ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

联合InSAR与神经网络的范家坪滑坡形变监测及预测研究

徐文正, 卢书强, 林振, 周王敏

徐文正,卢书强,林振,等. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究[J]. 水文地质工程地质,2025,52(2): 150-163. DOI: 10.16030/j.cnki.issn.1000-3665.202308028
引用本文: 徐文正,卢书强,林振,等. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究[J]. 水文地质工程地质,2025,52(2): 150-163. DOI: 10.16030/j.cnki.issn.1000-3665.202308028
XU Wenzheng, LU Shuqiang, LIN Zhen, et al. Combination of InSAR and neural networks for the deformation monitoring and prediction of Fanjiaping landslide[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 150-163. DOI: 10.16030/j.cnki.issn.1000-3665.202308028
Citation: XU Wenzheng, LU Shuqiang, LIN Zhen, et al. Combination of InSAR and neural networks for the deformation monitoring and prediction of Fanjiaping landslide[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 150-163. DOI: 10.16030/j.cnki.issn.1000-3665.202308028

联合InSAR与神经网络的范家坪滑坡形变监测及预测研究

基金项目: 国家自然科学基金项目(42077234)
详细信息
    作者简介:

    徐文正(1997—),男,硕士研究生,主要从事地质灾害监测预警、InSAR原理及应用的研究工作。E-mail:1546145012@qq.com

    通讯作者:

    卢书强(1973—),男,教授,硕士生导师,主要从事地质灾害监测预警的研究工作。E-mail:lsq2197@163.com

  • 中图分类号: P237;P642

Combination of InSAR and neural networks for the deformation monitoring and prediction of Fanjiaping landslide

Funds: Supported by the National Natural Science Foundation of China(Grant No. 42077234)
  • 摘要:

    传统滑坡地表形变监测手段存在着监测范围小、复杂地形信息获取难度高、经济成本投入量大等缺点,且大型复杂滑坡变形时间序列的非线性、不确定性变化特征也一直是滑坡形变监测及预测研究中亟待解决的难题。以三峡库区范家坪滑坡为研究对象,利用差分干涉测量短基线集时序分析技术(small baseline subset InSAR,SBAS-InSAR),结合地表GPS监测数据进行滑坡形变监测,基于SBAS-InSAR时间序列数据及长短时记忆网络(long short term memory,LSTM)开展滑坡形变预测研究。结果表明:研究时段内,范家坪滑坡SBAS-InSAR形变监测结果与地表GPS监测数据所反映出的形变区域及形变量级基本保持一致,与现场调查情况相吻合;范家坪滑坡的位移变形与坡体的高程分布及库水位条件密切相关,当库水位高于160 m时,滑坡前缘阻滑段主要受“浮托减重”效应影响,当库水位低于160 m时,渗流压力占主导作用,水位下降阶段的位移变形总体明显大于水位上升阶段,库水位下降速率对范家坪滑坡的位移变形产生重要影响,且木鱼包滑坡区相较于谭家河滑坡区对库水位下降速率的变形响应更为强烈;将LSTM神经网络模型与传统神经网络模型的预测结果进行效果对比、置信区间估计及相关性检验,结果显示,LSTM神经网络模型的预测结果始终保持较高的预测精度,验证了InSAR与神经网络结合的滑坡监测与预测方法能够为三峡库区地质灾害防治提供重要的数据参考和信息支撑。

    Abstract:

    Traditional methods for monitoring surface deformation of landslides have significant limitations, including small monitoring coverage, difficulty in acquiring information in complex terrains, and high economic costs. Furthermore, the nonlinear and uncertain characteristics of deformation time series for large and complex landslides remain a critical challenge in landslide deformation monitoring and prediction research. Taking the Fanjiaping landslide in the Three Gorges Reservoir Area as the study area, small baseline subset InSAR (SBAS-InSAR) combined with surface GPS monitoring data was used for landslide deformation monitoring. Based on the SBAS-InSAR time series data and long short term memory (LSTM), a study on landslide deformation prediction was conducted. The results show that during the study period, the SBAS-InSAR deformation monitoring results of the Fanjiaping landslide were largely consistent with the deformation areas and magnitude levels indicated by surface GPS monitoring data, aligning with on-site investigation findings. The displacement deformation of the Fanjiaping landslide was found to be closely related to the elevation distribution of the slope and reservoir water level conditions. When the reservoir water level exceeds 160 m, the influence of seepage pressure on slope displacement deformation is minimal. However, when the reservoir water level falls below 160 m, seepage pressure becomes the dominant factor, with displacement deformation during the water level decline phase significantly exceeding that during the water level rise phase. Additionally, the rate of reservoir water level decline has a substantial impact on the displacement deformation of the Fanjiaping landslide, with the Muyubao landslide area showing a more pronounced deformation response to the rate of reservoir water level decline compared to the Tanjiahe landslide area. By comparing the predictive performance, confidence interval estimation, and correlation tests of the LSTM model and traditional neural network models, the results indicate that the LSTM model consistently maintains high predictive accuracy. This validates that the combination of InSAR and neural networks for landslide monitoring and prediction can provide critical data references and information support for geological disaster prevention and mitigation in the Three Gorges Reservoir Area.

  • 滑坡变形是在复杂机理和各种变量因子综合影响下产生的,变形时间序列的非线性、不确定性变化特征一直是滑坡形变监测及预测过程中亟待解决的难题[13]

    目前,主流的研究方向是利用地面监测手段获取的监测数据完成滑坡形变监测或预测,如张俊等[4]基于时间序列与PSO-SVR耦合模型结合白水河滑坡地面监测数据开展位移预测研究,利用最小二乘法并融入多种外界影响因子对趋势性位移曲线进行分段拟合训练和预测;郭子正等[5]基于地表监测数据和非线性时间序列分析,以新滩滑坡和三舟溪滑坡为例提出一种滑坡位移预测的组合模型。随着人工智能等新兴信息技术迅速发展,众多学者开始尝试将机器学习与非线性预测模型相结合,并应用于滑坡变形预测的生产实践中。长短时记忆网络[6](long short term memory,LSTM)作为深度神经网络模型的一种,在循环神经网络的基础上引入门控机制,不仅能够调节隐藏层中神经元的权重更新,而且可以有效地解决多层神经网络的梯度爆炸或者梯度消失问题,因此LSTM神经网络对解决非线性时序结构问题具有独特优势,不仅能反映滑坡演化的动态特征,且具有记忆功能,更适合复杂的非线性滑坡形变预测。例如杨背背等[7]基于时间序列与长短时记忆网络,以白水河滑坡为例建立了滑坡位移动态预测模型;张振坤等[8]通过结合多头自注意力机制和长短时记忆网络模型对各位移分量进行动态预测,预测精度得到极大提升。Chang等[9]集成深度学习算法对长江流域宜昌段进行滑坡易发性评价与预测研究,采用无监督深度嵌入聚类算法参与非滑坡样本的选取,准确率达96.29%。

