Loading [MathJax]/jax/output/SVG/jax.js
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

太行山东南麓断裂带水文地球化学特征及水热成因模式

郑茹丹, 熊超凡, 平建华, 苏向东, 赵继昌, 刘嘉麒

郑茹丹,熊超凡,平建华,等. 太行山东南麓断裂带水文地球化学特征及水热成因模式[J]. 水文地质工程地质,2024,51(3): 43-56. DOI: 10.16030/j.cnki.issn.1000-3665.202309035
引用本文: 郑茹丹,熊超凡,平建华,等. 太行山东南麓断裂带水文地球化学特征及水热成因模式[J]. 水文地质工程地质,2024,51(3): 43-56. DOI: 10.16030/j.cnki.issn.1000-3665.202309035
ZHENG Rudan, XIONG Chaofan, PING Jianhua, et al. Hydrogeochemical characteristics and hydrothermal genesis model of the fracture zone in the southeastern foothills of Taihang Mountains[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 43-56. DOI: 10.16030/j.cnki.issn.1000-3665.202309035
Citation: ZHENG Rudan, XIONG Chaofan, PING Jianhua, et al. Hydrogeochemical characteristics and hydrothermal genesis model of the fracture zone in the southeastern foothills of Taihang Mountains[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 43-56. DOI: 10.16030/j.cnki.issn.1000-3665.202309035

太行山东南麓断裂带水文地球化学特征及水热成因模式

基金项目: 郑州大学高层次人才基金项目(135-32340122);郑州大学院士团队科研启动基金项目(134-32340364;134-32340370)
详细信息
    作者简介:

    郑茹丹(1999—),女,硕士研究生,主要从事地热成因机理相关研究。E-mail:zhengrd163@163.com

    通讯作者:

    平建华(1976—),男,博士,教授,主要从事水文地质、地热成因机理相关研究。E-mail:pingjianhua@zzu.edu.cn

  • 中图分类号: P641.3

Hydrogeochemical characteristics and hydrothermal genesis model of the fracture zone in the southeastern foothills of Taihang Mountains

  • 摘要:

    太行山东南麓断裂带发育,赋存丰富的中低温地热资源,然而,该地区深部地热水的水热成因模式依然不清楚。通过55组地热水和38组浅层地下水的水化学组分特征,研究离子组分来源及其运移规律,并借助同位素特征分析地热水补给来源,在此基础上分析深部热储的水岩平衡状态、热储温度和热循环深度。结果表明:研究区属对流—传导复合型地热系统,地热水整体处于氧化环境,离子组分以HCO3和Na+为主,主要受盐岩和碳酸盐岩等矿物的溶解及阳离子交替吸附作用控制;地热水的补给高程为1 010~1 153 m,表明地热水补给区位于太行山东南麓西部的太行山地区;地热水循环深度范围为1 125~4 468 m;混合比例法估算汤阴断陷深层热储温度达到110~160 °C,而汤阴断陷东部的内黄凸起地区为80~110 °C,二者热储温度差别源自汤阴断陷两侧深切地幔的汤东、汤西深大断裂导热导水条件良好,以及内黄凸起的基岩埋深较浅,上伏盖层薄,热能更容易散失。本研究揭示了太行山东南麓地热系统的水文地球化学特征和水热成因模式,为该区地热资源开发利用提供重要依据。

    Abstract:

    The fracture zone in the southeast foothills of the Taihang Mountains is well developed and endowed with abundant medium and low temperature geothermal resources. However, the hydrothermal genesis pattern of deep geothermal water in this area remains unclear. Based on the hydrochemical composition characteristics of 55 geothermal water and 38 shallow groundwater, this study analyzed the source and migration law of ion components, and the recharge source of geothermal water leveraging isotope characteristics. On this basis, the water-rock equilibrium state, temperature, and depth of thermal cycle of deep thermal reservoirs were revealed. The results show that the study area is a convective-conducting composite geothermal system, and the geothermal waters as a whole are in an oxidizing environment, with the ionic fractions dominated by HCO3 and Na+, which are mainly controlled by the dissolution of minerals, such as salt rock and carbonate, as well as by the cation exchange. Furthermore, the recharge elevation of the geothermal water ranges from 1 010 to 1 153 m, which indicates that the recharge area of the geothermal water is located in the western part of the Taihang Mountains. The depth of the circulation ranges from 1 125 to 4 468 m. The estimation of the mixing ratio method indicates that the temperature of the deep thermal storage of the Tangyin Rift reaches 110 to 160 °C, while that of the Neihuang Uplift is 80 to 110 °C. The difference in thermal reservoir temperature is caused by the good conditions of heat and water conductivity of Tangdong and Tangxi deep faults on both sides of the Tangyin fault, and the shallow buried depth of bedrock of the Neihuang Uplift with the thin overlying cap rock, which makes the heat energy more easily dissipated. The study reveals the hydrogeochemical characteristics and hydrothermal genesis model of the geothermal system at the southeastern foot of Taihang Mountain and provides a important basis for the exploitation and utilization of geothermal resources in this area.

  • 太行山山前断裂带呈隐伏状展布于太行山脉与华北平原之间,深部下切至莫霍面以下,其主体形成于古近纪,新近纪至第四纪仍在强烈活动[12],地热异常明显,地热能丰富。地热能是一种资源储量大、分布广泛、清洁环保的可再生能源,因此,开发利用地热能有助于调整能源结构、节能减排,助力实现双碳目标[3]。有关太行山山前断裂带的地热研究主要集中在东麓的京津冀一带,前人利用地球物理方法[47]、水文地球化学方法[811]、三维地质建模[12]等方法对该地区的地热资源赋存规律、热储水化学特征和成因模式进行了深入研究。但是,前人对太行山东南麓的研究尚存在不足。

    太行山东南麓地热区多受控于山前断裂带,深大断裂发育,断裂构造附近的裂隙带或破碎带发育,是良好的导热通道和储水构造[1314],局部地温梯度达到3.5~11 °C/100 m[15]。依据断裂展布可将太行山东南麓地热区进一步划分为4个地热分区,即太行山隆起、汤阴断陷、内黄凸起和济源凹陷。4个地热分区热储层位各异,资源禀赋特征也不尽相同[16]

    地热水化学组分及其同位素含量特征可以推演地热水运移轨迹[1719],有助于识别地热水补给来源[11, 2021]、水岩作用[2223]及地热水径流循环特征[21, 2425],是分析水热系统成因机制的有效手段。前人基于水文地球化学方法分别揭示了汤阴断陷[2629]和内黄凸起[3031]深部地热流体的水化学特征和水热成因模式。目前的研究表明汤阴断陷和济源凹陷为对流型地热系统[29, 32],而内黄凸起为传导型地热系统[3031]。但有关太行山隆起的地热资源类型和水热成因模式的研究未见报道。此外,学者们对地热水来源的认知存在差异,大部分[15, 28, 31]认为太行山东南麓只接受了来自太行山的大气降水,但有学者认为还有来自鲁西南隆起的大气降水[31]。这些研究表明太行山东南麓的地热成因模式复杂,很可能并不是单一的地热成因,而是多种模式协同作用。

    由于前人研究较少考虑地热水与浅层地下水之间的水力联系,同时研究大多基于太行山东南麓断裂带内单一的地质单元,缺乏对整个太行山东南麓断裂带水热成因模式的系统研究。因此,本文以太行山东南麓地热水和浅层地下水为研究对象,基于水文地球化学方法,揭示太行山东南麓断裂带的水热成因模式,为该地区地热资源的开发利用提供参考。

    太行山东南麓断裂带位于太行山隆起区和华北平原的交接部位,地势西北高东南低,地貌由中低山向丘陵及平原地带演变。断裂带形成于燕山期,主要由任村—西平罗断裂、汤西断裂和汤东断裂组成,总体呈北北东向展布,具有多次长期活动的特点[15]

    根据区域地质条件(图1)及物探资料可知,太行山隆起区基底为太古界,埋深在1.0~1.4 km之间,缺失元古界大部分地层,广泛分布寒武—中奥陶统灰岩[2]。汤阴断陷的基底为二叠—三叠系,埋深约为6.5~8.7 km[15],上覆古近系河湖相陆屑沉积岩和新近系陆屑沉积岩及基性橄榄玄武岩。内黄凸起以太古界变质岩为基底,缺失中生界,地表广泛覆盖第四系坡积—冲积物[33]。济源凹陷以古生界地台为基底,上覆砂泥岩建造和河流湖沼相沉积[34]

    图  1  研究区位置及区域地质简图
    Figure  1.  The location and geology of the study area

    以汤东、汤西和新乡—商丘断裂为界,结合取水层位,将研究区地热水样品分为8个区域:(1)太行山隆起南部,取水层位为奥陶—石炭—二叠系,命名为1区;(2)汤阴断陷南部,取水层位为古近—新近系,命名为2区;(3)内黄凸起南部,取水层位为奥陶—石炭系,命名为3区;(4)济源凹陷东部,取水层位为侏罗系,命名为4区;(5)济源凹陷西部,取水层位为新近系,命名为5区;(6)汤阴断陷中部,取水层位为寒武—奥陶系,命名为6区;(7)汤阴断陷北部,取水层位为古近系,命名为7区;(8)太行山隆起北部,取水层位为石炭—二叠系,命名为8区。浅层地下水样品以汤东和汤西断裂为界,分为Ⅰ区、Ⅱ区和Ⅲ区,浅层取水井均来自各城镇供水工程,井深在200~400 m之间。

