ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

音频大地电磁法三维勘探在某地热区勘查中的应用研究

赵文龙, 唐宇豪, 张硕, 周超

赵文龙,唐宇豪,张硕,等. 音频大地电磁法三维勘探在某地热区勘查中的应用研究[J]. 水文地质工程地质,2025,52(2): 238-247. DOI: 10.16030/j.cnki.issn.1000-3665.202310018
引用本文: 赵文龙,唐宇豪,张硕,等. 音频大地电磁法三维勘探在某地热区勘查中的应用研究[J]. 水文地质工程地质,2025,52(2): 238-247. DOI: 10.16030/j.cnki.issn.1000-3665.202310018
ZHAO Wenlong, TANG Yuhao, ZHANG Shuo, et al. Application of audio frequency magnetotelluric 3D prospecting in a hot area exploration[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 238-247. DOI: 10.16030/j.cnki.issn.1000-3665.202310018
Citation: ZHAO Wenlong, TANG Yuhao, ZHANG Shuo, et al. Application of audio frequency magnetotelluric 3D prospecting in a hot area exploration[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 238-247. DOI: 10.16030/j.cnki.issn.1000-3665.202310018

音频大地电磁法三维勘探在某地热区勘查中的应用研究

详细信息
    作者简介:

    赵文龙(1988—),男,硕士,高级工程师,主要从事工程物探、超前地质预报等方向研究。E-mail:972722766@qq.com

  • 中图分类号: P314;P631

Application of audio frequency magnetotelluric 3D prospecting in a hot area exploration

  • 摘要:

    地热资源勘查的方法众多,电磁法因其对温度响应敏感,在地热勘查中得到广泛应用,音频大地电磁法因其探测精度高、深度较大,是浅层地热资源探测中最常用的电磁方法。某地热区内温泉出露范围较大,地热地质特征明显,但区内未进行过详细地热调查和地球物理勘查,为确定某地热区地热系统热储、盖层以及导热通道的空间分布特征,研究利用音频大地电磁法在研究区内布设5条音频大地电磁测线,对音频大地电磁数据进行维性分析与三维反演,结合地热区地热地质资料研究地热系统的分布特征。研究结果表明:(1)研究区地质情况复杂,地下介质具有三维电性结构特征,可以对音频大地电磁数据进行三维反演;(2)三维电性结构特征显示区内存在10个高阻异常体和2个低阻异常体,深部低阻异常体所处范围较大,中心电阻率值约为5 Ω·m;(3)确定了研究区热储、盖层以及导热通道的分布范围,热储埋深在300~1500 m,盖层主要为第四纪覆盖层,查明地热水的循环通道与断层F1、F2有关。上述研究结果表明音频大地电磁法三维勘探可直观展示地热区地热分布情况,可为地热区开发提供重要的技术支持。

    Abstract:

    Various methods are used for geothermal resource exploration, with the electromagnetic method being widely applied due to its sensitivity to temperature changes. Among these, the audio magnetotelluric (AMT) method is the most commonly used electromagnetic method in shallow geothermal resource exploration because of its high detection accuracy and substantial depth of investigation. To determine the spatial distribution characteristics of heat storage, cover layer, and heat conduction channel of a geothermal system located in a hot spring area with clear geothermal geological characteristics. Five AMT survey lines were established in the study area, followed by spatial analysis and three-dimensional inversion of the AMT data. The distribution characteristics of geothermal system were analyzed in combination with geothermal geological data in geothermal areas. The results show that: (1) The geological condition of the study area is complex, and the underground medium has the characteristics of three-dimensional electrical structure, which is suitable for three-dimensional inversion of the AMT data. (2) The three-dimensional electrlical structure characteristics of the study area show that there are 10 high-resistance anomalic bodies and 2 low-resistance anomalic bodies in the study area. The deep low-resistance anomalic bodies have a large range with the central resistivity value of approximately 5 Ω·m. (3) The distribution ranges of heat storage, cover layer, and heat conduction channel in the study area were determined. The buried depth of heat storage is 300−1500 m, with the primary cover layer of Quaternary deposits. It is found that the circulation channel of geothermal hot water is related to fault F1 and F2. These findings demonstrate that the surface AMT method for 3D prospecting can effectively reveal the distribution of geothermal energy, providing important technical support for the development and utilization of thermal areas.