    对于传统地表监测手段来说,由于植被茂密、距离过大、仪器受扰动等因素,有时会导致监测数据的缺失或者因误差过大而出现“假预警”现象。并且传统地表监测手段在前期的建设投入及后期维护运行成本巨大,监测范围小,空间分辨率低,对于大面积滑坡区的长期形变监测显得十分不足[1012]

    近些年,空间大地测量技术得到蓬勃发展,合成孔径雷达干涉测量技术(interferometric synthetic aperture radar, InSAR)[13, 14]以其全天时、高空间分辨率等独有优势在地表形变监测中大放异彩,国内外众多学者进行了大量研究。朱建军等[15]结合矿区沉降监测实例介绍InSAR技术在矿区地表形变监测中的应用现状及进展,讨论现有研究中仍存在的问题。云烨等[16]从地质灾害监测应用的角度分析InSAR技术在地震、滑坡、水利工程、地面沉降等领域的应用现状和发展趋势,展望InSAR技术服务于地质灾害动态监测与防治工作的广阔前景。

    但是,常用的InSAR技术易受到时空失相干和大气延迟的影响,精度和适用性显著降低,而利用SBAS-InSAR技术提取SAR数据中的地表形变信息,能够弥补时间不连续的不足,有效降低大气延迟及时空失相干的影响。例如李珊珊等[17]将差分干涉测量短基线集时序分析技术(SBAS-InSAR)应用于青藏高原季节性冻土的监测当中,记录冻土区从2007年到2010年的季节性形变演化情况。Izumi 等[18]利用SBAS-InSAR技术对东南亚热带泥炭地快速退化引起的地表沉降进行监测,提出一种简单高效的时间序列合成孔径雷达干涉测量(T-InSAR)方法,增强动态地表散射体变化下的相干散射体密度。

    范家坪滑坡坡体结构特殊,形成机理复杂,自2006年监测以来,至今仍持续发生位移变形,对周围区域人民生命财产安全及长江航道运输构成巨大威胁。本文以三峡库区范家坪滑坡这一典型的顺层岩质古滑坡为例[19],采用SBAS-InSAR技术对范家坪滑坡进行时序形变监测,结合地表GPS监测数据,深入探讨范家坪滑坡发生蠕滑变形的内在成因机制;以所获取的时序InSAR滑坡形变时间序列为基础,完成LSTM深度神经网络模型的搭建及高精度滑坡形变预测;对LSTM神经网络模型与传统神经网络模型的位移预测效果进行分析评价。

    范家坪滑坡位于湖北省秭归县境内的范家坪村,为一巨型岩质古滑坡[20]。2006年将该滑坡纳入三峡库区地质灾害专业监测预警工程,后期监测中发现,范家坪滑坡以中部大乐沟为界,两侧滑坡体具有不同的位移变形方向,故将东西两侧进一步划分为谭家河滑坡与木鱼包滑坡,工程地质平面图见图1

    图  1  范家坪滑坡工程地质平面图
    Figure  1.  Engineering geological plane of Fanjiaping landslide

    东侧谭家河滑坡宽400 m,纵长1000 m,面积约40×104 m2,平均厚度40 m,体积约1600×104 m3,主滑方向340°。西侧木鱼包滑坡均宽1200 m,纵长1500 m,面积约180×104 m2,平均厚度50 m,体积约9000×104 m3,主滑方向20°。滑坡物质由表层的松散堆积层及侏罗系下统香溪组层状石英砂岩、粉砂块裂岩组成。滑体中后部岩层倾角25°~30°,滑面顺煤系地层顶面发育,由煤泥及重粉质亚黏土组成,滑床由香溪组中、下级地层组成,顺层段由香溪组下段薄-中厚层炭质粉砂岩为主,切层段以香溪组中段褐黄色中厚-厚层状石英砂岩为主[2123],工程地质剖面图见图2

    图  2  范家坪滑坡剖面图
    Figure  2.  Geological profile of Fanjiaping landslide

    传统的滑坡监测手段在监测数据的稳定性、经济成本投入等方面仍存在一些不足。InSAR技术能够高精度、少干扰的获取大范围滑坡区的地表形变信息,相较于其他InSAR技术,利用SBAS-InSAR技术提取SAR数据中的地表形变信息,能够充分发挥该技术在弥补时间不连续、降低大气延迟等方面的独特优势[2426]。SBAS-InSAR技术是一种多时相干涉SAR分析方法,广泛用于地表形变监测。该方法通过选择多时相SAR影像,构建满足时空基线阈值的干涉图集,并消除地形相位等干扰,以实现高精度的形变提取和形变速率计算,为滑坡、地面沉降等地质灾害监测提供有效的数据支撑[27, 28]

    按照获取SBAS-InSAR时序监测数据、组织数据结构、搭建LSTM时序预测模型的顺序开展滑坡形变预测工作。首先获取研究时段的SAR影像数据,经过SBAS-InSAR技术获得滑坡历史变形信息,然后根据滑坡区的变形特征对InSAR时序变形数据进行筛选和重新组织,所采用的哨兵一号(Sentinel-1)卫星的重访周期为12 d,针对中间缺失的部分形变信息在不破坏滑坡整体变形特征的前提下采用随机森林插补法进行填补,将特征点历史形变数据重新组织为一维时间序列。最后确定预测模型的输入输出窗口、训练集与测试集比例分配以及其他参数设置完成模型搭建,对LSTM网络模型进行训练并测试模型训练结果,完成滑坡形变预测。