    研究区采样点见图2,除取得30组地热水样品和38组浅层地下水样品外,还另外搜集了25组地热水的基本信息和水质数据。水化学成分测试由河南省岩石矿物测试中心完成,检测方法依据《地下水检测方法》(DZ/T 0064—2021),阴、阳离子平衡误差控制在3%以内。稳定同位素检测由中国地质科学院水文地质环境研究所完成,δD和δ18O利用水同位素分析仪(型号为Picarro-2140i)进行检测,测试采用波长扫描—光腔衰荡光谱法,标准高精度方式:每组样品测6针,取后3针平均值作为测试结果。δD和δ18O的测试标准偏差(STDEV)分别为±1‰和±0.1‰。

    图  2  区域地质构造及取样点分布
    Figure  2.  Geological structure in the study area and distribution of geothermal water samples and shallow groundwater samples

    测试结果见表1,依据水化学测试结果分别绘制地热水和浅层地下水的Piper图(图3)。

    表  1  地热流体水化学及同位素分析结果[15]
    Table  1.  Water chemistry and isotopic values of the hydrothermal fluids
    分区 编号 水化学类型 pH 离子质量浓度/(mg·L−1 同位素含量/‰
    K++Na+ Ca2+ Mg2+ Cl SO24 HCO3 H2SiO3 TDS δD δ18O
    1 DR-15 Cl•SO4—Na 8.06 920.31 70.76 21.77 1061.20 637.50 221.32 25.06 2843
    DR-16 Cl—Na 8.01 727.83 58.46 23.56 808.86 367.00 306.32 30.37 2164
    DR-21 HCO3•SO4—Na•Ca 8.29 84.98 64.20 30.20 32.58 171.00 282.46 25.25 547
    DR-23 Cl•SO4—Na 8.39 616.78 154.41 5.65 670.32 641.44 35.21 80.47 2106
    DR-43 Cl•SO4—Na 8.07 638.34 33.57 14.90 642.03 360.75 332.01 25.06 1875
    DR-47 Cl•HCO3—Na 7.70 627.50 26.55 9.45 699.11 234.39 337.01 24.74 1796
    DR-48 Cl•SO4—Na 7.67 909.78 43.47 13.20 961.12 506.72 351.60 29.80 2634
    2 DR-14 HCO3•SO4—Na 8.70 281.51 8.41 1.42 119.89 171.00 336.89 28.50 793
    DR-17 Cl•SO4—Na 7.88 1023.64 108.80 21.96 1191.80 665.00 172.44 28.39 3120
    DR-18 Cl•SO4—Na 7.78 1121.64 132.16 31.82 1274.90 948.45 120.51 26.16 3591
    DR-19 Cl•SO4—Na 7.78 1028.65 123.65 14.23 1178.32 745.32 121.85 28.15 3028
    DR-20 Cl•HCO3—Na 8.26 519.31 17.48 5.38 465.28 182.50 358.92 35.88 1307
    DR-22 Cl•SO4—Na 7.50 1021.00 120.00 22.23 1164.00 833.42 162.01 58.03 3289
    DR-26 HCO3•Cl—Na 8.15 401.37 10.02 6.08 240.71 205.57 474.13 1377
    DR-27 Cl•SO4—Na 7.60 970.00 122.24 13.97 1087.96 816.51 116.55 3184
    DR-32 Cl—Na 7.15 1120.27 66.12 15.04 1365.00 505.60 256.40 26.00 3222 −76.0 −10.00
    3 DR-28 HCO3—Na 7.88 434.29 10.00 6.53 204.80 146.30 602.60 1404
    DR-30 Cl—Na 7.11 1309.03 102.50 29.07 1628.00 612.10 317.50 26.00 3861 −75.0 −10.00
    DR-31 SO4•Cl—Na 7.28 858.79 92.56 18.04 606.00 980.40 244.20 25.40 2699
    4 DR-12 HCO3•Cl—Na 8.39 292.95 21.09 9.28 187.18 109.50 437.76 29.17 862
    DR-13 HCO3—Na 8.38 265.94 6.35 1.61 123.47 125.00 358.92 30.47 725
    DR-24 HCO3—Na 8.10 194.25 11.02 5.47 76.57 72.53 350.25 975
    DR-25 HCO3—Na 7.90 201.72 12.42 7.53 87.21 84.05 353.92 770
    DR-29 Cl—Na 7.60 915.50 109.38 6.79 1072.20 186.84 129.42 25.69 1293
    5 DR-42 HCO3•SO4—Na 8.24 208.91 15.87 9.75 47.22 167.14 369.29 24.10 652
    DR-44 Cl•SO4—Na 7.56 267.42 83.61 11.70 305.05 260.08 160.79 68.51 1061
    DR-45 Cl—Na 7.61 1160.30 109.50 32.30 1519.80 556.28 233.58 30.49 3518
    DR-46 Cl•SO4—Na 7.50 872.02 144.90 6.52 1123.20 591.30 58.64 59.30 2773
    DR-49 Cl•SO4—Na 7.95 937.00 119.00 4.63 1274.60 466.23 56.26 44.62 2864
    DR-50 Cl•SO4—Na 7.92 1069.70 105.10 3.58 1288.20 664.16 36.67 85.15 3216
    DR-51 Cl•SO4—Na 7.86 790.30 102.90 11.20 961.03 472.09 39.24 2360
    DR-52 Cl•SO4—Na 7.90 1126.04 91.58 16.10 1329.38 628.71 215.40 35.10 3440
    6 DR-54 HCO3—Na•Ca 6.32 888.57 411.42 109.47 39.35 627.75 2716 74.75 4857 −74.8 −10.30
    DR-55 HCO3—Na•Ca 6.89 793.20 486.20 147.40 586.40 598.50 2008 67.07 4699
    7 DR-01 Cl—Na 7.54 1150.80 86.56 3.17 1674.30 299.69 137.48 29.33 3306 −71.43 −9.67
    DR-02 Cl—Na 7.72 957.98 53.77 1.61 1301.90 259.74 131.19 31.36 2665 −71.97 −9.85
    DR-03 Cl—Na 7.93 578.81 20.18 1.61 681.67 207.14 198.07 28.44 1612 −73.38 −10.18
    DR-04 HCO3—Na 7.44 336.00 7.06 12.99 58.32 157.50 695.93 28.03 942 −77.77 −10.56
    DR-05 Cl—Na 8.36 1605.88 89.53 3.98 2150.40 623.04 38.75 17.76 4507
    DR-06 Cl—Na 7.42 1763.31 158.59 5.30 2814.60 297.65 76.21 30.16 5104
    DR-07 Cl—Na 7.70 1819.60 242.30 10.70 2638.90 792.01 68.34 33.80 5608
    DR-08 SO4•Cl—Na 7.90 978.09 47.70 4.74 835.56 959.64 111.67 32.50 2965
    DR-09 Cl—Na 7.90 943.22 51.30 8.51 1319.45 274.25 124.48 22.10 2741
    DR-10 Cl—Na 8.20 542.19 14.03 2.43 613.64 246.39 166.58 31.20 1612
    DR-11 Cl•SO4—Na 7.93 1098.70 96.60 2.90 1395.40 609.50 100.10 3257
    8 DR-33 SO4•HCO3—Ca•Na 7.78 45.93 59.40 7.34 42.19 144.95 86.09
    DR-34 HCO3•SO4—Ca 11.22 117.13 22.75 19.78 118.39 314.56 462
    DR-35 Cl•HCO3—Na 996.50 11.26 3.17 956.90 235.15 682.51 2556
    DR-36 HCO3•SO4—Na 447.83 5.61 3.28 44.92 266.47 706.25 1157
    DR-37 HCO3•Cl—Na 904.00 5.01 8.20 726.16 50.38 874.29 2178
    DR-38 HCO3•SO4—Na 335.00 58.10 47.33 55.59 494.85 636.32 1332
    DR-39 HCO3•SO4—Ca 11.78 120.22 21.79 19.64 123.63 317.85 465
    DR-40 HCO3•SO4—Ca•Na 7.50 49.56 80.44 27.19 47.61 134.10 234.26
    DR-41 HCO3—Na 8.02 136.57 46.33 19.50 17.58 24.50 540.55
    DR-53 HCO3—Ca•Na 6.30 246.80 379.00 64.20 79.00 439.00 1310 47.00 2650
    下载: 导出CSV 
    | 显示表格
    图  3  地热水和浅层地下水Piper图
    Figure  3.  Piper diagram of geothermal water and shallow groundwater

    1区、2区和5区水化学类型主要为Cl•SO4—Na型;3区水化学类型多样,为Cl—Na型,HCO3—Na型和SO4•Cl—Na型;4区水化学类型主要为HCO3—Na型水;6区水化学类型为HCO3—Na•Ca型;7区水化学类型主要为Cl—Na型;8区水化学类型多样,阴离子以HCO3SO24为主,阳离子以Na+和Ca2+为主,见图3(a)。1、2、5区取水层位虽然不同,但水化学类型接近,说明汤西、新乡—商丘断裂为张性断层,具有良好的导水性,从而连通了各个地质单元,使得地热水经历了相似的补给—径流过程。