  • 我国地热资源分布广、类型多、资源丰富,是世界上中低温地热资源直接利用量最大的国家[1]。地热资源埋深较大,除钻探外很难直接判断其具体深度及纵向分布范围,钻探技术是地热资源开发利用的唯一技术手段,地球物理技术是评价地热资源最经济、有效的技术方法,两者结合,能够提高地热资源勘查与评估的准确性、降低开发利用成本[2]。重力、磁法、电磁法和地震等地球物理技术广泛应用于地热资源勘查中。国外地热地球物理勘探具有较长的发展研究历史,例如Carl[3]利用大面积大地电磁(magneto-telluric sounding,MT)法和可控源大地电磁(controlled-source audio-frequency magnetotellurics,CSAMT)法对新墨西哥州深部地热进行探测,确定了该地区深部地热的电性结构。Karastathis等[4]应用三维地震成像技术结合居里面深度分析了地热田深部构造。Karlsdóttir等[5]利用三维大地电磁法对冰岛西南部Reykjanes高温地热系统电性结构进行了分析,圈定了地热系统内部高温、高渗透率的断裂带分布情况。Gallardo等[6]结合重力、磁法探测对墨西哥Los Humeros地热田进行勘探研究,圈定了由主要断裂带传输地热而形成的地热区域。

    虽然我国地热地球物理勘探起步较晚,但近十年来,地热地球物理勘探技术及应用取得显著进展,薛建球等[7]通过航磁资料、重力探测资料以及可控源大地电磁法测深对青海贵德—共和盆地的地热资源分布进行勘查,确定了地热区域的电性特征。赵雪宇等[8]利用松辽盆地重力磁法勘探数据计算出各深度的地热热流值,分析了松辽盆地干热岩形成的机理,圈定了干热岩潜在靶区。Wu等[9]通过大地电磁反演,获取了漳州盆地4条剖面的二维电性结构,建立了漳州盆地地热结构模型。张森琦等[10]结合地热地质调查、区域重力、区域航磁调査、天然地震背景噪声层析成像等勘查手段,根据地热区块特征在共和盆地及其外围地区圈定出干热岩勘查目标靶区16处。何亚东等[11]利用地球物理数据分析了阳高—天镇地区地热资源沿断裂或经热导率高的变质岩地层传递到浅地表形成地热的机制。龙慧等[12]在地震数据基础上对雄安新区岩溶热储进行探测,确定了热储靶区,并优选出探测的扫描频率、扫描长度等相关参数。同时,多位研究人员利用综合地球物理方法在四川盆地与福建沿海地区地热资源调查评价方面进行了不少的探索,取得了很好的成果[1314]。综上,地球物理技术在地热勘探开发方面取得了显著的应用效果,积累了大量经验,推动了地热资源勘探的发展。

    基于地热系统对地球物理特征的响应程度分析发现,电磁法是地热资源勘探中最有效的地球物理方法[1516]。地热系统由热源、热储、盖层以及导热通道等组成,是地热资源中的一个重要概念[17]。地热系统的存在会导致地下介质物理性质的不均匀性,同时相关物理参数(密度、磁化率、电阻率、波速等)也会发生改变。其中电阻率对温度的响应最为明显[18],且热源、热储、盖层及导热通道等关键要素之间存在明显的电性差异[1920],利用这种差异识别地热系统各关键要素是一种重要的技术方法。地热资源勘探主要指地热资源热储的勘探,现阶段可以利用的热储层主要集中在中浅部,埋深在3 km以内。常用的电磁法有音频大地电磁法(audio-frequency magneto-telluric method,AMT)、可控源大地电磁法以及广域电磁法,相对于其他2 种方法,AMT因其勘探深度较大、精度高、施工方便、成本低等优点,是地热勘探中最常用的电磁法之一,并取得了良好的勘探效果[2123]。然而,现阶段利用AMT方法的地热资源勘探主要是针对二维剖面,对地热系统空间分布特征的研究较少,而地热系统的热储、盖层及断裂系统的空间分布严重制约着地热资源的开发利用。同时AMT三维反演不仅提高了数据处理的效率,还提高了反演结果的准确性[2427]。三维反演技术能够反映出更精细的电性结构空间分布情况,能够更为准确地确定热储层的位置和范围。