    Sentinel-1卫星星座由1A和1B两颗卫星组成,生产的卫星影像数据已为地表运动监测、海洋测绘、地籍管理等应用领域提供了一系列的运营服务。

    获取2021年7月1日—2022年8月25日间隔为12 d的28景Sentinel-1卫星影像数据,信息见表1

    表  1  Sentinel-1卫星影像数据信息
    Table  1.  Sentinel-1 satellite image information
    信息类别 信息值
    起始日期 2021-07-01
    终止日期 2022-08-25
    卫星影像数量/帧 28
    卫星重访周期/d 12
    飞行方向 升轨
    入射角/(°) 33.96
    方位角/(°) 347.3
    下载: 导出CSV 
    | 显示表格

    根据范家坪滑坡整体变形规律,分别选取木鱼包及谭家河滑坡区上的两个监测点ZG293、 ZG288附近的特征点1和特征点2(图3),利用特征点处的InSAR时间序列数据,开展滑坡形变预测工作。

    图  3  范家坪滑坡年形变速率
    Figure  3.  Annual deformation rate of Fanjiaping landslide

    SBAS-InSAR主要处理流程[29]包括:①生成连接图,将2021年7月1日的图像作为配准的超级主影像,设定相应的时空基线阈值;②将已配准影像进行去平、滤波、相位解缠等干涉处理,手动剔除低相干性数据对;③在无干涉条纹和相位跃变处布设地面控制点,结合高精度DEM数据进行相位优化和重去平;④经过两次反演,去除相位坡道及大气相位,并得到最终的时间序列形变结果;⑤地理编码,将SAR坐标系转换为WGS-84大地坐标系,得到卫星传感器视线方向(LOS)地表形变结果。其中,正值代表朝向卫星传感器方向,即抬升;负值代表远离卫星传感器方向,即沉降,结果如图3所示。每一个时相的形变值表示该时相相对于第一时相所产生的形变量,负值为沉降,正值为抬升,如图4所示。

    图  4  范家坪滑坡部分形变图
    Figure  4.  Partial deformation map of the Fanjiaping landslide

    从空间维度,结合图3可以看出,范家坪滑坡整体都处在变形状态,形变速率−28.48~37.77 mm/a。木鱼包滑坡区右侧及中部沉降速率较大,且有逐步向滑坡前缘推进的趋势,形变速率−28.48~−11.26 mm/a,滑坡前缘目前以抬升为主,形变速率15.69~37.77 mm/a。根据斜坡变形破坏模式[30],木鱼包滑坡属于典型的滑移-弯曲型,滑坡前缘在河床基岩阻挡下发生弯曲隆起。谭家河滑坡区整体沿斜坡方向发生沉降变形,主要变形区集中于滑坡中部及后缘,滑坡前缘为阻滑段,沉降速率较小,谭家河滑坡区的整体形变速率−10.68~4.62 mm/a。

    现场调查进一步验证了范家坪滑坡SBAS-InSAR监测结果的准确性。谭家河滑坡区中部公路路面产生多条贯穿性裂缝,主要裂缝宽度达3~4 cm,后缘东侧旧裂缝处,土体微张,裂缝扩展1~3 cm;木鱼包滑坡区东侧沙黄公路路面多处开裂,裂缝最大宽度达5 cm,滑坡区西侧公路路面有2处开裂,裂缝宽1~2 cm,且外侧路基有下沉迹象(图5)。InSAR监测结果与现场调查情况基本一致,进一步验证了时序InSAR在库区滑坡形变监测中的可靠性。

    图  5  范家坪滑坡现场调查照片
    Figure  5.  Photographs of the Fanjiaping landslide site

    从时间维度,结合SBAS-InSAR时间序列、库水位升降速率以及GPS监测曲线等监测数据剖析范家坪滑坡变形演化规律。范家坪滑坡位于长江南岸,发育特征与三峡库区库水位涨落息息相关。结合图4图6与InSAR位移曲线可以看出,2021年6—10月为三峡库区水位上升阶段,库水位的升降速率在−1.07~3.32 m/d之间,滑坡的累计沉降量由8月份的14.01 mm至10月份的12.2 mm,呈减缓趋势。是由于库水位上升期间,坡体内部水头差与滑坡前缘阻滑段的浮托减重作用[11]相互抵消,导致滑坡在该阶段位移变形较小。

    图  6  范家坪滑坡库水升降速率与InSAR位移曲线
    Figure  6.  InSAR displacement and reservoir water level fluctuation rate in the Fanjiaping landslide

    图7可以看出,范家坪滑坡变形主要发生在高水位阶段,变形与坡体的高程分布及库水位条件密切相关,在不同高程段,坡体结构的差异性导致渗透特性也不相同。当库水位高于160 m时,滑坡阻滑段被长期淹没,岩土体在长期浸泡下由天然重度变为浮重度,产生浮托减重效应,促使滑坡产生位移变形,并占主导作用;当库水位低于160 m时,渗流压力占主导作用,库水位下降期间,滑坡前缘自重降低,抗滑力减弱,且同时期的动水压力向坡外转移,滑坡位移变形曲线发生明显抬升。此外,降雨对滑坡位移变形具有助推作用。库水位下降阶段雨季增多,坡体在降雨入渗作用下自重增加,滑带的软化作用增强,抗剪强度降低,滑坡变形加速[3133]

    图  7  范家坪滑坡GPS累计位移曲线
    Figure  7.  GPS cumulative displacement of Fanjiaping landslide

    图6可知,2021年11月—2022年8月是三峡库区水位下降阶段,库水位的升降速率在−1.86~0.87 m/d之间,5—6月份达到库水位下降速率的峰值−1.87 m/d。结合图4可知,此阶段滑坡区的沉降量28.84~32.3 mm,较8—9月份该滑坡发生了较为显著的沉降变形。结合图7监测曲线可以看出,随着库水位下降速率的增加,ZG288、ZG293监测点的累计位移曲线均发生了明显的陡增现象,与InSAR结果所反映的位移变形特征相一致,凸显了InSAR结果的准确性。据此推断,研究时段内,库水位下降速率对范家坪滑坡的位移变形具有重要影响,且由图37可以看出木鱼包滑坡区相较于谭家河滑坡区对库水位下降速率的变形响应更为强烈。