    浅层地下水水化学类型主要为HCO3—Ca型,Ⅱ区还包括HCO3—Ca•Mg型水,Ⅲ区水化学类型除HCO3—Ca型之外,还包括HCO3—Ca•Na型、HCO3•SO4—Ca•Na型和HCO3•SO4•Cl—Na型,见图3(b)。从Ⅰ区到Ⅲ区,水样中阳离子有从Ca2+向Na+转换的趋势,阴离子有从HCO3向Cl转换的趋势,TDS浓度逐渐升高。

    研究区地热水TDS含量较高,平均值达到2 421 mg/L,远高于浅层地下水,同时呈现出西低东高,从太行山隆起经汤阴断陷向内黄凸起逐渐升高的特点,分析认为是由于地热水在运移过程中埋藏深度大、径流路径长、与围岩间的溶滤作用强烈,从而导致离子浓度偏高[22]。地热水δ18O与δD数值分别介于−10.56‰~−9.67‰和−77.77‰~−71.43‰之间,浅层地下水δ18O与δD数值分别介于−9.73‰~−9.09‰和−68.95‰~−63.48‰之间。

    (1)水化学特征

    研究区内水化学特征并不都符合深井离子浓度大于浅井这一常见现象,而是呈现出部分浅井的离子浓度和水化学类型与深层相似的特征(图4)。图中6区与8区的离子相对含量变化趋势与浅层地下水相似,说明汤西断裂加强了垂向含水层间的水力联系,使其处于相对开放的环境中。

    图  4  研究区水样Schoeller图
    Figure  4.  Schoeller diagram of water samples in the study area

    (2)组分相关性分析

    ①Na+与Cl的关系

    图5(a)可以看出,浅层地下水均位于Na+=Cl平衡线的原点附近,说明离子来源于盐岩的少量溶解[20]。地热水绝大部分位于平衡线以下,但与其相距不远,说明地热水除盐岩外,还存在少量硅酸盐岩溶解。同时,Ca2+与Na+浓度在各个地热水分区中的高低次序正好相反,呈现负相关关系(图4),说明其进行了阳离子交替吸附作用[15]。7区汤阴断陷北部集中出现Cl>2 000 mg/L的地热井,推测其来源于岩浆岩和火山喷发物质的风化矿物,如氯磷灰石Ca5(PO4)3Cl、方钠石Na8(AlSiO4)6Cl2等。

    图  5  (a)Na+与Cl、(b)Ca2+HCO3、(c)(Ca2++Mg2+)与(SO24+HCO3)的关系
    Figure  5.  Relationship between (a) Na+ and Cl, (b) Ca2+ and HCO3, (c) (Ca2++Mg2+) and (SO24+HCO3)

    ②Ca2+HCO3的关系

    图5(b)可知,浅层地下水绝大部分位于2Ca2+=HCO3平衡线以下,同时向Ca2+方向偏离,说明浅层地下水中Ca2+HCO3的来源除了碳酸盐岩矿物,还有硅酸盐岩[18]。研究区内各个分区的地热水均匀分布于平衡线两侧,没有出现Ca2+HCO3占绝对主导地位的现象,说明深部地层岩性较复杂,离子组分由碳酸盐岩和其他矿物共同主导。位于鹤壁地区(6区)的DR-54和DR-55自喷地热井,HCO3出现极高值,浓度分别为2 008和2 716 mg/L,这是由大量幔源岩浆玄武岩脱气和壳源灰岩热解形成的CO2组分[26]水解造成的。

    ③(Ca2++Mg2+)与(SO24+HCO3)的关系

    图5(c)可知,研究区浅层地下水点均位于平衡线之上,说明其主要受控于碳酸盐岩和硫酸盐岩的溶解。地热水均位于Ca2++Mg2+=HCO3+SO24平衡线上方,可知Ca2++Mg2+/HCO3+SO24比值小于1,除了阳离子交换使得Ca2+、Mg2+浓度降低外,推测是深部的富硫矿物在高温环境下释放SO24所致[35]。钻孔资料可以证实石炭—二叠系存在较厚煤层,富含黄铁矿(FeS2[36]

    地下水中不同化学组分之间的比例系数可以用于研究一些水文地球化学过程,通过分析地热水特征系数可以帮助判断地热水所处的地质环境[8]。各区地热水特征系数平均值见表2

    表  2  研究区地热水和浅层地下水特征系数
    Table  2.  The characteristic coefficient of geothermal water and shallow groundwater in the study area
    特征系数 地热水 浅层地下水
    1区 2区 3区 4区 5区 6区 7区 8区 Ⅰ区 Ⅱ区 Ⅲ区
    脱硫系数 92 53 67 54 66 628 42 301 264 130 96
    盐化系数 8.18 9.77 4.55 3.27 24.94 0.26 30.05 0.57 0.15 0.29 0.30
    下载: 导出CSV 
    | 显示表格

    (1)脱硫系数

    脱硫系数表示地下水脱硫酸作用的程度,可以反映所处的氧化还原环境。脱硫系数越小,说明储层的封闭性能越好,反之,可能受到氧化作用的影响[37]

    =100×γ(SO24)/γ(C1) (1)

    式中:γ(SO24)——水样中SO24的离子毫克当量浓度/ (meq·L−1);

    γ(C1)——水样中C1的离子毫克当量浓度/(meq· L−1)。

    表2可知,研究区脱硫系数均偏高,同时垂向上浅部数值明显大于深部,说明全区整体处于氧化环境,但浅部更加开放;平面上自西向东(1→2→3,5→4,8→7,Ⅰ区→Ⅱ区→Ⅲ区)脱硫系数逐渐变小,说明西部太行山隆起相对东部处于更加开放的氧化环境。其中6区脱硫系数出现极高值628,说明其取水层位所在的寒武—奥陶系灰岩断裂发育,氧化作用强烈。

    (2)盐化系数

    盐化系数可以反映地下水的浓缩程度,系数越大说明浓缩程度越高[38]

    =γ(Cl)/[γ(HCO3)+γ(CO23)] (2)

    式中:γ(HCO3)——水样中HCO3的离子毫克当量浓度/ (meq·L−1);

    γ(CO23)——水样中CO23的离子毫克当量浓度/ (meq·L−1)。

    6区与8区的盐化系数平均值略高于浅层地下水而远小于其余分区的深层地热水,表明这两个区补给条件更好,水体更新速率更快,而其余分区的地热水径流路径长,水循环速度缓慢,盐化程度高,浓缩程度大。

    氢氧稳定同位素是一种良好的示踪剂,其分布特征可以判断地下水在循环过程中的补给来源和补给高程。本文选取了Craig[39]建立的全球大气降水线方程GMWL(δD=8δ18O+10)与Huang等[40]基于安阳市5个水文站(安阳、柘城、横水、五陵及小南海)的降水同位素数据建立的安阳当地大气降水线方程LMWL(δD=8.16δ18O+12.06)作为基准线。

    图6可以看出,无论是浅层地下水还是深层地热水,氢氧同位素的比值均位于GMWL和LMWL附近,说明补给来源为大气降水。同时数据具有明显的“氧漂移”趋势,且地热水的氧漂移程度明显大于浅层地下水,因为高温环境加剧了δ18O从含量较高的岩石中迁移到地下水中的过程[21, 41]

    图  6  地下水中δ18O与δD关系
    Figure  6.  The relationship between δ18O and δD in groundwater

    大气降水的δD、δ18O值会随地形高程的增加而降低,这种现象称之为高程效应,其主要原因是随着地形海拔的增高,水汽团逐渐抬升和冷却,大气降水中携带的重同位素会逐渐贫化[24]。因此可以借助大气降水的这种特性计算地热水的补给高程,从而推测出补给区域的具体位置[4143]。为了避免“氧漂移”的影响,常用δD估算[44]

    H=δGδPgrad(D)+H0 (3)

    式中:H——补给高程/m;

    δG——地热水中的δD值/‰;

    δP——大气降水中的δD值/‰,取横水水文站2017年全年大气降水样品δD平均值−43.5‰[45]

    grad(D)——大气降水中δD的高程梯度/(‰·hm−1), 取全国平均值−3‰/hm[17]

    H0——采样点高程/m。

    结果表明,研究区内地热水补给高程为1 010~1 153 m,与太行山海拔相近,结合区域水文地质条件,推断地热水的补给来源为来自西部太行山地区的大气降水。

    Na-K-Mg三角图通过将地热水分为非成熟水、部分平衡水和完全平衡水3种类型确定地热水与岩石矿物反应的平衡程度[46]

    图7可知,研究区绝大部分地热水为部分平衡水或非成熟水,少部分处于完全平衡线上,说明研究区水岩作用强烈,但仍然未达到完全平衡状态。地热水投点均靠近Mg2+端元,进一步说明地热流体上涌过程中可能与浅层冷水发生了混合[30]。处于完全平衡线上的地热井DR-05、DR-06、DR-11均属于7区,位于汤阴断陷北部临近内黄凸起的位置,表明此区古近系储层环境更为封闭,水岩作用基本处于平衡状态。

    图  7  地热水的Na-K-Mg三角图
    Figure  7.  Na-K-Mg ternary diagram of geothermal water

    (1)地球化学地温计

    理论上,受温度控制的化学反应组分都可以作为地热地温计。目前常用的地球化学地温计主要为阳离子地温计和二氧化硅地温计[47]