    因此,论文以音频大地电磁法为基础,以某地热田为研究区,布设多条AMT测线,对采集的AMT数据进行傅里叶变换、Robust估计及功率谱挑选后,得到较高质量的AMT点数据。采用相位张量分解进行维性分析,确定研究区地下空间的维性特征,并利用非线性共轭梯度(nonlinear conjugate gradient ,NLCG)法对AMT数据进行三维反演,获得了研究区的三维电性结构。结合研究区地热地质、地球物理、地热钻孔等资料,分析了地热区浅部地热系统热储、盖层及导热通道的分布特征,圈定了热储的分布范围。

    研究区气候属大陆性半干旱气候,四季分明,冬季干燥、寒冷且多风沙,夏季降水少且集中。研究区位于构造活动强烈发育地区,受燕山期构造活动的影响,周围存在多条深大断裂,工区内有近东西和近南北断裂各一条。区内地层发育较为齐全,除缺失古生界志留系、泥盆系地层外,从太古宇集宁群至第四系均有分布。工区基底岩石岩性主要为太古界集宁群混合后的麻粒岩、片麻岩,且在工区南部少量出露,新生界地层保存较为完整,部分古近系地层受剥蚀严重,新近系早期部分岩层缺失。研究区内广泛分布有第四系沉积地层,厚度在200~500 m,沉积地层为地热系统提供了良好的盖层条件,有利于地热系统的形成。研究区内有温泉发育,主要分布在东南部,温度在30~40℃,地热地质特征响应明显。

    音频大地电磁法是大地电磁法的一种,是通过测量天然电场(E)与磁场(H)随时间变化,从而获得地下电阻率结构的无源电磁法[24, 28],主要利用的频率为1~104 Hz。在大地电磁中,定义阻抗张量(Z)来描述坐标x(北方向)和y(东方向)上的EH分量,其表达式为:

    [ExEy]=[ZxxZxyZyxZyy][HxHy] (1)

    其中ZxxZxyZyxZyy为阻抗张量的4个分量。利用与频率相关的阻抗张量可获得视电阻率(ρ)和相位(Φ)的计算公式:

    ρij(ω)=1ωμ0|Zij(ω)|2 (2)
    Φij(ω)=tan1{\boldsymbolIm[Zij(ω)]\boldsymbolRe[Zij(ω)]} (3)

    式中:Im——张量实部;

    Re——张量虚部;

    ω——角频率/(rad·s−1);

    μ0——空间磁导率/(H·m−1)。

    地下介质的电性主轴方向及维性信息具有很大的不确定性,作为反演的先决条件,需要对音频大地电磁进行维性分析,确定地下空间的维性特征及电性主轴方向。目前,大地电磁的维性分析方法主要为相位张量分解[29],相位张量分解法定义大地电磁阻抗张量的实部(X)与虚部(Y),其表达式为:

    \boldsymbolZ=\boldsymbolX+i\boldsymbolY (4)

    将相位张量(\boldsymbolφ)定义为:

    \boldsymbolφ=\boldsymbolX1\boldsymbolY (5)

    同时\boldsymbolφ可以表示为:

    \boldsymbolφ=\boldsymbolRT(aβ)[φmax00φmin]\boldsymbolR(a+β) (6)

    式中:φmax——椭圆长半轴;

    φmin——椭圆短半轴;

    R——旋转矩阵;

    α——参考轴与坐标轴横轴间的夹角/(°);

    β——椭圆主轴与参考轴间的夹角/(°)。

    在观测坐标系下的相位张量可以用一个椭圆表示。相位张量椭圆越接近圆表示区域维性越趋于一维;相位张量为椭圆时,二维偏离角|β|=0,表明区域呈标准二维结构;|β|越大表明区域三维性越强,实际应用中|β|较小的情况下,一般在5°范围内可将区域构造视作二维电性结构[30]