    为验证SBAS-InSAR时间序列结果的准确性,利用皮尔逊相关系数法[34]对地表GPS实测数据与SBAS-InSAR时间序列结果进行相关性评价,具体计算式见式(1)。

    r=cov(X,Y)σXσY=[(XiX)(YiY)](XiX)2(YiY)2 (1)

    式中:Xi——GPS实测数据;

    Yi——SBAS-InSAR时间序列数据;

    XY——XiYi对应的均值;

    i——所取时间段天数;

    r——GPS实测值与SBAS-InSAR时间序列值的相 关系数;

    cov(X,Y)——XY两个变量的协方差;

    σXσY——变量XY的标准差。

    相关系数r与相关性关系见表2,计算结果见图7

    表  2  相关系数与相关性
    Table  2.  Correlation coefficient and correlation
    相关系数 相关性强弱
    |r|≥0.8 高度相关
    0.5≤|r|<0.8 显著相关
    0.3≤|r|<0.5 低度相关
    |r|<0.3 极弱相关或无相关
    下载: 导出CSV 
    | 显示表格

    由于地表GPS实测数据记录的是累计位移值,而SBAS-InSAR时间序列主要记录像元处的沉降量,因此二者呈现出显著的高度负相关性(图8)。皮尔逊相关系数r值分别达到−0.9339、−0.8560,其绝对值均大于0.8,表明二者达到高度相关关系,进一步验证了InSAR结果的准确性,并为后续开展滑坡形变预测奠定良好的前提条件。

    图  8  GPS实测值与InSAR时间序列相关性
    Figure  8.  Correlation of values from GPS measurement and InSAR time series

    综上所述,研究时段内,SBAS-InSAR形变监测结果与地表GPS监测数据所反映出的形变区域及形变量级基本一致,与现场调查情况也基本吻合。另外,范家坪滑坡在不同高程段坡体结构及渗透特性的差异,致使渗流压力对滑坡的位移变形产生重要的贡献作用,当库水位低于160 m左右时,渗流压力占主导,库水位下降阶段的位移变形总体明显大于库水位上升阶段,库水位下降速率对范家坪滑坡的位移变形产生重要影响,且木鱼包滑坡区相较于谭家河滑坡区对库水位下降速率的变形响应更为强烈。

    SBAS-InSAR技术以卫星重访周期12 d为间隔得到滑坡区的历史形变数据,针对部分缺失数据以不损失滑坡变形特征为前提采用随机森林插补法进行填补,数据结构如图9所示。

    图  9  特征点LOS向时序变形曲线
    Figure  9.  Feature point LOS to time series deformation

    通过粒子群算法对LSTM神经网络的超参数进行迭代选取,最终设置1层LSTM网络层,输入层节点数为5,输出层节点数为1,隐藏层节点数为60,设置1个全连接层,卷积核大小为3×1,学习率为0.01,以Sigmoid作为激活函数,将Sigmoid函数确定的输出值乘以Tanh函数,求出最终输出值,将数据集按6∶4的比例划分为训练集和测试集,LSTM单元结构如图10所示[35]

    图  10  LSTM模型单元结构
    Figure  10.  LSTM model cell structure

    图11所示,红色实线为数据样本的历史观测训练值,红色虚线为对样本未来趋势的预测值,黑色曲线为数据样本的真实标签值。可以看出,两个特征点的LSTM模型预测结果大致遵循真实标签值的数据走向,表明预测结果的准确性。

    图  11  特征点1、特征点2 模型预测结果
    Figure  11.  Feature point 1 and 2 model prediction results

    利用均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MBE)以及可决系数(R2)对LSTM模型预测结果进行误差评估,误差结果见表3。可以看出预测结果的各项误差指标均满足滑坡形变预测的精度要求,进一步说明该方法对范家坪滑坡形变预测的有效性。

    表  3  LSTM模型预测结果误差表
    Table  3.  Errors of LSTM model prediction
    指标 RMSE/mm MAE/mm MBE/mm R²
    训练集 测试集 训练集 测试集 训练集 测试集 训练集 测试集
    特征点1 0.87 2.13 0.68 2.7 −0.18 2.68 0.99 −0.01
    特征点2 0.70 1.99 0.55 2.27 0.12 2.25 0.94 -0.6
    下载: 导出CSV 
    | 显示表格

    利用4.1节所选取的时序数据,分别采用误差反向传播(back propagation,BP)神经网络[36] 、支持向量机的(support vector machine,SVM)神经网络[37]、径向基函数(radical basis function,RBF)神经网络[38]对两个特征点的InSAR历史形变结果进行滑坡形变预测,预测结果及误差如图11所示,显然无论是特征点1还是特征点2,LSTM神经网络模型预测结果精度最高,预测效果最佳。

    仅对滑坡变形点进行估计仍无法彻底摒弃其中的误差影响,为了充分的说明应用LSTM神经网络模型情况下SBAS-InSAR滑坡历史形变数据预测结果的可信度与精度水平,分别对特征点1、特征点2的预测结果进行置信区间估计。

    假设LSTM、BP、SVM、RBF神经网络模型对SBAS-InSAR滑坡历史形变数据的预测结果服从正态分布 XN(μ,σ2) ,可信度为95%,将上述由特征点1、特征点2 InSAR形变数据得到的几种神经网络模型预测结果求取均值 μ 的置信区间估计[39],结果如图12所示。

    图  12  置信区间估计结果
    Figure  12.  Confidence interval estimation results

    通过对不同神经网络模型得到的预测结果进行均方根误差的计算,得到各个模型预测的置信区间。从图12中可以看出,除了特征点1 的SVM神经网络模型的预测结果的精度误差为10.6491 mm,其他各神经网络模型的预测结果均以95%的可靠性保证了预测误差控制在±10 mm以内,其中LSTM神经网络模型的误差精度达到±5 mm。

    为进一步探究不同神经网络模型下的预测结果与SBAS-InSAR滑坡历史形变数据之间的相关性关系,采用皮尔逊相关系数法对二者进行相关性检验,具体计算公式同式(1)。其中,Xi表示SBAS-InSAR时序结果真实标签值;Yi为不同神经网络模型测试集的位移预测值;相关系数r与相关性关系见表2