    ① 二氧化硅地温计

    SiO2在水中的溶解度是温度的函数,且对温度变化反应灵敏。一般高于180 °C的系统中,石英是控制相;而温度较低时,玉髓是控制相。由于采样点中除DR-54和DR-55外水温均低于100 °C,仅存在少量蒸汽散失,不符合“绝热沸腾至100 °C时蒸汽足量散失”的条件,故本次使用无蒸汽散失的石英温标和玉髓温标公式。

    无蒸汽散失的石英温标:

    TSiO2=13095.19lgρ(SiO2)273.15 (4)

    无蒸汽散失的玉髓温标:

    TSiO2=10324.69lgρ(SiO2)273.15 (5)

    式中:TSiO2——使用二氧化硅地温计计算的地热流体温 度/°C;

    ρ(SiO2)——水样中的SiO2的质量浓度/(mg·kg−1)。

    ② 阳离子地温计

    Na-K地温计基于地热水与碱性长石之间的阳离子交换平衡,其优点是受稀释和蒸汽分离的影响较小。

    对于富Mg2+的中低温地热水,需用K-Mg地温计。该地温计基于钾长石转变为白云母和斜绿泥石的离子交换反应。在水岩反应体系中,K-Mg溶质达到平衡最为快速,适用于中低温地热水[4749]

    Na-K地温计:

    TNa-K=13901.75+lgρ(Na+)ρ(K+)273.15 (6)

    K-Mg地温计:

    TK-Mg=441014.0lgρ(K+)2ρ(Mg2+)273.15 (7)

    式中: TNa-K——使用Na-K地温计计算的地热流体温度/°C;

    TK-Mg——使用K-Mg地温计计算的地热流体温度/°C;

    ρ(Na+)——水样中Na+的离子浓度/(mg·L−1);

    ρ(K+)——水样中K+的离子浓度/(mg·L−1);

    ρ(Mg2+)——水样中Mg2+的离子浓度/(mg·L−1)。

    计算结果见表3。结果表明,二氧化硅地温计的计算结果明显高于地热井实际出水水温,整体误差较大。但石英温标法对6区DR-54(井深3 276 m)和DR-55(3 318 m)拟合的较好,由于这两口地热井均为自喷井,应当存在蒸汽散失,故推测其拟合结果偏低。阳离子温标法中,Na-K地温计的计算结果普遍高于K-Mg地温计,而K-Mg地温计的拟合效果相对较好,因为K-Mg溶质在水岩反应体系中达到平衡最为迅速。因此,研究区内估算热储温度普遍适用于K-Mg地温计。对于火成岩地区(如鹤壁)的深井,则适用于石英地温计[15, 49]

    表  3  地热温标法估算的部分热储温度
    Table  3.  Partial thermal reservoir temperature estimated by geothermometer
    井点 出水
    温度/°C
    估算热储温度/°C
    石英 玉髓 Na-K K-Mg
    DR-01 54 78.48 133.03 69.16 65.96
    DR-05 52 59.04 107.31 70.39 71.78
    DR-09 50 67.24 118.11 79.44 56.67
    DR-10 43 81.03 136.44 72.54 54.39
    DR-22 70 108.89 174.17 132.36 74.03
    DR-30 52 73.60 126.54 104.06 63.25
    DR-42 40 70.60 122.56 95.85 33.29
    DR-48 47 79.13 133.90 75.33 49.10
    DR-49 63 96.57 157.38 122.53 86.47
    DR-52 54 86.00 143.11 90.00 59.28
    DR-53 46 98.95 160.60 281.44 74.76
    DR-54 118 121.56 191.63 707.12 147.90
    DR-55 103 116.03 183.99 683.23 138.04
    下载: 导出CSV 
    | 显示表格

    (2)混合比例法

    图7可知,研究区内大部分地热水样仍处于未完全平衡状态,推测是存在冷水掺混。硅焓模型可以反映冷水混入比例以及热储真实温度[23, 30 , 50]

    HX1+H(1X1)=H (8)
    ρ(SiO2)X2+ρ(SiO2)(1X2)=ρ(SiO2) (9)

    式中:HHH——地下冷水、深层地热水和地热 水样品中的焓值/(cal·g−1);

    ρ(SiO2)——SiO2的质量浓度/(mg·L−1);

    X1——通过焓值计算得到的冷水混入比例;

    X2——通过SiO2含量计算得到的冷水混入比例。

    因浅层地下冷水取样点集中在研究区中北部(鹤壁地区),所以在其附近选取代表性地热井,从西向东依次为DR-53、DR-10、DR-08、DR-31、DR-07、DR-55。为简便求解,采用图解法,分别绘制温度—X1和温度—X2的关系曲线(图8),通过两曲线交点即可得知冷水混入比例和深部热储温度。

    图  8  研究区部分地热井的硅焓图
    Figure  8.  Silicon-enthalpy diagram of some geothermal wells

    研究区内地热水样品中的冷水混入比例在0.023~0.800之间,相应的热储温度范围为86.8~154 °C。据此推断汤阴断陷的热储温度在110~160 °C之间,内黄凸起边界的热储温度范围为80~110 °C。二者热储温度差别在于:汤阴断陷两侧深切地幔的汤东、汤西深大断裂导热导水条件良好;内黄凸起的基岩埋深较浅,上伏盖层薄,热能比构造凹陷区更容易散失。同时反映出自太行山隆起区(DR-53)经汤阴断陷边缘(DR-07、DR-08、DR-10、DR-31)至内黄凸起边界(DR-55),冷水混入比例逐渐减小,其环境逐渐封闭。

    在各区选择2口井计算地热水循环深度:

    Hc=ThT0G+h (10)
    G=T1T0Dh×100 (11)

    式中:Hc——地热流体循环深度/m;

    G——地温梯度/(°C·hm−1);

    Th——地热流体的温度/°C,选择K-Mg温标的计算结果;

    T0——恒温带温度/°C,取15.7 °C;

    T1——井口出水温度/°C;

    D——孔深/m;

    h——恒温带深度/m,取平均深度20 m。

    计算结果见表4,研究区循环深度为1 125~4 468 m,各井的循环深度均大于井深,可以体现出深部热水向浅层的垂向运移。紧邻汤西断裂的DR-53、DR-54、DR-55循环深度均大于3 000 m,热储温度在100 °C左右,表明区域性断裂切割较深,是良好的导热导水构造。其余区域地热井循环深度相差不大,表明补给来源与径流条件相似[15, 19]

    表  4  研究区地热水循环深度
    Table  4.  The circulation depth of geothermal water in the study area
    分区 井点 井深
    /m
    地热流体
    温度/°C
    出水
    温度/°C
    地温梯度
    /(°C·hm−1
    循环
    深度/m
    1 DR-43 1127 43.1 40 2.20 1268
    DR-48 1270 49.1 47 2.50 1354
    2 DR-22 1300 74.0 70 4.24 1394
    DR-32 1430 64.1 55 2.79 1756
    3 DR-28 1200 52.3 49 2.82 1317
    DR-30 1400 63.2 52 2.63 1826
    4 DR-12 1000 43.1 40 2.48 1125
    DR-13 1400 55.1 52 2.63 1518
    5 DR-45 1401 55.5 40 1.76 2282
    DR-52 1378 59.2 54 2.82 1562
    6 DR-54 3276 121.5 118 3.14 3387
    DR-55 3318 116.0 103 2.65 3809
    7 DR-01 1600 65.9 54 2.42 2091
    DR-05 1504 71.7 52 2.45 2309
    8 DR-37 1530 76.25 57 2.77 2234
    DR-53 2302 74.76 46 1.33 4468
    下载: 导出CSV 
    | 显示表格

    研究区属对流—传导复合型中低温地热系统,以对流为主要热传递方式(图9)。受太平洋板块向西俯冲至华北克拉通以下的影响,区域莫霍面抬升,地幔上涌形成深部热源[51]。热储接受来自西部太行山区的大气降水补给,水流沿周边深大断裂流入热储层并向东运移。在浮力作用下,地热水沿上覆岩层中可能的裂缝上升,在渗透岩层(储层)中循环,在中间温度较高的地方(浮山)上升,在储层两侧(汤西断裂和汤东断裂)下沉,形成了对流系统。在径流过程中,地幔传导热与构造余热构建的高温环境,导致水岩作用强烈,溶解了多种围岩中的矿物组分,如盐岩、碳酸盐、硅酸盐和硫酸盐等,水化学特征自西向东,自浅向深整体演变趋势为HCO3和Ca2+减少,Na+和Cl增多。汤东、汤西断裂沟通了上下地层,深浅地下水相互掺混,导致水化学类型进一步复杂化[15]

    图  9  研究区地热水形成概念模型剖面(剖面位置见图1)
    Figure  9.  The conceptual model profile of geothermal water formation in the study area (The position of profile is shown in Fig. 1)

    (1)研究区属对流—传导复合型中低温地热系统,在隆起的断裂发育处水化学类型多样,离子以HCO3和Na+为主,断陷内水化学类型主要为Cl•SO4—Na和Cl—Na型。研究区地热水整体处于氧化环境,浓缩程度大,溶解性总固体浓度较高。西部太行山隆起由于断裂发育,深层地热水与浅层地下水均处于更加开放与氧化的环境。

