,未发现晚更新世以来活动断裂存在[24 − 25];二是软土判别显示[48],该区无严格意义上的软土分布[29];三是水土腐蚀性评价显示,该区绝大部分地区水土侵蚀微弱[29]。
4.2 评价结果讨论
白洋淀是区内最大的湖泊湿地,其淀底深度主要处于浅层地下空间深度范围内[49],因较大的湖泊湿地也会影响浅部地下空间的开发利用[50 − 51],故本次将白洋淀作为敏感影响指标对浅层地下空间评价结果进行适当调整。如图7所示,白洋淀绝大部分区域位于浅层地下空间Ⅰ级风险区,但有约3.71 km2区域处于Ⅱ级风险区,本次将此区域进行降级处理为Ⅰ级。调整后的Ⅰ级风险区为503.30 km2,Ⅱ级风险区为461.08 km2,Ⅲ级风险区为627.09 km2,Ⅳ级风险区为178.46 km2。
此外,本次研究侧重基于地质环境条件进行风险评价,未考虑明挖法、浅埋暗挖法等不同施工方式可能存在地质安全风险的差异,这也是下一步结合具体地下空间设施类型需要继续研究的问题。同时,也需关注地面沉降、地下水位动态演变引起的风险变化。
5. 结论
(1)雄安新区地下空间利用地质安全风险呈现出深部层位小于浅部层位的特征,且Ⅰ、Ⅱ级风险区主要位于白洋淀及周边区域、南张镇东、大营镇东、双堂乡南等部分地区。其中,浅层地下空间Ⅰ~Ⅳ级风险区面积占比分别为28.44%、26.05%、35.43%和10.08%;次浅层分别为29.31%、13.21%、29.69%和27.80%;次深层分别为27.29%、13.77%、24.05%和34.89%;深层分别为28.25%、13.93%、30.92%和26.91%。
(2)雄安新区地下空间利用地质安全风险的影响因素主要包括含水砂层厚度、土体承载力、土体压缩性、地面高程、地下水位埋深、地面沉降和砂土液化等,但不同层位的主导要素有所差异。若以权重占比25%为界,浅层地下空间地质安全主导影响因素为土体压缩性、土体承载力,以承载力地质安全风险为主,地下空间开发利用时建议加强地基加固处理和基坑围护;次浅层和次深层地下空间地质安全主导影响因素为土体承载力、地面高程、地下水位埋深,主要存在承载力地质安全风险、淹没与抗浮地质安全风险,地下空间开发利用时建议加强抗坑底突涌、地基加固和基坑围护处理,并注意减少含水层结构破坏;深层地下空间地质安全主导影响因素为地面高程、地下水位埋深,以淹没与抗浮地质安全风险为主,地下空间开发利用时建议加强含水层结构保护、抗坑底突涌处理,完善排水设施体系,并关注不均匀沉降问题。
(3)雄安新区城乡空间布局中的“一主、五辅”区域不同层位地下空间利用地质安全风险总体较低,但三台镇—大王镇一线以南、南张镇东少部分地区在各个层位均处于Ⅰ、Ⅱ级风险等级,在地下空间开发利用时需重点关注。此外,由于条件所限,本次研究仅基于地质环境条件,在详细规划和建设施工阶段,需进一步开展不同施工方式引发的地质安全风险差异性研究,并关注地面沉降、地下水位动态演变引起的风险变化。
-
表 1 土体承载力特征值平面分布特征
Table 1 Partition of characteristic value to soils bearing capacity
深度/m 特征 0~5 80<f≤100 100<f≤130 f >130 同口镇南、龙华镇东北、赵北口镇周边、
昝岗镇西、苟各庄镇—鄚州镇镇沿线以南等地区雄安新区
其他地区5~10 100<f≤130 130<f≤160 f >160 双堂乡—米家务镇北—北沙口乡北—晾马台镇西—朱各庄镇
南—平王乡南—大王镇西北—小里镇东—老河头镇北一
线以南、容城县城北、大河镇西北等地区雄安新区
其他地区容城县城西—南张镇北一带 10~15 110<f≤130 130<f≤170 f >170 同口镇南、刘李庄镇—端村镇一线周边、鄚州镇南、
赵北口镇西北、苟各庄镇西北、张岗乡南等地区雄安新区
其他地区寨里乡西北、小里镇南、容城县城
西—南张镇西—小里镇东北一带15~30 130<f≤160 160<f≤200 f >200 安州镇西、寨里乡西南、北沙口乡北—大营镇东—
雄县县城西—龙湾镇南—圈头乡西北—端村镇—
同口镇南一线东南部大部分地区雄安新区
其他地区容城县城西北—南张镇—小里镇
西一带、容城县城东南、安新县
城西、大河镇—晾马台镇一带30~50 130<f≤160 160<f≤200 f >200 芦庄乡、老河头镇东北、苟各庄镇西、双堂乡西—
龙湾镇北—晾马台镇—八于乡—容城县城东—
三台镇—安县县城东—平王乡南一带雄安新区
其他地区50~100 130<f≤160 160<f≤200 f >200 寨里乡北、龙湾镇东南、苟各庄镇南、
圈头乡—鄚州镇西一带雄安新区
其他地区注:表中f为土体承载力特征值;空白为无此项。 表 2 土体压缩模量平面分布特征
Table 2 Partition of soils compression modulus
深度/m 特征 E≤4 4<E≤11 11<E≤15 E >15 0~5 南张镇西北
局部地区寨里乡南—安州镇西北—老河头镇北一带 雄安新区
其他地区贾光乡西部分地区、安新县城北局部地区 5~10 南张镇西北局部地区 雄安新区
其他地区端村镇北局部地区、大营镇西南 10~15 雄安新区
其他地区安州镇东部分地区、安新县城东北局部地区、
南张镇东等局部地区15~30 小里镇西及西南局部地区 雄安新区
其他地区端村镇西部分地区 30~50 双堂乡南—昝岗镇—朱各庄镇北—雄县县城西—龙湾镇南—
苟各庄镇北一线以东、南张镇西北、小里镇西南局部地区雄安新区
其他地区50~100 双堂乡南—昝岗镇—朱各庄镇西—雄县县城西—张北口镇北—
圈头乡—七间房乡南一线以东、南张镇东等局部地区雄安新区
其他地区同口镇西南部分地区、八于乡南局部地区 注:表中E为土体压缩模量;空白为无此项。 表 3 指标等级划分依据
Table 3 The references for grade division of the indicators
表 4 地下空间利用地质安全风险评价指标体系
Table 4 Index system of geological safety risk evaluation on underground space utilization
风险类型 评价指标 风险等级 应用层位 I II III IV 应力异变
地质安全风险0~15 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L1 15~30 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L2 30~50 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L3 50~65 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 65~80 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 80~100 m含水砂层厚度/m M≥7.5 5≤M<7.5 2.5≤M<5 M<2.5 L4 承载力