    由于模型训练集的预测值主要是在训练集样本数据的经验值基础上辅加不同算法推演而来,因此相关性检验无法显著区分不同神经网络模型训练集预测结果与真实标签值之间的相关性。所以利用皮尔逊相关系数法分别对特征点1、特征点2由LSTM、BP、SVM、RBF神经网络模型得到的测试集预测结果与真实标签值进行相关性分析,分析结果如图13所示。

    图  13  不同模型相关性检验结果
    Figure  13.  Correlation tests of different models

    图13可以看出,特征点1与特征点2的LSTM神经网络模型预测结果的相关性系数γ值分别达到了0.94550.9829,明显高于其他神经网络模型。表明LSTM神经网络模型的预测结果与真实标签值之间相关性显著,达到了高度相关关系。进一步验证了在SBAS-InSAR滑坡历史形变数据基础上应用的LSTM神经网络模型的精度水平与可靠性。

    (1)研究时段内,范家坪滑坡SBAS-InSAR形变监测结果与地表GPS监测数据所反映出的形变区域及形变量级基本一致,与现场调查情况相吻合。

    (2)范家坪滑坡的位移变形与坡体的高程分布及库水位条件密切相关,当库水位高于160 m时,滑坡前缘阻滑段主要受“浮托减重”效应影响,当库水位低于160 m时,渗流压力占主导作用,在库水位下降阶段出现较明显的变形加剧现象,库水位下降速率对范家坪滑坡的位移变形产生重要影响,且木鱼包滑坡区相较于谭家河滑坡区对库水位下降速率的变形响应更为强烈。

    (3)分别选取范家坪滑坡上的2个特征点,针对该模型的预测结果与其他3种传统预测方法进行效果对比和置信区间估计。分析结果显示,无论是特征点1还是特征点2,LSTM神经网络模型仍能保持最高的预测精度,且以95%的可靠性保证预测的精度误差控制在±5 mm以内。

    (4)利用皮尔逊相关系数法对2个特征点的LSTM网络模型及其他3种传统预测方法的预测结果与真实标签值进行相关性分析,结果显示,无论是特征点1还是特征点2,LSTM神经网络模型预测结果与真实标签值之间的相关性系数γ值最高,相关性显著,达到了高度相关。进一步证实该方法在时间序列预测任务上的有效性及可靠性。

  • 图  1   范家坪滑坡工程地质平面图

    Figure  1.   Engineering geological plane of Fanjiaping landslide

    图  2   范家坪滑坡剖面图

    Figure  2.   Geological profile of Fanjiaping landslide

    图  3   范家坪滑坡年形变速率

    Figure  3.   Annual deformation rate of Fanjiaping landslide

    图  4   范家坪滑坡部分形变图

    Figure  4.   Partial deformation map of the Fanjiaping landslide

    图  5   范家坪滑坡现场调查照片

    Figure  5.   Photographs of the Fanjiaping landslide site

    图  6   范家坪滑坡库水升降速率与InSAR位移曲线

    Figure  6.   InSAR displacement and reservoir water level fluctuation rate in the Fanjiaping landslide

    图  7   范家坪滑坡GPS累计位移曲线

    Figure  7.   GPS cumulative displacement of Fanjiaping landslide

    图  8   GPS实测值与InSAR时间序列相关性

    Figure  8.   Correlation of values from GPS measurement and InSAR time series

    图  9   特征点LOS向时序变形曲线

    Figure  9.   Feature point LOS to time series deformation

    图  10   LSTM模型单元结构

    Figure  10.   LSTM model cell structure

    图  11   特征点1、特征点2 模型预测结果

    Figure  11.   Feature point 1 and 2 model prediction results

    图  12   置信区间估计结果

    Figure  12.   Confidence interval estimation results

    图  13   不同模型相关性检验结果

    Figure  13.   Correlation tests of different models

    表  1   Sentinel-1卫星影像数据信息

    Table  1   Sentinel-1 satellite image information

    信息类别 信息值
    起始日期 2021-07-01
    终止日期 2022-08-25
    卫星影像数量/帧 28
    卫星重访周期/d 12
    飞行方向 升轨
    入射角/(°) 33.96
    方位角/(°) 347.3
    下载: 导出CSV

    表  2   相关系数与相关性

    Table  2   Correlation coefficient and correlation

    相关系数 相关性强弱
    |r|≥0.8 高度相关
    0.5≤|r|<0.8 显著相关
    0.3≤|r|<0.5 低度相关
    |r|<0.3 极弱相关或无相关
    下载: 导出CSV

    表  3   LSTM模型预测结果误差表

    Table  3   Errors of LSTM model prediction

    指标 RMSE/mm MAE/mm MBE/mm R²
    训练集 测试集 训练集 测试集 训练集 测试集 训练集 测试集
    特征点1 0.87 2.13 0.68 2.7 −0.18 2.68 0.99 −0.01
    特征点2 0.70 1.99 0.55 2.27 0.12 2.25 0.94 -0.6
    下载: 导出CSV
  • [1] 殷坤龙,晏同珍. 滑坡预测及相关模型[J]. 岩石力学与工程学报,1996,15(1):1 − 8. [YIN Kunlong,YAN Tongzhen. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering,1996,15(1):1 − 8. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.1996.01.001

    YIN Kunlong, YAN Tongzhen. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 1 − 8. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.1996.01.001

    [2] 方汕澳,许强,修德皓,等. 基于斜率模型的突发型黄土滑坡失稳时间预测[J]. 水文地质工程地质,2021,48(4):169 − 179. [FANG Shan’ao,XU Qiang,XIU Dehao,et al. A study of the predicted instability time of sudden loess landslides based on the SLO model[J]. Hydrogeology & Engineering Geology,2021,48(4):169 − 179. (in Chinese with English abstract)]

    FANG Shan’ao, XU Qiang, XIU Dehao, et al. A study of the predicted instability time of sudden loess landslides based on the SLO model[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 169 − 179. (in Chinese with English abstract)