    大地电磁测深反演解释的目的是通过所测得的大地电磁场响应,通过一定的优化处理,获得一个合理的地电模型。目前所发展的反演方法可分为2 大类,线性反演和非线性反演,NLCG法是一种快速、稳定、收敛的反演计算方法[31]。三维NLCG反演算法与二维相似,将目标函数Ψ定义为如下形式:

    Ψ=n=12N[(\boldsymbolZna\boldsymbolZn)/εn]2+τ\boldsymbolmT\boldsymbolWT\boldsymbolWm (7)

    式中:\boldsymbolZna——观测阻抗数据,其中a为观测数据阻抗数据,n为数据个数;

    \boldsymbolZn——正演阻抗数据,前N个数据为阻抗数据 的实部,后N个数据为阻抗数据的虚部;

    εn——数据的观测误差;

    m——表征电阻率的向量;

    W——模型光滑约束矩阵;

    τ——正则化参数。

    图1所示,在研究区内布设音频大地电磁测线5条,测线方向均呈北北西向,测点点距控制在250 m左右。数据采集使用加拿大凤凰公司生产的大地电磁仪(MTU-5A)。采用张量观测方式,电极、磁道布设采用正“十”字型布极方式,每个测点采用5分量观测,为2个电场分量(ExEy)和3个磁场分量(HxHyHz)。各测点采集频率范围为1~104 Hz,采集时长均在5 h以上。由于区域存在高压线、公路及光伏发电厂等干扰,部分测点在规范范围内偏离原定测点位置一定距离,以减小附近干扰源对数据质量造成的影响,最终采获较高质量AMT测点共计86个。

    图  1  研究区AMT测点分布图
    注:L1—L5为大地电磁测线。
    Figure  1.  AMT measuring points in the study area

    利用相位张量对研究区维性及地电走向进行分析,相位张量无需对地下介质做维性假设,不受局部电流畸变影响,分析结果更可靠。相位张量椭圆的长轴与短轴代表着区域电性主轴的方位,|β|反映了研究区的维性。图2为研究区所有测点不同频率的相位张量分解结果,图2(a)中相位张量椭圆近似于圆,仅左上少部分表现为椭圆,|β|整体较小,表明工区在浅部地层均一性较好,地下介质电性结构多为一维或二维性。随着频率的减小,图中椭圆的数量逐渐增加,|β|也逐渐增大。频率在1000 Hz和10 Hz时,大部分|β|>5°,表现为较强的三维特性。频率为1 Hz时,全部测点|β|>5°,整体表现为三维特性。上述结果表明随着深度的增加,地下结构变得越来越复杂,三维电性特征越来越明显,需要对研究区进行三维反演。

    图  2  研究区AMT测点部分频率相位张量椭圆图
    Figure  2.  Phase tensor ellipse of AMT measuring points in the study area

    随着计算机技术的发展,基于NLCG的反演工作也从二维反演逐渐发展到三维反演,并趋于成熟。本文采用开源的大地电磁三维反演程序包ModEM实现研究区AMT数据的三维反演[3235],以获得研究区真实的电性结构模型。AMT数据的反演频率为1 ~104 Hz的4个数量级,每个数量级内均匀选取8个频点,对总共32个频点的全阻抗张量进行反演。三维反演初始模型电阻率设置为100 Ω·m。反演误差门限设置为5\%×|\boldsymbolZxy\boldsymbolZyx|1/25\%×|\boldsymbolZxy\boldsymbolZyx|1/2x,y,z 3 个方向的平滑因子分别设置为:0.8,0.8,0.4。反演均方根拟合差(RMS)初始值为19.38,经过106次迭代后停止,最终RMS值为2.01。图3(a)为反演单个测点最终RMS值情况,可以看出,大部分测点RMS值均在2以下,只有个别测点RMS值偏大超过3,表明反演结果整体拟合较好。图3(b)为2 个RMS值较高的AMT测点三维反演模型响应数据与原始数据的拟合情况,用以评估最终迭代数据的拟合情况,可以看出高RMS测点的原始视电阻率、阻抗相位与三维反演模型响应视电阻率、阻抗相位拟合较好。因此,研究区内所有AMT数据拟合情况很好,满足反演误差的要求,构建的三维电性结构模型具有较高的可靠性。

