ISSN 1000-3665 CN 11-2202/P

    一种新的估计非高斯分布含水层渗透系数场的方法

    A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer

    • 摘要: 集合卡尔曼滤波(ensemble Kalman filter, EnKF)是最流行的数据同化方法之一。然而,在处理非高斯问题时,EnKF存在局限性。为了解决非高斯问题并准确描述含水介质连通性,将正态分数变换(normal-score transformation, NST)与多重数据同化集合平滑器(ensemble smoother with multiple data assimilation, ES-MDA)相结合,提出NS-ES-MDA方法。通过对比实验,验证了NS-ES-MDA方法估计非高斯分布含水层渗透系数场的有效性。相较于重启正态分数集合卡尔曼滤波器(restart normal-score ensemble Kalman filter, rNS-EnKF)方法,NS-ES-MDA在吸收相同数据后,参数估计精度提升约34%,计算效率提升约35%。此外,NS-ES-MDA方法受“异参同效”现象的影响较小,具有较强的更新能力,能够保障得到较准确的参数估计值。研究可为非高斯分布含水层参数估计提供一种有效的求解方法。

       

      Abstract: The ensemble Kalman filter (EnKF) is one of the most widely used data assimilation methods. However, it exhibits limitations in handling non-Gaussian problems. To effectively address such issues and accurately describe the connectivity of aquifers, a novel approach named NS-ES-MDA is developed in this study. The proposed NS-ES-MDA synergistically combines the normal-score transformation (NST) with ensemble smoother with multiple data assimilation (ES-MDA). Through comparative experiments, the efficacy of NS-ES-MDA in estimating the hydraulic conductivity of non-Gaussian distributed aquifers is demonstrated. By assimilating the same dataset, NS-ES-MDA exhibits approximately 34% improvement in parameter estimation accuracy and about 35% enhancement in computational efficiency compared to the restart normal-score ensemble Kalman filter (rNS-EnKF). Furthermore, the NS-ES-MDA shows case robustness against the “equifinality” and displays remarkable updating capabilities, which leads to more precise parameter estimates. This study provides an effective solution for parameter estimation in non-Gaussian distributed aquifers.

       

    /

    返回文章
    返回