    [3] 贺可强,郭璐,陈为公. 降雨诱发堆积层滑坡失稳的位移动力评价预测模型研究[J]. 岩石力学与工程学报,2015,34(增刊2):4204 − 4215. [HE Keqiang,GUO Lu,CHEN Weigong. Research on displacement dynamic evaluation and forecast model of colluvial landslides induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup 2):4204 − 4215. (in Chinese with English abstract)]

    HE Keqiang, GUO Lu, CHEN Weigong. Research on displacement dynamic evaluation and forecast model of colluvial landslides induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4204 − 4215. (in Chinese with English abstract)

    [4] 张俊,殷坤龙,王佳佳,等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报,2015,34(2):382 − 391. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Displacement prediction of Baishuihe landslide based on time series and pso-svr model[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):382 − 391. (in Chinese with English abstract)]

    ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and pso-svr model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382 − 391. (in Chinese with English abstract)

    [5] 郭子正,殷坤龙,黄发明,等. 基于地表监测数据和非线性时间序列组合模型的滑坡位移预测[J]. 岩石力学与工程学报,2018,37(增刊1):3392 − 3399. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Sup 1):3392 − 3399. (in Chinese with English abstract)]

    GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Sup 1): 3392 − 3399. (in Chinese with English abstract)

    [6] 王鑫,吴际,刘超,等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报,2018,44(4):772 − 784. [WANG Xin,WU Ji,LIU Chao,et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):772 − 784. (in Chinese with English abstract)]

    WANG Xin, WU Ji, LIU Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772 − 784. (in Chinese with English abstract)

    [7] 杨背背,殷坤龙,杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报,2018,37(10):2334 − 2343. [YANG Beibei,YIN Kunlong,DU Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2334 − 2343. (in Chinese with English abstract)]

    YANG Beibei, YIN Kunlong, DU Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2334 − 2343. (in Chinese with English abstract)

    [8] 张振坤,张冬梅,李江,等. 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学,2022,43(增刊2):477 − 486. [ZHANG Zhenkun,ZHANG Dongmei,LI Jiang,et al. LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics,2022,43(Sup 2):477 − 486. (in Chinese with English abstract)]

    ZHANG Zhenkun, ZHANG Dongmei, LI Jiang, et al. LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics, 2022, 43(Sup 2): 477 − 486. (in Chinese with English abstract)

    [9]

    CHANG Lili,ZHANG Rui,WANG Chunsheng. Evaluation and prediction of landslide susceptibility in Yichang section of Yangtze River Basin based on integrated deep learning algorithm[J]. Remote Sensing,2022,14(11):2717. DOI: 10.3390/rs14112717

    [10] 罗文强,冀雅楠,王淳越,等. 多监测点滑坡变形预测的似乎不相关模型研究[J]. 岩石力学与工程学报,2016,35(增刊1):3051 − 3056. [LUO Wenqiang,JI Yanan,WANG Chunyue,et al. Research on seemingly unrelated regressions model for landslide deformation prediction of multiple monitoring points[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup 1):3051 − 3056. (in Chinese with English abstract)]

    LUO Wenqiang, JI Yanan, WANG Chunyue, et al. Research on seemingly unrelated regressions model for landslide deformation prediction of multiple monitoring points[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3051 − 3056. (in Chinese with English abstract)

    [11] 蒋秀玲,张常亮. 三峡水库水位变动下的库岸滑坡稳定性评价[J]. 水文地质工程地质,2010,37(6):38 − 42. [JIANG Xiuling,ZHANG Changliang. Stability assessment for the landslide undergoing the effects of water level fluctuation in the Three Gorges Reservoir Area,China[J]. Hydrogeology & Engineering Geology,2010,37(6):38 − 42. (in Chinese with English abstract)]

    JIANG Xiuling, ZHANG Changliang. Stability assessment for the landslide undergoing the effects of water level fluctuation in the Three Gorges Reservoir Area, China[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 38 − 42. (in Chinese with English abstract)

    [12] 曹洪洋,任晓莹. 基于粗糙集理论的区域降雨型滑坡预测预报[J]. 水文地质工程地质,2017,44(2):117 − 123. [CAO Hongyang,REN Xiaoying. Rainfall-induced landslides prediction based on rough sets[J]. Hydrogeology & Engineering Geology,2017,44(2):117 − 123. (in Chinese with English abstract)]

    CAO Hongyang, REN Xiaoying. Rainfall-induced landslides prediction based on rough sets[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 117 − 123. (in Chinese with English abstract)

    [13] 李德仁,廖明生,王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版),2004,29(8):664 − 668. [LI Deren,LIAO Mingsheng,WANG Yan. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University,2004,29(8):664 − 668. (in Chinese with English abstract)]

    LI Deren, LIAO Mingsheng, WANG Yan. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 664 − 668. (in Chinese with English abstract)

    [14] 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析[J]. 中国地质灾害与防治学报,2023,34(2):61 − 72. [LU Wei,YANG Bin,YANG Kun. Surface deformation monitoring and analysis of Southwest University of Science and Technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):61 − 72.(in Chinese with English abstract)]

    LU Wei, YANG Bin, YANG Kun. Surface deformation monitoring and analysis of Southwest University of Science and Technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 61 − 72.(in Chinese with English abstract)

    [15] 朱建军,邢学敏,胡俊,等. 利用InSAR技术监测矿区地表形变[J]. 中国有色金属学报,2011,21(10):2564 − 2576. [ZHU Jianjun,XING Xuemin,HU Jun,et al. Monitoring of ground surface deformation in mining area with InSAR technique[J]. The Chinese Journal of Nonferrous Metals,2011,21(10):2564 − 2576. (in Chinese with English abstract)]

    ZHU Jianjun, XING Xuemin, HU Jun, et al. Monitoring of ground surface deformation in mining area with InSAR technique[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2564 − 2576. (in Chinese with English abstract)

    [16] 云烨,吕孝雷,付希凯,等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报,2020,9(1):73 − 85. [YUN Ye,LÜ Xiaolei,FU Xikai,et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars,2020,9(1):73 − 85. (in Chinese with English abstract)]

    YUN Ye, LÜ Xiaolei, FU Xikai, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1): 73 − 85. (in Chinese with English abstract)