    图  3  三维反演拟合差情况
    注:Obs为观测值;Cal为计算值。
    Figure  3.  Poor fitting of 3D inversion

    图4为AMT数据三维反演结果所获得的电性结构模型在不同深度的切片图。三维电性结构水平切片揭示,在深度100 m时,研究区存在大范围的低阻异常体C1,电阻率值在10 Ω·m左右,主要分布于研究区的中心位置。同时,切片中有多个高阻异常体(R1—R9)响应,电阻率值约为1000 Ω·m,主要分布在研究区的周围。随着深度的增加,高阻异常体响应的数量及范围均减少,在深度500 m剖面内存在大范围的低阻异常体C2,电阻率值为1~10 Ω·m。深度为100015002000 m时,浅部高阻异常体(R1—R9)均未显示,但出现高阻异常体R10,电阻值约为800 Ω·m,随着深度增加,R10的范围逐渐增大。

    图  4  三维反演电阻率模型不同深度水平切片
    Figure  4.  3D inversion resistivity model slices at different depth levels

    图5为三维反演电阻率模型沿着各测线的垂直切片图。剖面L1大致可以分为3 层,浅部为由高阻异常体组成的高阻层,中部为C2低阻异常体,深部为R10高阻异常体,R1—R3位于浅部,被断层F1、F2分隔。R10位于剖面深部且具有隆起的趋势,沿测线向右R10埋深逐渐增加。剖面中异常体C2埋深在300~1000 m,中心区域电阻率值约为5 Ω·m,而剖面L2中C2的范围减小,R10的范围增大。相对于测线L1、L2,测线L3—L5剖面中存在浅层低阻层C1,C1的厚度约100 m,电阻率值约为5 Ω·m。同时断层F1、F2在剖面L3—L5中也均有显示。

    图  5  各测线剖面图
    Figure  5.  Profile of each survey line

    地下导电性是表征地热环境特征的一个重要参数,电性结构受温度的影响,能够很好地反映地热系统的分布特征。在研究区的电性结构模型中,浅部存在多个高阻异常体(R1—R9),根据现场地质调查及岩石出露推断,上述高阻异常体为太古代变质岩,分布位置与岩石出露位置一致。而高阻异常体R10埋深较大,与较上层岩体电阻率有明显的电性差异,根据已有的地热地质资料判断R10为研究区的基底岩石,岩性为太古代变质岩。

    理想的地热系统包含热源、热储和盖层。热源通常来源于地壳深部的岩浆房或侵入体。水热型地热系统热储一般包含天然流体的断裂系统。大多数水热系统的盖层往往由溶解有高浓度盐的地热流体与岩石长期反应形成,不同温度情况下形成不同类型的蚀变矿物,通常表现为低阻特征,对地热系统的赋存具有很好的指示作用。研究区在浅地表存在大范围的低阻异常体C1,且主要集中在测线L3—L5处。研究区钻孔资料揭示C1主要为第四纪沉积物,主要岩性为黏土、亚黏土、亚砂土等,且含有蒙脱石等大量黏土矿物,对应50~220 °C的蚀变温度。低阻体C1上方相对高阻层,主要为第四系全新统地层,研究区北部主要分布颗粒大, 分选性不好,磨圆程度不高的砂、砾石以及压砂土。热储一般位于盖层的下方,水热型地热系统热储的形成与裂隙、断层有关,热储通常表现为低阻特征,三维电性结构模型中低阻异常体C2,位于地热系统盖层的下方,具有水热型热储的电性结构特征,推测C2为地热系统的热储层,钻孔验证表明C2为研究区热储层,钻孔深度500 m时,温度66 °C,热储主要为太古代的变质岩。在热储层与盖层之间存在的相对高阻区域,为新近系低阻地层,岩性以黏土为主,底部发育大片砂石粗砂,上部具有一定的连通性,有部分热液存在,下部与太古界变质岩系基底高阻地层呈不整合接触。同时反演结果显示在剖面中存在2 个断层F1、F2,其空间分布如图6所示。2 个断层的方向较一致,断层F2的切割深度较大,同时F1、F2连通研究区盖层C1和热储层C2,为地热系统的导热通道。根据研究区三维电性结构模型,结合已有的地热地质资料分析,研究区的深部断裂上涌,在研究区300~1500 m处形成地热系统的热储层,地表大气降水沿浅层断裂F1、F2下渗至热储层,在热储层发生水热循环被加热,热水沿浅层断裂上涌,在浅地表发生水热蚀变并形成温泉,其地热系统的空间分布如图7所示。