地质安全风险0~5 m土体承载力特征值/kPa f≤80 80<f≤100 100<f≤130 f>130 L1 5~10 m土体承载力特征值/ kPa f≤100 100<f≤130 130<f≤160 f>160 L1 10~15 m土体承载力特征值/ kPa f≤110 110<f≤130 130<f≤170 f>170 L1 15~30 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L2 30~50 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L3 50~100 m土体承载力特征值/ kPa f≤130 130<f≤160 160<f≤200 f>200 L4 0~5 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 5~10 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 10~15 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L1 15~30 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L2 30~50 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L3 50~100 m土体压缩模量/ MPa E≤4 4<E≤11 11<E≤15 E>15 L4 淹没与抗浮
地质安全风险地面高程/m H≤8 8<H≤8.5 8.5<H≤9 H>9 L1,L2,L3,L4 地下水位埋深/m D≤5 5<D≤10 10<D≤15 D>15 L1,L2,L3,L4 土体压变地质安全风险 地面沉降速率/(mm·a−1) R≥50 30≤R<50 10≤R<30 R<10 L1,L2,L3,L4 砂土液化地质安全风险 砂土液化指数 I≥18 6≤I<18 0<I<6 I=0 L1 注:H为地面高程,R为地面沉降速率。 表 5 浅层地下空间CRITIC权重计算结果
Table 5 Results of CRITIC weighting method for shallow underground space
风险类型 评价指标 标准差 冲突系数 信息量 CRITIC权重/% 应力异变地质安全风险 0~15 m含水砂层厚度/m 0.304 10.366 3.155 11.89 承载力地质安全风险 0~5 m土体承载力特征值/kPa 0.345 9.083 3.137 11.82 5~10 m土体承载力特征值/kPa 0.255 8.473 2.161 8.14 10~15 m土体承载力特征值/ kPa 0.191 8.892 1.701 6.41 0~5 m土体压缩模量/ kPa 0.192 8.801 1.693 6.38 5~10 m土体压缩模量/ kPa 0.129 9.689 1.251 4.71 10~15 m土体压缩模量/ kPa 0.092 10.892 0.998 3.76 淹没与抗浮地质安全风险 地面高程/m 0.439 8.352 3.666 13.82 地下水位埋深/m 0.415 8.069 3.349 12.62 土体压变地质安全风险 地面沉降速率/( mm·a−1) 0.228 11.165 2.550 9.61 砂土液化地质安全风险 砂土液化指数 0.350 8.221 2.875 10.84 表 6 浅层地下空间entropy权重计算结果
Table 6 Results of entropy weighting method for shallow underground space
风险类型 评价指标 熵值 效用值 Entropy权重/% 应力异变地质安全风险 0~15 m含水砂层厚度/m 0.9788 0.0212 1.70 承载力地质安全风险 0~5 m土体承载力特征值/ kPa 0.9710 0.0290 2.34 5~10 m土体承载力特征值/ kPa 0.7707 0.2293 18.46 10~15 m土体承载力特征值/ kPa 0.9759 0.0241 1.94 0~5 m土体压缩模量/ kPa 0.9660 0.0340 2.73 5~10 m土体压缩模量/ kPa 0.5948 0.4052 32.63 10~15 m土体压缩模量/ kPa 0.6823 0.3177 25.58 淹没与抗浮地质安全风险 地面高程/m 0.9281 0.0719 5.79 地下水位埋深/m 0.9330 0.0670 5.39 土体压变地质安全风险 地面沉降速率/(mm·a−1) 0.9903 0.0097 0.78 砂土液化地质安全风险 砂土液化指数 0.9671 0.0329 2.65 -
[1] 王懂礼. 城乡融合背景下中国“城市病” 及其治理研究[D]. 武汉:武汉大学,2019. [WANG Dongli. The study on urban problems and its control in China under the background of urban-rural integration[D]. Wuhan:Wuhan University,2019. (in Chinese with English abstract)] WANG Dongli. The study on urban problems and its control in China under the background of urban-rural integration[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)
[2] 刘婷,王寒梅,史玉金,等. 特大型城市地下空间资源承载能力评价方法探索——以上海市为例[J]. 地质通报,2021,40(10):1609 − 1616. [LIU Ting,WANG Hanmei,SHI Yujin,et al. Exploration on evaluation method of underground space resources carrying capacity of megacity:A case study of Shanghai[J]. Geological Bulletin of China,2021,40(10):1609 − 1616. ( in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2021.10.002 LIU Ting, WANG Hanmei, SHI Yujin, et al. Exploration on evaluation method of underground space resources carrying capacity of megacity: A case study of Shanghai[J]. Geological Bulletin of China, 2021, 40(10): 1609 − 1616. ( in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.10.002