    [17] 李珊珊,李志伟,胡俊,等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报,2013,56(5):1476 − 1486. [LI Shanshan,LI Zhiwei,HU Jun,et al. Investigation of the Seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics,2013,56(5):1476 − 1486. (in Chinese with English abstract)]

    LI Shanshan, LI Zhiwei, HU Jun, et al. Investigation of the Seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476 − 1486. (in Chinese with English abstract)

    [18]

    IZUMI Y,TAKEUCHI W,WIDODO J,et al. Temporal subset SBAS InSAR approach for tropical peatland surface deformation monitoring using sentinel-1 data[J]. Remote Sensing,2022,14(22):5825. DOI: 10.3390/rs14225825

    [19] 李松林,许强,汤明高,等. 库水位升降作用下不同滑面形态老滑坡响应规律[J]. 工程地质学报,2017,25(3):841 − 852. [LI Songlin,XU Qiang,TANG Minggao,et al. Response patterns of old landslides with different slipsurface shapes triggered by fluctuation of reservoir water level[J]. Journal of Engineering Geology,2017,25(3):841 − 852. (in Chinese with English abstract)]

    LI Songlin, XU Qiang, TANG Minggao, et al. Response patterns of old landslides with different slipsurface shapes triggered by fluctuation of reservoir water level[J]. Journal of Engineering Geology, 2017, 25(3): 841 − 852. (in Chinese with English abstract)

    [20] 范景辉, 邱阔天, 夏耶, 等. 三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报,2017,36(9):1665 − 1673. [FAN Jinghui, QIU Kuotian, XIA Ye, et al. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China,2017,36(9):1665 − 1673.(in Chinese with English abstract)]

    FAN Jinghui, QIU Kuotian, XIA Ye, et al. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China, 2017, 36(9): 1665 − 1673.(in Chinese with English abstract)

    [21] 张国栋,谈太溪,徐志华,等. 三峡库区谭家河滑坡变形监测成果分析[J]. 自然灾害学报,2017,26(3):185 − 192. [ZHANG Guodong,TAN Taixi,XU Zhihua,et al. Analysis for deformation monitoring of Tanjiahe landslide in the Three Gorges Reservoir Area[J]. Journal of Natural Disasters,2017,26(3):185 − 192. (in Chinese with English abstract)]

    ZHANG Guodong, TAN Taixi, XU Zhihua, et al. Analysis for deformation monitoring of Tanjiahe landslide in the Three Gorges Reservoir Area[J]. Journal of Natural Disasters, 2017, 26(3): 185 − 192. (in Chinese with English abstract)

    [22] 邓茂林,易庆林,韩蓓,等. 长江三峡库区木鱼包滑坡地表变形规律分析[J]. 岩土力学,2019,40(8):3145 − 3152. [DENG Maolin,YI Qinglin,HAN Bei,et al. Analysis of surface deformation law of Muyubao landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics,2019,40(8):3145 − 3152. (in Chinese with English abstract)]

    DENG Maolin, YI Qinglin, HAN Bei, et al. Analysis of surface deformation law of Muyubao landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2019, 40(8): 3145 − 3152. (in Chinese with English abstract)

    [23] 殷跃平,彭轩明. 三峡库区千将坪滑坡失稳探讨[J]. 水文地质工程地质,2007,34(3):51 − 54. [YIN Yueping,PENG Xuanming. Failure mechanism on Qianjiangping landslide in the Three Gorges Reservoir Region[J]. Hydrogeology & Engineering Geology,2007,34(3):51 − 54. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2007.03.013

    YIN Yueping, PENG Xuanming. Failure mechanism on Qianjiangping landslide in the Three Gorges Reservoir Region[J]. Hydrogeology & Engineering Geology, 2007, 34(3): 51 − 54. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2007.03.013

    [24] 赵富萌,张毅,孟兴民,等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng,ZHANG Yi,MENG Xingmin,et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract)]

    ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 142 − 152. (in Chinese with English abstract)

    [25] 姚佳明,姚鑫,陈剑,等. 基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J]. 水文地质工程地质,2020,47(3):135 − 146. [YAO Jiaming,YAO Xin,CHEN Jian,et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(3):135 − 146. (in Chinese with English abstract)]

    YAO Jiaming, YAO Xin, CHEN Jian, et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 135 − 146. (in Chinese with English abstract)

    [26] 任开瑀,姚鑫,赵小铭,等. 基于时序InSAR、GPS、影像偏移测量3种监测数据的滑坡失稳破坏预测研究[J]. 岩石力学与工程学报,2020,39(增刊2):3421-3431. [REN Kaiyu,YAO Xin,ZHAO Xiaoming,et al. Study of landslide failure prediction based on TS-InSAR,GPS and image offset monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3421-3431. (in Chinese with English abstract)]

    REN Kaiyu, YAO Xin, ZHAO Xiaoming, et al. Study of landslide failure prediction based on TS-InSAR, GPS and image offset monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3421-3431. (in Chinese with English abstract)

    [27] 郭瑞,李素敏,陈娅男,等. 基于SBAS-InSAR的矿区采空区潜在滑坡综合识别方法[J]. 地球信息科学学报,2019,21(7):1109 − 1120. [GUO Rui,LI Sumin,CHEN Yanan,et al. A method based on SBAS-InSAR for comprehensive identification of potential goaf landslide[J]. Journal of Geo-Information Science,2019,21(7):1109 − 1120. (in Chinese with English abstract)]

    GUO Rui, LI Sumin, CHEN Yanan, et al. A method based on SBAS-InSAR for comprehensive identification of potential goaf landslide[J]. Journal of Geo-Information Science, 2019, 21(7): 1109 − 1120. (in Chinese with English abstract)

    [28] 杨成业,张涛,高贵,等. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2022,33(3):94 − 105. [YANG Chengye, ZHANG Tao, GAO Gui, et al. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):94 − 105.(in Chinese with English abstract)]

    YANG Chengye, ZHANG Tao, GAO Gui, et al. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 94 − 105.(in Chinese with English abstract)