    (2)汤西、汤东和新乡—商丘断裂在横向和纵向上沟通了不同地质单元和含水层位,使得不同区位和层位的地下水具有相似的水化学特征。

    (3)地热水接受来自西部的太行山地区的大气降水补给,补给高程为1 010 ~1 153 m,循环深度为1 125~4 498 m。

    (4)K-Mg温标法显示热储温度为43~86 °C,混合比例法揭示深部热储温度为86.8~154 °C,汤阴断陷的热储温度高于内黄凸起,这归因于前者的导热导水条件和盖层保温性能优于后者。

  • 图  1   研究区位置及区域地质简图

    Figure  1.   The location and geology of the study area

    图  2   区域地质构造及取样点分布

    Figure  2.   Geological structure in the study area and distribution of geothermal water samples and shallow groundwater samples

    图  3   地热水和浅层地下水Piper图

    Figure  3.   Piper diagram of geothermal water and shallow groundwater

    图  4   研究区水样Schoeller图

    Figure  4.   Schoeller diagram of water samples in the study area

    图  5   (a)Na+与Cl、(b)Ca2+HCO3、(c)(Ca2++Mg2+)与(SO24+HCO3)的关系

    Figure  5.   Relationship between (a) Na+ and Cl, (b) Ca2+ and HCO3, (c) (Ca2++Mg2+) and (SO24+HCO3)

    图  6   地下水中δ18O与δD关系

    Figure  6.   The relationship between δ18O and δD in groundwater

    图  7   地热水的Na-K-Mg三角图

    Figure  7.   Na-K-Mg ternary diagram of geothermal water

    图  8   研究区部分地热井的硅焓图

    Figure  8.   Silicon-enthalpy diagram of some geothermal wells

    图  9   研究区地热水形成概念模型剖面(剖面位置见图1)

    Figure  9.   The conceptual model profile of geothermal water formation in the study area (The position of profile is shown in Fig. 1)

    表  1   地热流体水化学及同位素分析结果[15]

    Table  1   Water chemistry and isotopic values of the hydrothermal fluids

    分区 编号 水化学类型 pH 离子质量浓度/(mg·L−1 同位素含量/‰
    K++Na+ Ca2+ Mg2+ Cl SO24 HCO3 H2SiO3 TDS δD δ18O
    1 DR-15 Cl•SO4—Na 8.06 920.31 70.76 21.77 1061.20 637.50 221.32 25.06 2843
    DR-16 Cl—Na 8.01 727.83 58.46 23.56 808.86 367.00 306.32 30.37 2164
    DR-21 HCO3•SO4—Na•Ca 8.29 84.98 64.20 30.20 32.58 171.00 282.46 25.25 547
    DR-23 Cl•SO4—Na 8.39 616.78 154.41 5.65 670.32 641.44 35.21 80.47 2106
    DR-43 Cl•SO4—Na 8.07 638.34 33.57 14.90 642.03 360.75 332.01 25.06 1875
    DR-47 Cl•HCO3—Na 7.70 627.50 26.55 9.45 699.11 234.39 337.01 24.74 1796
    DR-48 Cl•SO4—Na 7.67 909.78 43.47 13.20 961.12 506.72 351.60 29.80 2634
    2 DR-14 HCO3•SO4—Na 8.70 281.51 8.41 1.42 119.89 171.00 336.89 28.50 793
    DR-17 Cl•SO4—Na 7.88 1023.64 108.80 21.96 1191.80 665.00 172.44 28.39 3120
    DR-18 Cl•SO4—Na 7.78 1121.64 132.16 31.82 1274.90 948.45 120.51 26.16 3591
    DR-19 Cl•SO4—Na 7.78 1028.65 123.65 14.23 1178.32 745.32 121.85 28.15 3028
    DR-20 Cl•HCO3—Na 8.26 519.31 17.48 5.38 465.28 182.50 358.92 35.88 1307
    DR-22 Cl•SO4—Na 7.50 1021.00 120.00 22.23 1164.00 833.42 162.01 58.03 3289
    DR-26 HCO3•Cl—Na 8.15 401.37 10.02 6.08 240.71 205.57 474.13 1377
    DR-27 Cl•SO4—Na 7.60 970.00 122.24 13.97 1087.96 816.51 116.55 3184
    DR-32 Cl—Na 7.15 1120.27 66.12 15.04 1365.00 505.60 256.40 26.00 3222 −76.0 −10.00
    3 DR-28 HCO3—Na 7.88 434.29 10.00 6.53 204.80 146.30 602.60 1404
    DR-30 Cl—Na 7.11 1309.03 102.50 29.07 1628.00 612.10 317.50 26.00 3861 −75.0 −10.00
    DR-31 SO4•Cl—Na 7.28 858.79 92.56 18.04 606.00 980.40 244.20 25.40 2699
    4 DR-12 HCO3•Cl—Na 8.39 292.95 21.09 9.28 187.18 109.50 437.76 29.17 862
    DR-13 HCO3—Na 8.38 265.94 6.35 1.61 123.47 125.00 358.92 30.47 725
    DR-24 HCO3—Na 8.10 194.25 11.02 5.47 76.57 72.53 350.25 975
    DR-25 HCO3—Na 7.90 201.72 12.42 7.53 87.21 84.05 353.92 770
    DR-29 Cl—Na 7.60 915.50 109.38 6.79 1072.20 186.84 129.42 25.69 1293
    5 DR-42 HCO3•SO4—Na 8.24 208.91 15.87 9.75 47.22 167.14 369.29 24.10 652
    DR-44 Cl•SO4—Na 7.56 267.42 83.61 11.70 305.05 260.08 160.79 68.51 1061
    DR-45 Cl—Na 7.61 1160.30 109.50 32.30 1519.80 556.28 233.58 30.49 3518
    DR-46 Cl•SO4—Na 7.50 872.02 144.90 6.52 1123.20 591.30 58.64 59.30 2773
    DR-49 Cl•SO4—Na 7.95 937.00 119.00 4.63 1274.60 466.23 56.26 44.62 2864
    DR-50 Cl•SO4—Na 7.92 1069.70 105.10 3.58 1288.20 664.16 36.67 85.15 3216
    DR-51 Cl•SO4—Na 7.86 790.30 102.90 11.20 961.03 472.09 39.24 2360
    DR-52 Cl•SO4—Na 7.90 1126.04 91.58 16.10 1329.38 628.71 215.40 35.10 3440
    6 DR-54 HCO3—Na•Ca 6.32 888.57 411.42 109.47 39.35 627.75 2716 74.75 4857 −74.8 −10.30
    DR-55 HCO3—Na•Ca 6.89 793.20 486.20 147.40 586.40 598.50 2008 67.07 4699
    7 DR-01 Cl—Na 7.54 1150.80 86.56 3.17 1674.30 299.69 137.48 29.33 3306 −71.43 −9.67
    DR-02 Cl—Na 7.72 957.98 53.77 1.61 1301.90 259.74 131.19 31.36 2665 −71.97 −9.85
    DR-03 Cl—Na 7.93 578.81 20.18 1.61 681.67 207.14 198.07 28.44 1612 −73.38 −10.18
    DR-04 HCO3—Na 7.44 336.00 7.06 12.99 58.32 157.50 695.93 28.03 942 −77.77 −10.56
    DR-05 Cl—Na 8.36 1605.88 89.53 3.98 2150.40 623.04 38.75 17.76 4507
    DR-06 Cl—Na 7.42 1763.31 158.59 5.30 2814.60 297.65 76.21 30.16 5104
    DR-07 Cl—Na 7.70 1819.60 242.30 10.70 2638.90 792.01 68.34 33.80 5608
    DR-08 SO4•Cl—Na 7.90 978.09 47.70 4.74 835.56 959.64 111.67 32.50 2965
    DR-09 Cl—Na 7.90 943.22 51.30 8.51 1319.45 274.25 124.48 22.10 2741
    DR-10 Cl—Na 8.20 542.19 14.03 2.43 613.64 246.39 166.58 31.20 1612
    DR-11 Cl•SO4—Na 7.93 1098.70 96.60 2.90 1395.40 609.50 100.10 3257
    8 DR-33 SO4•HCO3—Ca•Na 7.78 45.93 59.40 7.34 42.19 144.95 86.09
    DR-34 HCO3•SO4—Ca 11.22 117.13 22.75 19.78 118.39 314.56 462
    DR-35 Cl•HCO3—Na 996.50 11.26 3.17 956.90 235.15 682.51 2556
    DR-36 HCO3•SO4—Na 447.83 5.61 3.28 44.92 266.47 706.25 1157
    DR-37 HCO3•Cl—Na 904.00 5.01 8.20 726.16 50.38 874.29 2178
    DR-38 HCO3•SO4—Na 335.00 58.10 47.33 55.59 494.85 636.32 1332
    DR-39 HCO3•SO4—Ca 11.78 120.22 21.79 19.64 123.63 317.85 465
    DR-40 HCO3•SO4—Ca•Na 7.50 49.56 80.44 27.19 47.61 134.10 234.26
    DR-41 HCO3—Na 8.02 136.57 46.33 19.50 17.58 24.50 540.55
    DR-53 HCO3—Ca•Na 6.30 246.80 379.00 64.20 79.00 439.00 1310 47.00 2650
    下载: 导出CSV