[3] 葛伟亚,王睿,张庆,等. 城市地下空间资源综合利用评价工作构想[J]. 地质通报,2021,40(10):1601 − 1608. [GE Weiya,WANG Rui,ZHANG Qing,et al. Conception of comprehensive utilization evaluation of urban underground space resources[J]. Geological Bulletin of China,2021,40(10):1601 − 1608. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2021.10.001 GE Weiya, WANG Rui, ZHANG Qing, et al. Conception of comprehensive utilization evaluation of urban underground space resources[J]. Geological Bulletin of China, 2021, 40(10): 1601 − 1608. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.10.001
[4] 邢怀学,窦帆帆,葛伟亚,等. 城市地下空间开发利用地质适宜性三维评价指标体系研究 ——以杭州市为例[J]. 地质论评,2022,68(2):607 − 614. [XING Huaixue,DOU Fanfan,GE Weiya,et al. The research on 3D evaluation index system of geological suitability for urban underground space development and utilization[J]. Geological Review,2022,68(2):607 − 614. (in Chinese with English abstract)] XING Huaixue, DOU Fanfan, GE Weiya, et al. The research on 3D evaluation index system of geological suitability for urban underground space development and utilization[J]. Geological Review, 2022, 68(2): 607 − 614. (in Chinese with English abstract)
[5] 赵银鑫,宋琨,吉卫波,等. 银川城市地下空间开发的地质安全风险分析[J]. 地球学报,2024,45(1):91 − 98. [ZHAO Yinxin,SONG Kun,JI Weibo,et al. Geological safety and risk analysis of Yinchuan urban underground space development[J]. Acta Geoscientica Sinica,2024,45(1):91 − 98. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2023.030301 ZHAO Yinxin, SONG Kun, JI Weibo, et al. Geological safety and risk analysis of Yinchuan urban underground space development[J]. Acta Geoscientica Sinica, 2024, 45(1): 91 − 98. (in Chinese with English abstract) DOI: 10.3975/cagsb.2023.030301
[6] 朱合华,丁文其,乔亚飞,等. 简析我国城市地下空间开发利用的问题与挑战[J]. 地学前缘,2019,26(3):22 − 31. [ZHU Hehua,DING Wenqi,QIAO Yafei,et al. Issues and challenges in urban underground space utilization in China[J]. Earth Science Frontiers,2019,26(3):22 − 31. (in Chinese with English abstract)] ZHU Hehua, DING Wenqi, QIAO Yafei, et al. Issues and challenges in urban underground space utilization in China[J]. Earth Science Frontiers, 2019, 26(3): 22 − 31. (in Chinese with English abstract)
[7] 黄强兵,彭建兵,王飞永,等. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘,2019,26(3):85 − 94. [HUANG Qiangbing,PENG Jianbing,WANG Feiyong,et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers,2019,26(3):85 − 94. (in Chinese with English abstract)] HUANG Qiangbing, PENG Jianbing, WANG Feiyong, et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers, 2019, 26(3): 85 − 94. (in Chinese with English abstract)
[8] ZHOU C A,REN H,LIU G,et al. Comprehensive evaluation and case study of urban underground space development under multiple constraints[J]. Bulgarian chemical communications,2017,49:90 − 97.