    图  6  断层空间分布图
    Figure  6.  Fault spatial distribution
    图  7  研究区地热系统简图
    Figure  7.  Schematic diagram of geothermal system in the study area

    (1)基于对研究区AMT数据的相位张量分析确定研究区地质情况复杂,地下介质具有三维电性结构特征。

    (2)三维AMT反演构建了研究区三维电性结构模型,模型中存在10个高阻异常体及2个低阻异常体。结合已有地热地质资料,确定了研究区热储、盖层以及导热通道的分布范围,热储埋深在300~1500 m,盖层主要为第四纪覆盖层,导热通道为断层F1、F2,查明了地热热水的循环通道。

    (3)AMT反演结果与地质、钻孔资料对应良好,表明音频大地电磁技术能够有效揭示地热系统的热储、盖层、导热通道等关键要素,进一步说明该方法在地热资源勘探中的有效性和优越性,可为地热资源的开发和利用提供技术支持。

  • 图  1   研究区AMT测点分布图

    注:L1—L5为大地电磁测线。

    Figure  1.   AMT measuring points in the study area

    图  2   研究区AMT测点部分频率相位张量椭圆图

    Figure  2.   Phase tensor ellipse of AMT measuring points in the study area

    图  3   三维反演拟合差情况

    注:Obs为观测值;Cal为计算值。

    Figure  3.   Poor fitting of 3D inversion

    图  4   三维反演电阻率模型不同深度水平切片

    Figure  4.   3D inversion resistivity model slices at different depth levels

    图  5   各测线剖面图

    Figure  5.   Profile of each survey line

    图  6   断层空间分布图

    Figure  6.   Fault spatial distribution

    图  7   研究区地热系统简图

    Figure  7.   Schematic diagram of geothermal system in the study area

  • [1] 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract)]

    WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1 − 9. (in Chinese with English abstract)

    [2] 陈昌昕,严加永,周文月,等. 地热地球物理勘探现状与展望[J]. 地球物理学进展,2020,35(4):1223 − 1231. [CHEN Changxin,YAN Jiayong,ZHOU Wenyue,et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics,2020,35(4):1223 − 1231. (in Chinese with English abstract)] DOI: 10.6038/pg2020DD0229

    CHEN Changxin, YAN Jiayong, ZHOU Wenyue, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4): 1223 − 1231. (in Chinese with English abstract) DOI: 10.6038/pg2020DD0229

    [3]

    CARL L L. Regional Audiomagnetotelluric study of the Questa Caldera, New Mexico[J]. Journal of Geophysical Research,1985,90(B13):11270 − 11274.

    [4]

    KARASTATHIS V K,PAPOULIA J,DI FIORE B,et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece,using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research,2011,206(3/4):106 − 120.