    表  2   研究区地热水和浅层地下水特征系数

    Table  2   The characteristic coefficient of geothermal water and shallow groundwater in the study area

    特征系数 地热水 浅层地下水
    1区 2区 3区 4区 5区 6区 7区 8区 Ⅰ区 Ⅱ区 Ⅲ区
    脱硫系数 92 53 67 54 66 628 42 301 264 130 96
    盐化系数 8.18 9.77 4.55 3.27 24.94 0.26 30.05 0.57 0.15 0.29 0.30
    下载: 导出CSV

    表  3   地热温标法估算的部分热储温度

    Table  3   Partial thermal reservoir temperature estimated by geothermometer

    井点 出水
    温度/°C
    估算热储温度/°C
    石英 玉髓 Na-K K-Mg
    DR-01 54 78.48 133.03 69.16 65.96
    DR-05 52 59.04 107.31 70.39 71.78
    DR-09 50 67.24 118.11 79.44 56.67
    DR-10 43 81.03 136.44 72.54 54.39
    DR-22 70 108.89 174.17 132.36 74.03
    DR-30 52 73.60 126.54 104.06 63.25
    DR-42 40 70.60 122.56 95.85 33.29
    DR-48 47 79.13 133.90 75.33 49.10
    DR-49 63 96.57 157.38 122.53 86.47
    DR-52 54 86.00 143.11 90.00 59.28
    DR-53 46 98.95 160.60 281.44 74.76
    DR-54 118 121.56 191.63 707.12 147.90
    DR-55 103 116.03 183.99 683.23 138.04
    下载: 导出CSV

    表  4   研究区地热水循环深度

    Table  4   The circulation depth of geothermal water in the study area

    分区 井点 井深
    /m
    地热流体
    温度/°C
    出水
    温度/°C
    地温梯度
    /(°C·hm−1
    循环
    深度/m
    1 DR-43 1127 43.1 40 2.20 1268
    DR-48 1270 49.1 47 2.50 1354
    2 DR-22 1300 74.0 70 4.24 1394
    DR-32 1430 64.1 55 2.79 1756
    3 DR-28 1200 52.3 49 2.82 1317
    DR-30 1400 63.2 52 2.63 1826
    4 DR-12 1000 43.1 40 2.48 1125
    DR-13 1400 55.1 52 2.63 1518
    5 DR-45 1401 55.5 40 1.76 2282
    DR-52 1378 59.2 54 2.82 1562
    6 DR-54 3276 121.5 118 3.14 3387
    DR-55 3318 116.0 103 2.65 3809
    7 DR-01 1600 65.9 54 2.42 2091
    DR-05 1504 71.7 52 2.45 2309
    8 DR-37 1530 76.25 57 2.77 2234
    DR-53 2302 74.76 46 1.33 4468
    下载: 导出CSV
  • [1] 江娃利,聂宗笙. 太行山山前断裂带活动特征及地震危险性讨论[J]. 华北地震科学,1984,2(3):21 − 27. [JIANG Wali,NIE Zongsheng. Discussion on activity characteristics and seismic risk of Taihang Mountain piedmont fault zone[J]. North China Earthquake Sciences,1984,2(3):21 − 27. (in Chinese)]

    JIANG Wali, NIE Zongsheng. Discussion on activity characteristics and seismic risk of Taihang Mountain piedmont fault zone[J]. North China Earthquake Sciences, 1984, 2(3): 21 − 27. (in Chinese)

    [2] 徐杰,高战武,宋长青,等. 太行山山前断裂带的构造特征[J]. 地震地质,2000,22(2):111 − 122. [XU Jie,GAO Zhanwu,SONG Changqing,et al. The structural characters of the piedmont fault zone of Taihang Mountain[J]. Seismology and Geology,2000,22(2):111 − 122. (in Chinese with English abstract)]

    XU Jie, GAO Zhanwu, SONG Changqing, et al. The structural characters of the piedmont fault zone of Taihang Mountain[J]. Seismology and Geology, 2000, 22(2): 111 − 122. (in Chinese with English abstract)

    [3] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):448 − 459. [WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):448 − 459. (in Chinese with English abstract)]

    WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 448 − 459. (in Chinese with English abstract)

    [4] 戴骜鹏,刘明军,贺为民,等. 太行山东麓汤西断裂南段活动特征分析[J]. 大地测量与地球动力学,2020,40(6):571 − 576. [DAI Aopeng,LIU Mingjun,HE Weimin,et al. Analysis on the activity characteristics of the southern segment of tangxi fault at the eastern foot of Taihang Mountain[J]. Journal of Geodesy and Geodynamics,2020,40(6):571 − 576. (in Chinese with English abstract)]

    DAI Aopeng, LIU Mingjun, HE Weimin, et al. Analysis on the activity characteristics of the southern segment of tangxi fault at the eastern foot of Taihang Mountain[J]. Journal of Geodesy and Geodynamics, 2020, 40(6): 571 − 576. (in Chinese with English abstract)

    [5] 张伟,籍增贤,谢明宏. 太行山前徐水断裂深部电性特征及地热赋存条件分析[J]. 矿产勘查,2021,12(5):1192 − 1198. [ZHANG Wei,JI Zengxian,XIE Minghong. Electrical characteristics and geothermal occurrence conditions of deep part of Xushui fault in front of Taihang Mountain[J]. Mineral Exploration,2021,12(5):1192 − 1198. (in Chinese with English abstract)]

    ZHANG Wei, JI Zengxian, XIE Minghong. Electrical characteristics and geothermal occurrence conditions of deep part of Xushui fault in front of Taihang Mountain[J]. Mineral Exploration, 2021, 12(5): 1192 − 1198. (in Chinese with English abstract)

    [6] 刘保金,何宏林,石金虎,等. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,2012,55(10):3266 − 3276. [LIU Baojin,HE Honglin,SHI Jinhu,et al. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang Mountain[J]. Chinese Journal of Geophysics,2012,55(10):3266 − 3276. (in Chinese with English abstract)]

    LIU Baojin, HE Honglin, SHI Jinhu, et al. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang Mountain[J]. Chinese Journal of Geophysics, 2012, 55(10): 3266 − 3276. (in Chinese with English abstract)

    [7] 王凯. 基于综合地球物理探测的雄安新区地热地质结构及深部热源机制研究[D]. 长春:吉林大学,2022. [WANG Kai. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong’an new area based on comprehensive geophysical exploration[D]. Changchun:Jilin University,2022. (in Chinese with English abstract)]

    WANG Kai. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong’an new area based on comprehensive geophysical exploration[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract)

    [8] 朱喜,王贵玲,马峰,等. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学,2021,46(7):2594 − 2608. [ZHU Xi,WANG Guiling,MA Feng,et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong’an new area and its indicating significance[J]. Earth Science,2021,46(7):2594 − 2608. (in Chinese with English abstract)]

    ZHU Xi, WANG Guiling, MA Feng, et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong’an new area and its indicating significance[J]. Earth Science, 2021, 46(7): 2594 − 2608. (in Chinese with English abstract)

    [9] 汪洋,张旭虎,蒲丛林,等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报,2022,41(9):1698 − 1706. [WANG Yang,ZHANG Xuhu,PU Conglin,et al. The hydrochemical characteristics of geothermal water and its formation in the south Langfang, Hebei Province[J]. Geological Bulletin of China,2022,41(9):1698 − 1706. (in Chinese with English abstract)]

    WANG Yang, ZHANG Xuhu, PU Conglin, et al. The hydrochemical characteristics of geothermal water and its formation in the south Langfang, Hebei Province[J]. Geological Bulletin of China, 2022, 41(9): 1698 − 1706. (in Chinese with English abstract)

    [10] 尹政, 柳永刚, 张旭儒, 等. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质,2023,50(1):168 − 178. [YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology,2023,50(1):168 − 178. (in Chinese with English abstract)]

    YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168 − 178. (in Chinese with English abstract)

    [11] 邓俊祖,蔺文静,邢林啸,等. 冀中坳陷北部碳酸盐岩热储水化学特征及成因分析[J]. 地下水,2022,44(3):1 − 4. [DENG Junzu,LIN Wenjing,XING Linxiao,et al. Chemical characteristics and genetic analysis of geothermal water in carbonate reservoir in the northern Jizhong Depression[J]. Ground Water,2022,44(3):1 − 4. (in Chinese with English abstract)]

    DENG Junzu, LIN Wenjing, XING Linxiao, et al. Chemical characteristics and genetic analysis of geothermal water in carbonate reservoir in the northern Jizhong Depression[J]. Ground Water, 2022, 44(3): 1 − 4. (in Chinese with English abstract)

    [12] 王凯,张杰,白大为,等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质,2021,48(5):1453 − 1468. [WANG Kai,ZHANG Jie,BAI Dawei,et al. Geothermal-geological model of Xiong’an new area:Evidence from geophysics[J]. Geology in China,2021,48(5):1453 − 1468. (in Chinese with English abstract)]

    WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiong’an new area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453 − 1468. (in Chinese with English abstract)

    [13] 耿莉萍. 中国地热资源的地理分布与勘探[J]. 地质与勘探,1998,34(1):50 − 54. [GENG Liping. Geographic distribution and application of geothermal energy in China[J]. Geology and Prospecting,1998,34(1):50 − 54. (in Chinese with English abstract)]