[9] 孙文洁,杨文凯,邓岳飞,等. 基于模糊数学的北京城区地下空间地质适宜性评价[J]. 地球学报,2024,45(1):73 − 79. [SUN Wenjie,YANG Wenkai,DENG Yuefei,et al. Geological suitability evaluation of underground space in Beijing urban area based on fuzzy mathematics[J]. Acta Geoscientica Sinica,2024,45(1):73 − 79. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2023.051001 SUN Wenjie, YANG Wenkai, DENG Yuefei, et al. Geological suitability evaluation of underground space in Beijing urban area based on fuzzy mathematics[J]. Acta Geoscientica Sinica, 2024, 45(1): 73 − 79. (in Chinese with English abstract) DOI: 10.3975/cagsb.2023.051001
[10] 路明浩,李晓昭,支兵发,等. 基于改进熵权法的地下空间开发适宜性三维评价[J]. 地下空间与工程学报,2022,18(5):1401 − 1412. [LU Minghao,LI Xiaozhao,ZHI Bingfa,et al. Three-dimensional evaluation of underground space development suitability based on improved entropy weight method[J]. Chinese Journal of Underground Space and Engineering,2022,18(5):1401 − 1412. (in Chinese with English abstract)] LU Minghao, LI Xiaozhao, ZHI Bingfa, et al. Three-dimensional evaluation of underground space development suitability based on improved entropy weight method[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(5): 1401 − 1412. (in Chinese with English abstract)
[11] 张傲,黎清华,张彦鹏,等. 基于地质体单元剖分的地下空间安全开发利用评价方法——以海口江东新区为例[J]. 华南地质,2022(2):300 − 311. [ZHANG Ao,LI Qinghua,ZHANG Yanpeng,et al. Evaluation method for safe development and utilization of underground space based on geological body unit dissection:Taking Jiangdong new district,Haikou as an example[J]. South China Geology,2022(2):300 − 311. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2097-0013.2022.02.011 ZHANG Ao, LI Qinghua, ZHANG Yanpeng, et al. Evaluation method for safe development and utilization of underground space based on geological body unit dissection: Taking Jiangdong new district, Haikou as an example[J]. South China Geology, 2022(2): 300 − 311. (in Chinese with English abstract) DOI: 10.3969/j.issn.2097-0013.2022.02.011
[12] 王鸣晓. 模糊综合评判法在基坑工程风险评估中的应用[J]. 公路交通科技,2011,28(6):57 − 61. [WANG Mingxiao. Application of fuzzy comprehensive evaluation method in risk assessment of excavation engineering[J]. Journal of Highway and Transportation Research and Development,2011,28(6):57 − 61. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-0268.2011.06.010 WANG Mingxiao. Application of fuzzy comprehensive evaluation method in risk assessment of excavation engineering[J]. Journal of Highway and Transportation Research and Development, 2011, 28(6): 57 − 61. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-0268.2011.06.010
[13] 吴建发,熊燕莉,孔玲,等. 相国寺石炭系气藏改建储气库风险评价[J]. 天然气勘探与开发,2007,30(1):60 − 62. [WU Jianfa,XIONG Yanli,KONG Ling,et al. Risk assessment of reconstruction of gas storage in xiangguosi,carboniferous gas reservoir[J]. Natural Gas Exploration and Development,2007,30(1):60 − 62. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-3177.2007.01.016 WU Jianfa, XIONG Yanli, KONG Ling, et al. Risk assessment of reconstruction of gas storage in xiangguosi, carboniferous gas reservoir[J]. Natural Gas Exploration and Development, 2007, 30(1): 60 − 62. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-3177.2007.01.016
[14] XU Kai,KONG Chunfang,LI Jiangfeng,et al. Suitability evaluation of urban construction land based on geo-environmental factors of Hangzhou,China[J]. Computers & Geosciences,2011,37(8):992 − 1002.