    [29] 秦晓琼,杨梦诗,廖明生,等. 应用PSInSAR技术分析上海道路网沉降时空特性[J]. 武汉大学学报(信息科学版),2017,42(2):170 − 177. [QIN Xiaoqiong,YANG Mengshi,LIAO Mingsheng,et al. Exploring temporal-spatial characteristics of Shanghai Road networks settlement with multi-temporal PSInSAR technique[J]. Geomatics and Information Science of Wuhan University,2017,42(2):170 − 177. (in Chinese with English abstract)]

    QIN Xiaoqiong, YANG Mengshi, LIAO Mingsheng, et al. Exploring temporal-spatial characteristics of Shanghai Road networks settlement with multi-temporal PSInSAR technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 170 − 177. (in Chinese with English abstract)

    [30] 李强,张倬元. 顺向斜坡岩体弯曲及蠕变-弯曲破坏机制[J]. 成都地质学院学报,1990,17(4):97 − 103. [LI Qiang,ZHANG Zhuoyuan. Mechanism of buckling and creep-buckling failure of the bedded rock masses on the consequent slopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition),1990,17(4):97 − 103. (in Chinese with English abstract)]

    LI Qiang, ZHANG Zhuoyuan. Mechanism of buckling and creep-buckling failure of the bedded rock masses on the consequent slopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 1990, 17(4): 97 − 103. (in Chinese with English abstract)

    [31] 盛逸凡,李远耀,徐勇,等. 基于有效降雨强度和逻辑回归的降雨型滑坡预测模型[J]. 水文地质工程地质,2019,46(1):156 − 162. [SHENG Yifan,LI Yuanyao,XU Yong,et al. Prediction of rainfall-type landslides based on effective rainfall intensity and logistic regression[J]. Hydrogeology & Engineering Geology,2019,46(1):156 − 162. (in Chinese with English abstract)]

    SHENG Yifan, LI Yuanyao, XU Yong, et al. Prediction of rainfall-type landslides based on effective rainfall intensity and logistic regression[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 156 − 162. (in Chinese with English abstract)

    [32] 黄晓虎,雷德鑫,夏俊宝,等. 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学,2019,40(9):3585 − 3592. [HUANG Xiaohu,LEI Dexin,XIA Junbao,et al. Forecast analysis and application of stepwise deformation of landslide induced by rainfall[J]. Rock and Soil Mechanics,2019,40(9):3585 − 3592. (in Chinese with English abstract)]

    HUANG Xiaohu, LEI Dexin, XIA Junbao, et al. Forecast analysis and application of stepwise deformation of landslide induced by rainfall[J]. Rock and Soil Mechanics, 2019, 40(9): 3585 − 3592. (in Chinese with English abstract)

    [33] 江强强,焦玉勇,宋亮,等. 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学,2019,40(11):4361 − 4370. [JIANG Qiangqiang,JIAO Yuyong,SONG Liang,et al. Experimental study on reservoir landslide under rainfall and water-level fluctuation[J]. Rock and Soil Mechanics,2019,40(11):4361 − 4370. (in Chinese with English abstract)]

    JIANG Qiangqiang, JIAO Yuyong, SONG Liang, et al. Experimental study on reservoir landslide under rainfall and water-level fluctuation[J]. Rock and Soil Mechanics, 2019, 40(11): 4361 − 4370. (in Chinese with English abstract)

    [34] 杨甲森,孟新,陈托,等. 基于遥测数据相关性的航天器异常检测[J]. 仪器仪表学报,2018,39(8):24 − 33. [YANG Jiasen,MENG Xin,CHEN Tuo,et al. Anomaly detection of spacecraft based on the telemetry data correlation[J]. Chinese Journal of Scientific Instrument,2018,39(8):24 − 33. (in Chinese with English abstract)]

    YANG Jiasen, MENG Xin, CHEN Tuo, et al. Anomaly detection of spacecraft based on the telemetry data correlation[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 24 − 33. (in Chinese with English abstract)

    [35] 冯非凡,武雪玲,牛瑞卿,等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版),2019,44(5):784 − 790. [FENG Feifan,WU Xueling,NIU Ruiqing,et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019,44(5):784 − 790. (in Chinese with English abstract)]

    FENG Feifan, WU Xueling, NIU Ruiqing, et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784 − 790. (in Chinese with English abstract)

    [36] 张群,许强,吴礼舟,等. 南江滑坡群体积的BP神经网络模型与预测[J]. 水文地质工程地质,2015,42(1):134 − 139. [ZHANG Qun,XU Qiang,WU Lizhou,et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology,2015,42(1):134 − 139. (in Chinese with English abstract)]

    ZHANG Qun, XU Qiang, WU Lizhou, et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 134 − 139. (in Chinese with English abstract)

    [37] 武雪玲,沈少青,牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling,SHEN Shaoqing,NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)]

    WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665 − 671. (in Chinese with English abstract)

    [38] 黄启乐,陈伟,傅旭东. 斜坡单元支持下区域泥石流危险性AHP-RBF评价模型[J]. 浙江大学学报(工学版),2018,52(9):1667 − 1675. [HUANG Qile,CHEN Wei,FU Xudong. AHP-RBF assessment model of regional debris flow hazard supported by unit slope[J]. Journal of Zhejiang University (Engineering Science),2018,52(9):1667 − 1675. (in Chinese with English abstract)]

    HUANG Qile, CHEN Wei, FU Xudong. AHP-RBF assessment model of regional debris flow hazard supported by unit slope[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(9): 1667 − 1675. (in Chinese with English abstract)

    [39] 孔祥芬,何桢,车建国,等. 不同标准差估计方法下的过程能力指数的置信区间的比较研究[J]. 应用概率统计,2009,25(2):164 − 170. [KONG Xiangfen,HE Zhen,CHE Jianguo,et al. A comparativen study on confidence interval of Cp in terms of standard deviation estimated by different methods[J]. Chinese Journal of Applied Probability and Statistics,2009,25(2):164 − 170. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4268.2009.02.006

    KONG Xiangfen, HE Zhen, CHE Jianguo, et al. A comparativen study on confidence interval of Cp in terms of standard deviation estimated by different methods[J]. Chinese Journal of Applied Probability and Statistics, 2009, 25(2): 164 − 170. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4268.2009.02.006

图(13)  /  表(3)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  47
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-12-29
  • 录用日期:  2024-01-11
  • 网络出版日期:  2024-02-26
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回