    GENG Liping. Geographic distribution and application of geothermal energy in China[J]. Geology and Prospecting, 1998, 34(1): 50 − 54. (in Chinese with English abstract)

    [14] 徐世光,郭远生. 地热学基础[M]. 北京:科学出版社,2009. [XU Shiguang,GUO Yuansheng. Geothermal foundation[M]. Beijing:Science Press,2009. (in Chinese with English abstract)]

    XU Shiguang, GUO Yuansheng. Geothermal foundation[M]. Beijing: Science Press, 2009. (in Chinese with English abstract)

    [15] 熊超凡. 河南省太行山东麓断裂带地热成因模式研究[D]. 郑州:郑州大学,2022. [XIONG Chaofan. Geothermal genetic model of the eastern Taihang Mountain fault zone in Henan Province[D]. Zhengzhou:Zhengzhou University,2022. (in Chinese with English abstract)]

    XIONG Chaofan. Geothermal genetic model of the eastern Taihang Mountain fault zone in Henan Province[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese with English abstract)

    [16] 张建斌. 豫北平原地层富水性及主要热水储层分析[J]. 地下水,2004,26(3):179 − 180. [ZHANG Jianbin. Analysis of formation water abundance and main hot water reservoirs in northern Henan plain[J]. Ground Water,2004,26(3):179 − 180. (in Chinese)]

    ZHANG Jianbin. Analysis of formation water abundance and main hot water reservoirs in northern Henan plain[J]. Ground Water, 2004, 26(3): 179 − 180. (in Chinese)

    [17] 柳鉴容,宋献方,袁国富,等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报,2009,54(22):3521 − 3531. [LIU Jianrong,SONG Xianfang,YUAN Guofu,et al. Characteristics of atmospheric precipitation δ18O and the source of water vapor in monsoon region of Eastern China[J]. Chinese Science Bulletin,2009,54(22):3521 − 3531. (in Chinese)] DOI: 10.1360/csb2009-54-22-3521

    LIU Jianrong, SONG Xianfang, YUAN Guofu, et al. Characteristics of atmospheric precipitation δ18O and the source of water vapor in monsoon region of Eastern China[J]. Chinese Science Bulletin, 2009, 54(22): 3521 − 3531. (in Chinese) DOI: 10.1360/csb2009-54-22-3521

    [18] 张七道,杨润柏,刘振南,等. 滇西遮放地区水文地球化学及同位素特征[J]. 成都理工大学学报(自然科学版),2020,47(5):612 − 624. [ZHANG Qidao,YANG Runbai,LIU Zhennan,et al. Characteristics of hydrogeochemistry and isotope in the Zhefang area of western Yunnan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(5):612 − 624. (in Chinese with English abstract)]

    ZHANG Qidao, YANG Runbai, LIU Zhennan, et al. Characteristics of hydrogeochemistry and isotope in the Zhefang area of western Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(5): 612 − 624. (in Chinese with English abstract)

    [19] 刘春雷,李亚松,洪炳义,等. 福建盐田海水补给型地热系统地球化学特征及其成因[J]. 水文地质工程地质,2023,50(1):158 − 167. [LIU Chunlei,LI Yasong,HONG Bingyi,et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology,2023,50(1):158 − 167. (in Chinese with English abstract)]

    LIU Chunlei, LI Yasong, HONG Bingyi, et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 158 − 167. (in Chinese with English abstract)

    [20] 温煜华,王乃昂,朱锡芬,等. 天水及其南北地区地热水水化学特征及起源[J]. 地理科学,2011,31(6):668 − 673. [WEN Yuhua,WANG Naiang,ZHU Xifen,et al. Hydrochemistry of geothermal water in Tianshui and its northern-southern area[J]. Scientia Geographica Sinica,2011,31(6):668 − 673. (in Chinese with English abstract)]

    WEN Yuhua, WANG Naiang, ZHU Xifen, et al. Hydrochemistry of geothermal water in Tianshui and its northern-southern area[J]. Scientia Geographica Sinica, 2011, 31(6): 668 − 673. (in Chinese with English abstract)

    [21] 宋小庆,彭钦,段启杉,等. 黔东北地区地热水化学特征及起源[J]. 地球科学,2019,44(9):2874 − 2886. [SONG Xiaoqing,PENG Qin,DUAN Qishan,et al. Hydrochemistry characteristics and origin of geothermal water in northeastern Guizhou[J]. Earth Science,2019,44(9):2874 − 2886. (in Chinese with English abstract)]

    SONG Xiaoqing, PENG Qin, DUAN Qishan, et al. Hydrochemistry characteristics and origin of geothermal water in northeastern Guizhou[J]. Earth Science, 2019, 44(9): 2874 − 2886. (in Chinese with English abstract)

    [22] 李泽威,袁飞,李明龙,等. 水化学特征在恩施盆地地热资源调查中的指示意义[J]. 地质科技通报,2023,42(4):83 − 94. [LI Zewei,YUAN Fei,LI Minglong,et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology,2023,42(4):83 − 94. (in Chinese with English abstract)]

    LI Zewei, YUAN Fei, LI Minglong, et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 83 − 94. (in Chinese with English abstract)

    [23] 余琴,杨平恒,王长江,等. 重庆市统景温泉水化学特征及混合作用[J]. 中国岩溶,2017,36(1):59 − 66. [YU Qin,YANG Pingheng,WANG Changjiang,et al. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. Carsologica Sinica,2017,36(1):59 − 66. (in Chinese with English abstract)]

    YU Qin, YANG Pingheng, WANG Changjiang, et al. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. Carsologica Sinica, 2017, 36(1): 59 − 66. (in Chinese with English abstract)

    [24]

    DÍAZ E G,ARIAS O M M. Structural assessment and geochemistry of thermal waters at the Cerro Machin Volcano (Colombia):An approach to understanding the geothermal system[J]. Journal of Volcanology and Geothermal Research,2020,400:106910. DOI: 10.1016/j.jvolgeores.2020.106910

    [25] 江露露,隋海波,康凤新,等. 鲁中隆起北缘地热区岩溶热储水化学特征及形成机理[J/OL]. 中国岩溶,2023:1 − 23. [JIANG Lulu,SUI Haibo,KANG Fengxin,et al. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir in the northern edge of the Luzhong Uplift[J/OL]. CARSOLOGICA SINICA,2023:1 − 23. (in Chinese with English abstract)]

    JIANG Lulu, SUI Haibo, KANG Fengxin, et al. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir in the northern edge of the Luzhong Uplift[J/OL]. CARSOLOGICA SINICA, 2023: 1 − 23. (in Chinese with English abstract)

    [26] 邓晓颖,杨国平,田秋菊,等. 河南省鹤壁市新区地热流体特征及成因分析[J]. 水文地质工程地质,2005,32(2):111 − 114. [DENG Xiaoying,YANG Guoping,TIAN Qiuju,et al. Features and origin of geothermal fluid in the new district of Hebi,Henan[J]. Hydrogeology and Engineering Geology,2005,32(2):111 − 114. (in Chinese with English abstract)]

    DENG Xiaoying, YANG Guoping, TIAN Qiuju, et al. Features and origin of geothermal fluid in the new district of Hebi, Henan[J]. Hydrogeology and Engineering Geology, 2005, 32(2): 111 − 114. (in Chinese with English abstract)

    [27] 李洁刚,邓晓颖,王利,等. 河南省鹤壁市地热地质特征及开发前景[J]. 华北水利水电学院学报,2005,26(2):58 − 61. [LI Jiegang,DENG Xiaoying,WANG Li,et al. Geological features and development potential of geothermal resources in Hebi city of Henan Province[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2005,26(2):58 − 61. (in Chinese with English abstract)]

    LI Jiegang, DENG Xiaoying, WANG Li, et al. Geological features and development potential of geothermal resources in Hebi city of Henan Province[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2005, 26(2): 58 − 61. (in Chinese with English abstract)

    [28]

    MAHWA J,LI Dajiang,PING Jianhua,et al. Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift,Southeast of Taihang Mountain in China[J]. Journal of Mountain Science,2022,19(8):2241 − 2259. DOI: 10.1007/s11629-022-7329-2

    [29]

    MAHWA J,PING Jianhua,LENG Wei,et al. Tectonics and hydrogeochemical features of geothermal waters in Tangyin Rift SE Taihang Mountain[J]. Geothermics,2023,109:102657. DOI: 10.1016/j.geothermics.2023.102657

    [30] 宁艺武. 内黄凸起地热特征及其成因机制研究[D]. 郑州:郑州大学,2022. [NING Yiwu. Geothermal characteristics and genesis mechanism of Neihuang uplift[D]. Zhengzhou:Zhengzhou University,2022. (in Chinese with English abstract)]

    NING Yiwu. Geothermal characteristics and genesis mechanism of Neihuang uplift[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese with English abstract)

    [31] 毛珂. 豫北内黄凸起地温场及地热开发中地质因素影响研究[D]. 北京:中国地质大学(北京),2021. [MAO Ke. Study on the geothermal field and the influence of geological gactors on geothermal development in Neihuang uplift,northern Henan Province[D]. Beijing:China University of Geosciences,2021. (in Chinese with English abstract)]