[15] 娄晓梦,周爱莲. 基于熵权法的城市地下物流建设风险模糊评价[J]. 公路与汽运,2019(1):60 − 64. [LOU Xiaomeng,ZHOU Ailian. Fuzzy risk evaluation of urban underground logistics construction based on entropy weight method[J]. Highways & Automotive Applications,2019(1):60 − 64. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-2668.2019.01.014 LOU Xiaomeng, ZHOU Ailian. Fuzzy risk evaluation of urban underground logistics construction based on entropy weight method[J]. Highways & Automotive Applications, 2019(1): 60 − 64. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2668.2019.01.014
[16] LU Zhongle,WU Li,ZHUANG Xiaoying,et al. Quantitative assessment of engineering geological suitability for multilayer urban underground space[J]. Tunnelling and Underground Space Technology,2016,59:65 − 76. DOI: 10.1016/j.tust.2016.06.003
[17] DOU Fanfan,XING Huaixue,LI Xiaohui,et al. 3D geological suitability evaluation for urban underground space development based on combined weighting and improved TOPSIS[J]. Natural Resources Research,2022,31(1):693 − 711. DOI: 10.1007/s11053-021-10004-9
[18] 马邦闯,谭飞,焦玉勇,等. 基于粗糙集与AHP的地下空间开发地质适宜性评模型构建方法研究[J]. 安全与环境工程,2020,27(6):153 − 159. [MA Bangchuang,TAN Fei,JIAO Yuyong,et al. Construction method of geological suitability evaluation model of underground space development based on rough set and AHP[J]. Safety and Environmental Engineering,2020,27(6):153 − 159. (in Chinese with English abstract)] MA Bangchuang, TAN Fei, JIAO Yuyong, et al. Construction method of geological suitability evaluation model of underground space development based on rough set and AHP[J]. Safety and Environmental Engineering, 2020, 27(6): 153 − 159. (in Chinese with English abstract)
[19] PESARAN H A M,NAZARI-HERIS M,MOHAMMADI-IVATLOO B,et al. A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks[J]. Energy,2020,209:118218. DOI: 10.1016/j.energy.2020.118218
[20] MADIC M,RADOVANOVIC M. Ranking of some most commonly used nontraditional machining processes using rov and critic methods[J]. UPB Scientific Bulletin,Series D:Mechanical Engineering,2015,77(2):193 − 204.
[21] KRISHNAN A R,KASIM M M,HAMID R,et al. A modified CRITIC method to estimate the objective weights of decision criteria[J]. Symmetry,2021,13(6):973. DOI: 10.3390/sym13060973
[22] 王兴春,智庆全,张杰,等. 瞬变电磁法在雄安新区地下水体调查中的应用[J]. 地球科学,2023,48(11):4243 − 4255. [WANG Xingchun,ZHI Qingquan,ZHANG Jie,et al. Application of transient electromagnetic method in investigation of underground water in Xiong’an new area[J]. Earth Science,2023,48(11):4243 − 4255. (in Chinese with English abstract)] WANG Xingchun, ZHI Qingquan, ZHANG Jie, et al. Application of transient electromagnetic method in investigation of underground water in Xiong’an new area[J]. Earth Science, 2023, 48(11): 4243 − 4255. (in Chinese with English abstract)
[23] ZHAO Kai,QI Jingxian,CHEN Yi,et al. Hydrogeochemical characteristics of groundwater and pore-water and the paleoenvironmental evolution in the past 3.10 Ma in the Xiong’an New Area,North China[J]. China Geology,2021,4(3):476 − 486.
[24] 郝爱兵,吴爱民,马震,等. 雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报,2018,39(5):513 − 522. [HAO Aibing,WU Aimin,MA Zhen,et al. A study of engineering construction suitability integrated evaluation of surface-underground space in Xiongan new area[J]. Acta Geoscientica Sinica,2018,39(5):513 − 522. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2018.071502 HAO Aibing, WU Aimin, MA Zhen, et al. A study of engineering construction suitability integrated evaluation of surface-underground space in Xiongan new area[J]. Acta Geoscientica Sinica, 2018, 39(5): 513 − 522. (in Chinese with English abstract) DOI: 10.3975/cagsb.2018.071502
[25] 商世杰,丰成君,谭成轩,等. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报,2019,40(6):836 − 846. [SHANG Shijie,FENG Chengjun,TAN Chengxuan,et al. Quaternary activity study of major buried faults near Xiongan new area[J]. Acta Geoscientica Sinica,2019,40(6):836 − 846. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2019.033101 SHANG Shijie, FENG Chengjun, TAN Chengxuan, et al. Quaternary activity study of major buried faults near Xiongan new area[J]. Acta Geoscientica Sinica, 2019, 40(6): 836 − 846. (in Chinese with English abstract) DOI: 10.3975/cagsb.2019.033101