    [5]

    KARLSDÓTTIR R,VILHJÁLMSSON A M,GUÐNASON E Á. Three dimensional inversion of magnetotelluric (MT) resistivity data from Reykjanes high temperature field in SW Iceland[J]. Journal of Volcanology and Geothermal Research,2020,391:106498. DOI: 10.1016/j.jvolgeores.2018.11.019

    [6]

    GALLARDO L A,MEJU M A. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification[J]. Geophysical Journal International,2007,169(3):1261 − 1272. DOI: 10.1111/j.1365-246X.2007.03366.x

    [7] 薛建球,甘斌,李百祥,等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探,2013,37(1):35 − 41. [XUE Jianqiu,GAN Bin,LI Baixiang,et al. Geological-geophysical characteristics of enhanced geothermal systems (Hot dry rocks) in Gonghe-Guide Basin[J]. Geophysical & Geochemical Exploration,2013,37(1):35 − 41. (in Chinese with English abstract)]

    XUE Jianqiu, GAN Bin, LI Baixiang, et al. Geological-geophysical characteristics of enhanced geothermal systems (Hot dry rocks) in Gonghe-Guide Basin[J]. Geophysical & Geochemical Exploration, 2013, 37(1): 35 − 41. (in Chinese with English abstract)

    [8] 赵雪宇,曾昭发,吴真玮,等. 利用地球物理方法圈定松辽盆地干热岩靶区[J]. 地球物理学进展,2015,30(6):2863 − 2869. [ZHAO Xueyu,ZENG Zhaofa,WU Zhenwei,et al. Delineating the area of HDR in Songliao basin using geophysical methods[J]. Progress in Geophysics,2015,30(6):2863 − 2869. (in Chinese with English abstract)] DOI: 10.6038/pg20150654

    ZHAO Xueyu, ZENG Zhaofa, WU Zhenwei, et al. Delineating the area of HDR in Songliao basin using geophysical methods[J]. Progress in Geophysics, 2015, 30(6): 2863 − 2869. (in Chinese with English abstract) DOI: 10.6038/pg20150654

    [9]

    WU Chaofeng,HU Xiangyun,WANG Guiling,et al. Magnetotelluric imaging of the Zhangzhou basin geothermal Zone,southeastern China[J]. Energies,2018,11(8):2170. DOI: 10.3390/en11082170

    [10] 张森琦,李旭峰,宋健,等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学,2021,46(4):1416 − 1436. [ZHANG Senqi,LI Xufeng,SONG Jian,et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe basin[J]. Earth Science,2021,46(4):1416 − 1436. (in Chinese with English abstract)]

    ZHANG Senqi, LI Xufeng, SONG Jian, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe basin[J]. Earth Science, 2021, 46(4): 1416 − 1436. (in Chinese with English abstract)

    [11] 何亚东,贾小丰,张自宾,等. 阳高—天镇地区高温地热系统形成机制及资源开发前景研究[J]. 水文地质工程地质,2023,50(4):39 − 49. [HE Yadong,JIA Xiaofeng,ZHANG Zibin,et al. A study of the formation mechanism and resource development prospect of the high-temperature geothermal system in the Yanggao-Tianzhen area[J]. Hydrogeology & Engineering Geology,2023,50(4):39 − 49. (in Chinese with English abstract)]

    HE Yadong, JIA Xiaofeng, ZHANG Zibin, et al. A study of the formation mechanism and resource development prospect of the high-temperature geothermal system in the Yanggao-Tianzhen area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 39 − 49. (in Chinese with English abstract)

    [12] 龙慧,李胜涛,穆建强,等. 沉积盆地深埋型岩溶热储地震探测数据采集参数优选——以雄安新区牛驼镇地热田为例[J]. 水文地质工程地质,2023,50(4):14 − 25. [LONG Hui,LI Shengtao,MU Jianqiang,et al. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin:A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology,2023,50(4):14 − 25. (in Chinese with English abstract)]

    LONG Hui, LI Shengtao, MU Jianqiang, et al. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 14 − 25. (in Chinese with English abstract)

    [13] 孙东,李金玺,曹楠,等. 四川盆地地热地质条件及勘探潜力评价[J]. 水文地质工程地质,2023,50(3):193 − 206. [SUN Dong,LI Jinxi,CAO Nan,et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology,2023,50(3):193 − 206. (in Chinese with English abstract)]

    SUN Dong, LI Jinxi, CAO Nan, et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 193 − 206. (in Chinese with English abstract)

    [14] 张健,何雨蓓,范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘,2024,31(3):392 − 401. [ZHANG Jian,HE Yubei,FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area[J]. Earth Science Frontiers,2024,31(3):392 − 401. (in Chinese with English abstract)]

    ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area[J]. Earth Science Frontiers, 2024, 31(3): 392 − 401. (in Chinese with English abstract)

    [15]

    JOLIE E,SCOTT S,FAULDS J,et al. Geological controls on geothermal resources for power generation[J]. Nature Reviews Earth & Environment,2021,2(5):324 − 339.