    MAO Ke. Study on the geothermal field and the influence of geological gactors on geothermal development in Neihuang uplift, northern Henan Province[D]. Beijing: China University of Geosciences, 2021. (in Chinese with English abstract)

    [32] 秦勇,金法礼,权彪,等. 焦作——济源地区晚中生代古地热场特征及成因[J]. 煤田地质与勘探,1993,21(3):16 − 23. [QIN Yong,JIN Fali,QUAN Biao,et al. Characteristics and mechanism of the late Mesozoic palaeogeothermal field in Jiaozuo——Jiyuan,Henan,China[J]. Coal Geology & Exploration,1993,21(3):16 − 23. (in Chinese)]

    QIN Yong, JIN Fali, QUAN Biao, et al. Characteristics and mechanism of the late Mesozoic palaeogeothermal field in Jiaozuo——Jiyuan, Henan, China[J]. Coal Geology & Exploration, 1993, 21(3): 16 − 23. (in Chinese)

    [33] 黄光寿,郭丽丽,黄凯. 河南省沉积盆地区五大构造单元地热地质特征[J]. 地质与资源,2020,29(2):172 − 179. [HUANG Guangshou,GUO Lili,HUANG Kai. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources,2020,29(2):172 − 179. (in Chinese with English abstract)]

    HUANG Guangshou, GUO Lili, HUANG Kai. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources, 2020, 29(2): 172 − 179. (in Chinese with English abstract)

    [34] 梁志刚,潘生秦. 济源凹陷油气成藏特征及勘探远景[J]. 地质论评,1996,42(增刊1):222 − 228. [LIANG Zhigang,PAN Shengqin. The characteristics of oil and gas reservoir development and exploration prospects in the Jiyuan sag[J]. Geological Review,1996,42(Sup 1):222 − 228. (in Chinese with English abstract)]

    LIANG Zhigang, PAN Shengqin. The characteristics of oil and gas reservoir development and exploration prospects in the Jiyuan sag[J]. Geological Review, 1996, 42(Sup 1): 222 − 228. (in Chinese with English abstract)

    [35] 柯柏林. 北京市平原区北部孙河断裂的地热地质特征[J]. 现代地质,2009,23(1):43 − 48. [KE Bailin. Geothermal and geological features of sunhe fault in the northern part of Beijing plain[J]. Geoscience,2009,23(1):43 − 48. (in Chinese with English abstract)]

    KE Bailin. Geothermal and geological features of sunhe fault in the northern part of Beijing plain[J]. Geoscience, 2009, 23(1): 43 − 48. (in Chinese with English abstract)

    [36] 邢一飞,王慧群,李捷,等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质,2022,49(6):1711 − 1722. [XING Yifei,WANG Huiqun,LI Jie,et al. Chemical field of geothermal water in Xiong’an New Area and analysis of influencing factors[J]. Geology in China,2022,49(6):1711 − 1722. (in Chinese with English abstract)]

    XING Yifei, WANG Huiqun, LI Jie, et al. Chemical field of geothermal water in Xiong’an New Area and analysis of influencing factors[J]. Geology in China, 2022, 49(6): 1711 − 1722. (in Chinese with English abstract)

    [37] 张保建. 鲁西北地区地下热水的水文地球化学特征及形成条件研究[D]. 北京:中国地质大学(北京),2011. [ZHANG Baojian. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing:China University of Geosciences,2011. (in Chinese with English abstract)]

    ZHANG Baojian. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing: China University of Geosciences, 2011. (in Chinese with English abstract)

    [38] 孙英,周金龙,魏兴,等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学,2019,38(11):2601 − 2609. [SUN Ying,ZHOU Jinlong,WEI Xing,et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry,2019,38(11):2601 − 2609. (in Chinese with English abstract)]

    SUN Ying, ZHOU Jinlong, WEI Xing, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601 − 2609. (in Chinese with English abstract)

    [39]

    CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702 − 1703. DOI: 10.1126/science.133.3465.1702

    [40]

    HUANG Xiangui,PING Jianhua,LENG Wei,et al. A study on groundwater recharge in the Anyanghe River alluvial fan,North China Plain,based on hydrochemistry,stable isotopes and tritium[J]. Hydrogeology Journal,2021,29(6):2149 − 2170. DOI: 10.1007/s10040-021-02369-1

    [41] 戴蔓,蒋小伟,罗银飞,等. 地热水氢氧同位素控制因素识别与定量计算:以青海贵德盆地为例[J]. 地学前缘,2021,28(1):420 − 427. [DAI Wan,JIANG Xiaowei,LUO Yinfei,et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water:An example from the Guide Basin,Qinghai Province[J]. Earth Science Frontiers,2021,28(1):420 − 427. (in Chinese with English abstract)]

    DAI Wan, JIANG Xiaowei, LUO Yinfei, et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province[J]. Earth Science Frontiers, 2021, 28(1): 420 − 427. (in Chinese with English abstract)

    [42]

    CLARK I D,FRITZ P. Environmental Isotopes in Hydrogeology[M]. Boca Raton Press:CRC,2013.

    [43] 袁建飞,邓国仕,徐芬,等. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质,2017,31(1):200 − 208. [YUAN Jianfei,DENG Guoshi,XU Fen,et al. Hydrogeochemical characteristics of groundwater in the Xide geothermal field,southwest Sichuan,China[J]. Geoscience,2017,31(1):200 − 208. (in Chinese with English abstract)]

    YUAN Jianfei, DENG Guoshi, XU Fen, et al. Hydrogeochemical characteristics of groundwater in the Xide geothermal field, southwest Sichuan, China[J]. Geoscience, 2017, 31(1): 200 − 208. (in Chinese with English abstract)

    [44] 周训,金晓媚,梁四海,等. 地下水科学专论[M]. 北京:地质出版社,2010. [ZHOU Xun,JIN Xiaomei,LIANG Sihai,et al. Monograph on groundwater science[M]. Beijing:Geological Publishing House,2010. (in Chinese with English abstract)]

    ZHOU Xun, JIN Xiaomei, LIANG Sihai, et al. Monograph on groundwater science[M]. Beijing: Geological Publishing House, 2010. (in Chinese with English abstract)

    [45] 张敏. 同位素技术刻画安阳河流域地表水与地下水相互作用[D]. 郑州:郑州大学,2019. [ZHANG Min. Charaterzing surfater water-groundwater interactions using isotopic techniques in the Anyang River watershed[D]. Zhengzhou:Zhengzhou University,2019. (in Chinese with English abstract)]

    ZHANG Min. Charaterzing surfater water-groundwater interactions using isotopic techniques in the Anyang River watershed[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese with English abstract)

    [46]

    GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. DOI: 10.1016/0016-7037(88)90143-3

    [47] 能源行业地热能专业标准化技术委员会. 地热地球化学勘查规范:NB/T 10699—2021[S]. 北京,2022. [Geothermal Energy Standardization Technical Committee of Energy Industry. Geothermal geochemical exploration specification:NB/T 10699—2021[S]. Beijing,2022. (in Chinese)]

    Geothermal Energy Standardization Technical Committee of Energy Industry. Geothermal geochemical exploration specification: NB/T 10699—2021[S]. Beijing, 2022. (in Chinese)

    [48] 韦祖宁. 民乐盆地地热水特征及成因[D]. 兰州:兰州大学,2021. [WEI Zuning. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou:Lanzhou University,2021. (in Chinese with English abstract)]

    WEI Zuning. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou: Lanzhou University, 2021. (in Chinese with English abstract)

    [49] 王治祥,蒋晶,邹胜章,等. 渝东南深部地热温度解析[J]. 中国岩溶,2019,38(5):663 − 669. [WANG Zhixiang,JIANG Jing,ZOU Shengzhang,et al. Analysis of deep geothermal temperature in Southeast Chongqing[J]. Carsologica Sinica,2019,38(5):663 − 669. (in Chinese with English abstract)]

    WANG Zhixiang, JIANG Jing, ZOU Shengzhang, et al. Analysis of deep geothermal temperature in Southeast Chongqing[J]. Carsologica Sinica, 2019, 38(5): 663 − 669. (in Chinese with English abstract)

    [50]

    FOURNIER R O,TRUESDELL A H. An empirical Na–K–Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta,1973,37(5):1255 − 1275. DOI: 10.1016/0016-7037(73)90060-4

    [51] 朱日祥,徐义刚,朱光,等. 华北克拉通破坏[J]. 中国科学:地球科学,2012,42(8):1135 − 1159. [ZHU Rixiang,XU Yigang,ZHU Guang,et al. Destruction of North China craton[J]. Scientia Sinica Terrae,2012,42(8):1135 − 1159. (in Chinese with English abstract)] DOI: 10.1360/zd-2012-42-8-1135

    ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of North China craton[J]. Scientia Sinica Terrae, 2012, 42(8): 1135 − 1159. (in Chinese with English abstract) DOI: 10.1360/zd-2012-42-8-1135

  • 期刊类型引用(1)

    1. 肖富强,邹勇军,章双龙,祁星,肖卫东. 赣南寻乌—石城断裂带温泉流体地球化学特征. 水文地质工程地质. 2025(02): 203-216 . 本站查看

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  36
  • PDF下载量:  115
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-12-23
  • 网络出版日期:  2024-04-10

目录

/

返回文章
返回