[26] 马震,黄庆彬,林良俊,等. 雄安新区多要素城市地质调查实践与应用[J]. 华北地质,2022,45(1):58 − 68. [MA Zhen,HUANG Qingbin,LIN Liangjun,et al. Practice and application of multi-factor urban geological survey in Xiongan New Area[J]. North China Geology,2022,45(1):58 − 68. (in Chinese with English abstract)] MA Zhen, HUANG Qingbin, LIN Liangjun, et al. Practice and application of multi-factor urban geological survey in Xiongan New Area[J]. North China Geology, 2022, 45(1): 58 − 68. (in Chinese with English abstract)
[27] 姚一鸣. 保山隆阳区地下空间建设地质风险综合评价研究[D]. 昆明:昆明理工大学,2022. [YAO Yiming. Comprehensive evaluation of geological risk of underground space construction in Longyang District,Baoshan[D]. Kunming:Kunming University of Science and Technology,2022. (in Chinese with English abstract)] YAO Yiming. Comprehensive evaluation of geological risk of underground space construction in Longyang District, Baoshan[D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese with English abstract)
[28] 苗德政,张爱涛,丁文荣. 福州巫洋隧道建设工程地质条件及地质风险评价[J]. 工程建设与设计,2016(1):97 − 100. [MIAO Dezheng,ZHANG Aitao,DING Wenrong. Fuzhou Wuyang tunnel engineering geological conditions and risk evaluation[J]. Construction & Design for Engineering,2016(1):97 − 100. (in Chinese with English abstract)] MIAO Dezheng, ZHANG Aitao, DING Wenrong. Fuzhou Wuyang tunnel engineering geological conditions and risk evaluation[J]. Construction & Design for Engineering, 2016(1): 97 − 100. (in Chinese with English abstract)
[29] 夏雨波. 雄安新区水土质量与地质调查评价项目成果报告[R]. 天津:中国地质调查局天津地质调查中心,2022. [XIA Yubo. report of soil and water quality and geological survey and evaluation project in Xiong’an New Area[R]. Tianjin:Tianjin Center,China Geological Survey,2022. (in Chinese)] XIA Yubo. report of soil and water quality and geological survey and evaluation project in Xiong’an New Area[R]. Tianjin: Tianjin Center, China Geological Survey, 2022. (in Chinese)
[30] 庞铁,徐定芳,何阳,等. 常德市地下空间开发利用综合地质影响因素分析[J]. 桂林理工大学学报,2022,42(2):363 − 373. [PANG Tie,XU Dingfang,HE Yang,et al. Analysis of comprehensive geological influencing factors on development and utilization of underground space in Changde[J]. Journal of Guilin University of Technology,2022,42(2):363 − 373. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-9057.2022.02.009 PANG Tie, XU Dingfang, HE Yang, et al. Analysis of comprehensive geological influencing factors on development and utilization of underground space in Changde[J]. Journal of Guilin University of Technology, 2022, 42(2): 363 − 373. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-9057.2022.02.009
[31] 李霞,何庆成,陈亮,等. 四川成都中心城区地下空间开发利用的地质环境制约因素分析[J]. 中国地质灾害与防治学报,2019,30(2):141 − 150. [LI Xia,HE Qingcheng,CHEN Liang,et al. Analysis on the geo-environmental restrictive factors of underground space development and utilization in the central area of Chengdu,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):141 − 150. (in Chinese with English abstract)] LI Xia, HE Qingcheng, CHEN Liang, et al. Analysis on the geo-environmental restrictive factors of underground space development and utilization in the central area of Chengdu, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 141 − 150. (in Chinese with English abstract)
[32] 蒋杰,葛伟亚,马青山,等. 南昌市中心城区地下空间开发地质适宜性评价[J]. 地质通报,2021,40(5):734 − 744. [JIANG Jie,GE Weiya,MA Qingshan,et al. Geological environment suitability assessment of underground space development in Nanchang City[J]. Geological Bulletin of China,2021,40(5):734 − 744. (in Chinese with English abstract)] JIANG Jie, GE Weiya, MA Qingshan, et al. Geological environment suitability assessment of underground space development in Nanchang City[J]. Geological Bulletin of China, 2021, 40(5): 734 − 744. (in Chinese with English abstract)
[33] 何静,李潇,白凌燕. 北京市东城区地下空间开发利用的地质风险分析[J]. 地下空间与工程学报,2013,9(增刊1):1465 − 1472. [HE Jing,LI Xiao,BAI Lingyan. Geological risk analysis of Dongcheng district underground space development and utilization in Beijing[J]. Chinese Journal of Underground Space and Engineering,2013,9(Sup 1):1465 − 1472. (in Chinese with English abstract)] HE Jing, LI Xiao, BAI Lingyan. Geological risk analysis of Dongcheng district underground space development and utilization in Beijing[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(Sup 1): 1465 − 1472. (in Chinese with English abstract)
[34] 刘越,朱泽彪,章四龙,等. 白洋淀周边蓄滞洪区设计条件下运用防洪影响评价[J]. 中国防汛抗旱,2023,33(6):34 − 40. [LIU Yue,ZHU Zebiao,ZHANG Silong,et al. Impact assessment of flood control under design conditions in the flood storage and detention area surrounding Baiyangdian Lake[J]. China Flood & Drought Management,2023,33(6):34 − 40. (in Chinese with English abstract)] LIU Yue, ZHU Zebiao, ZHANG Silong, et al. Impact assessment of flood control under design conditions in the flood storage and detention area surrounding Baiyangdian Lake[J]. China Flood & Drought Management, 2023, 33(6): 34 − 40. (in Chinese with English abstract)
[35] 刘曙光,郑伟强,周正正,等. 极端暴雨下城市地下空间洪涝风险及灾害防控[J]. 郑州大学学报(工学版),2023,44(2):22 − 29. [LIU Shuguang,ZHENG Weiqiang,ZHOU Zhengzheng,et al. Flood risk and control in urban underground spaces with extreme rainfall[J]. Journal of Zhengzhou University (Engineering Science),2023,44(2):22 − 29. (in Chinese with English abstract)] LIU Shuguang, ZHENG Weiqiang, ZHOU Zhengzheng, et al. Flood risk and control in urban underground spaces with extreme rainfall[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 22 − 29. (in Chinese with English abstract)
[36] 廖建三,彭卫平,林本海. 影响广州市浅层地下空间开发利用的地质因素分析及分区评价[J]. 岩石力学与工程学报,2006,25(增刊2):3357 − 3362. [LIAO Jiansan,PENG Weiping,LIN Benhai. Analysis and partition evaluation of geological factors affecting space development and utilization of shallow underground in Guangzhou city[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup 2):3357 − 3362. (in Chinese with English abstract)] LIAO Jiansan, PENG Weiping, LIN Benhai. Analysis and partition evaluation of geological factors affecting space development and utilization of shallow underground in Guangzhou city[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup 2): 3357 − 3362. (in Chinese with English abstract)
[37] 顾鸿宇,许东,李丹,等. 地下水对城市地下空间开发的制约及机理[J]. 科学技术与工程,2021,21(16):6533 − 6545. [GU Hongyu,XU Dong,LI Dan,et al. The restriction and mechanism of groundwater to the development of urban underground space[J]. Science Technology and Engineering,2021,21(16):6533 − 6545. (in Chinese with English abstract)] GU Hongyu, XU Dong, LI Dan, et al. The restriction and mechanism of groundwater to the development of urban underground space[J]. Science Technology and Engineering, 2021, 21(16): 6533 − 6545. (in Chinese with English abstract)
[38] CUI Yali,SU Chen,SHAO Jingli,et al. Development and application of a regional land subsidence model for the plain of Tianjin[J]. Journal of Earth Science,2014,25(3):550 − 562. DOI: 10.1007/s12583-014-0447-1
[39] 张洋,张朋飞,李先瑞. 环境地质对宝坻区地下空间开发的影响分析[J]. 中国资源综合利用,2023,41(1):92 − 94. [ZHANG Yang,ZHANG Pengfei,LI Xianrui. Analysis of influence of environmental geology on underground space development in Baodi district[J]. China Resources Comprehensive Utilization,2023,41(1):92 − 94. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-9500.2023.01.025 ZHANG Yang, ZHANG Pengfei, LI Xianrui. Analysis of influence of environmental geology on underground space development in Baodi district[J]. China Resources Comprehensive Utilization, 2023, 41(1): 92 − 94. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-9500.2023.01.025
[40] 刘森,董志良. 雄安新区城市地下空间资源开发适宜性评价[J]. 河北地质大学学报,2019,42(6):57 − 62. [LIU Sen,DONG Zhiliang. Suitability evaluation of urban underground space resources development in Xiongan new area[J]. Journal of Hebei GEO University,2019,42(6):57 − 62. (in Chinese with English abstract)] LIU Sen, DONG Zhiliang. Suitability evaluation of urban underground space resources development in Xiongan new area[J]. Journal of Hebei GEO University, 2019, 42(6): 57 − 62. (in Chinese with English abstract)
[41] 刘宏伟,王国明,马传明,等. 沉积平原区地下空间开发利用适宜性评价指标体系研究——以北京通州区和河北廊坊北三县为例[J]. 华北地质,2022(4):68 − 74. [LIU Hongwei,WANG Guoming,MA Chuanming,et al. Study on evaluation index system of suitability for development and utilization of underground space in sedimentary plain:A Case Study of Tongzhou District in Beijing and Langfang north three counties in Hebei Province[J]. North China Geology,2022(4):68 − 74. (in Chinese with English abstract)] LIU Hongwei, WANG Guoming, MA Chuanming, et al. Study on evaluation index system of suitability for development and utilization of underground space in sedimentary plain: A Case Study of Tongzhou District in Beijing and Langfang north three counties in Hebei Province[J]. North China Geology, 2022(4): 68 − 74. (in Chinese with English abstract)
[42] 城市规划学刊编辑部. 《河北雄安新区规划纲要》的新理念、新技术、新方法学术笔谈[J]. 城市规划学刊,2018,3:1 − 18. [Editorial Department of Urban Planning Forum. Written discussion of the new concept,new technology and new method in ‘Hebei Xiong’an New Area Planning Outline’[J]. Urban Planning Forum,2018,3:1 − 18. (in Chinese)] Editorial Department of Urban Planning Forum. Written discussion of the new concept, new technology and new method in ‘Hebei Xiong’an New Area Planning Outline’[J]. Urban Planning Forum, 2018, 3: 1 − 18. (in Chinese)
[43] 中华人民共和国住房和城乡建设部. 城市地下空间规划标准:GB/T 51358—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for urban underground space planning:GB/T 51358—2019[S]. Beijing:China Planning Press,2019. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for urban underground space planning: GB/T 51358—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[44] 高伊航. 雄安新区工程地质环境与建设适宜性研究[D]. 成都:成都理工大学,2022. [GAO Yihang. Study on engineering geological environment and construction suitability of Xiong’an New Area[D]. Chengdu:Chengdu University of Technology,2022. (in Chinese with English abstract)] GAO Yihang. Study on engineering geological environment and construction suitability of Xiong’an New Area[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese with English abstract)
[45] 中华人民共和国住房和城乡建设部. 城乡规划工程地质勘察规范:CJJ 57—2012[S]. 北京:中国建筑工业出版社,2012. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for geo-engineering site investigation and evaluation of urban and rural planning:CJJ 57—2012[S]. Beijing:China Architecture & Building Press,2012. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for geo-engineering site investigation and evaluation of urban and rural planning: CJJ 57—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[46] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011—2010 (2016年版)[S]. 北京:中国建筑工业出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings:GB 50011—2010 (2016 edition)[S]. Beijing:China Building Industry Press,2016. (in Chinese)] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings: GB 50011—2010 (2016 edition)[S]. Beijing: China Building Industry Press, 2016. (in Chinese)
[47] 中华人民共和国自然资源部. 地质灾害危险性评估规范:GB/T 40112—2021[S]. 北京:中国标准出版社,2021. [Ministry of Natural Resources of the People’s Republic of China. Specifications for risk assessment of geological hazard:GB/T 40112—2021[S]. Beijing:Standards Press of China,2021. (in Chinese)] Ministry of Natural Resources of the People’s Republic of China. Specifications for risk assessment of geological hazard: GB/T 40112—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
[48] 常士骠,张苏民. 工程地质手册[M]. 4版. 北京:中国建筑工业出版社,2007:455−458. [CHANG Shipiao,ZHANG Sumin. Handbook of engineering geology[M]. 4th ed. Beijing:China Building Industry Press,2007:455−458. (in Chinese)] CHANG Shipiao, ZHANG Sumin. Handbook of engineering geology[M]. 4th ed. Beijing: China Building Industry Press, 2007: 455−458. (in Chinese)
[49] 王雨山,尹德超,王旭清,等. 雄安新区白洋淀湿地地表水和地下水转化关系及其对芦苇分布的影响[J]. 中国地质,2021,48(5):1368 − 1381. [WANG Yushan,YIN Dechao,WANG Xuqing,et al. Groundwater-surface water interactions in the Baiyangdian wetland,Xiongan New Area and its impact on reed land[J]. Geology in China,2021,48(5):1368 − 1381. (in Chinese with English abstract)] WANG Yushan, YIN Dechao, WANG Xuqing, et al. Groundwater-surface water interactions in the Baiyangdian wetland, Xiongan New Area and its impact on reed land[J]. Geology in China, 2021, 48(5): 1368 − 1381. (in Chinese with English abstract)
[50] 张晓波,刘凯,蒋鹏,等. 基于约束条件的深圳市南山区地下空间开发地质适宜性评价[J]. 水文地质工程地质,2023,50(4):213 − 224. [ZHANG Xiaobo,LIU Kai,JIANG Peng,et al. Geological suitability evaluation of underground space development in the Nanshan District of Shenzhen based on constraint conditions[J]. Hydrogeology & Engineering Geology,2023,50(4):213 − 224. (in Chinese with English abstract)] ZHANG Xiaobo, LIU Kai, JIANG Peng, et al. Geological suitability evaluation of underground space development in the Nanshan District of Shenzhen based on constraint conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 213 − 224. (in Chinese with English abstract)
[51] ZHANG Maosheng,WANG Huaqi,DONG Ying,et al. Evaluation of urban underground space resources using a negative list method:Taking Xi’an City as an example in China[J]. China Geology,2020,3(1):124 − 136. DOI: 10.31035/cg2020006