    [16]

    CUMMING W. Resource conceptual models of volcano-hosted geothermal reservoirs for exploration well targeting and resource capacity assessment:Construction,pitfalls and challenges[J]. Geothermal Resources Council Transactions,2016,40:623 − 637.

    [17]

    MUÑOZ G. Exploring for geothermal resources with electromagnetic methods[J]. Surveys in Geophysics,2014,35(1):101 − 122. DOI: 10.1007/s10712-013-9236-0

    [18] 武超峰,叶益信,邓呈祥,等. 电磁法在地热资源探测中的应用研究[J]. 东华理工大学学报(自然科学版),2022,45(1):42 − 52. [WU Chaofeng,YE Yixin,DENG Chengxiang,et al. Application progress of electromagnetic method in geothermal resource exploration[J]. Journal of East China University of Technology(Natural Science),2022,45(1):42 − 52. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-3504.2022.01.006

    WU Chaofeng, YE Yixin, DENG Chengxiang, et al. Application progress of electromagnetic method in geothermal resource exploration[J]. Journal of East China University of Technology(Natural Science), 2022, 45(1): 42 − 52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-3504.2022.01.006

    [19] 陈怀玉,闫晋龙,孙健,等. 综合物探方法在中深层地热勘查中的应用[J]. 矿产勘查,2020,11(8):1708 − 1714. [CHEN Huaiyu,YAN Jinlong,SUN Jian,et al. Application of comprehensive geophysical prospecting method in geothermal exploration of middle and deep layers[J]. Mineral Exploration,2020,11(8):1708 − 1714. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-7801.2020.08.021

    CHEN Huaiyu, YAN Jinlong, SUN Jian, et al. Application of comprehensive geophysical prospecting method in geothermal exploration of middle and deep layers[J]. Mineral Exploration, 2020, 11(8): 1708 − 1714. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-7801.2020.08.021

    [20] 曾昭发,陈雄,李静,等. 地热地球物理勘探新进展[J]. 地球物理学进展,2012,27(1):168 − 178. [ZENG Zhaofa,CHEN Xiong,LI Jing,et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics,2012,27(1):168 − 178. (in Chinese with English abstract)] DOI: 10.6038/j.issn.1004-2903.2012.01.019

    ZENG Zhaofa, CHEN Xiong, LI Jing, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1): 168 − 178. (in Chinese with English abstract) DOI: 10.6038/j.issn.1004-2903.2012.01.019

    [21] 王佳龙,邸兵叶,张宝松,等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探,2021,45(3):576 − 582. [WANG Jialong,DI Bingye,ZHANG Baosong,et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of Huangniqiao area,Ninghua County,Fujian Province[J]. Geophysical & Geochemical Exploration,2021,45(3):576 − 582. (in Chinese with English abstract)]

    WANG Jialong, DI Bingye, ZHANG Baosong, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical & Geochemical Exploration, 2021, 45(3): 576 − 582. (in Chinese with English abstract)

    [22] 覃田赐,邓居智,陈辉,等. 音频大地电磁三维反演在江西丰城地热勘查中的应用[J]. 科学技术与工程,2020,20(14):5489 − 5498. [QIN Tianci,DENG Juzhi,CHEN Hui,et al. Application of audio frequency magnetotelluric method three-dimensional inversion in geothermal exploration in Fengcheng of Jiangxi,China[J]. Science Technology and Engineering,2020,20(14):5489 − 5498. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.14.006

    QIN Tianci, DENG Juzhi, CHEN Hui, et al. Application of audio frequency magnetotelluric method three-dimensional inversion in geothermal exploration in Fengcheng of Jiangxi, China[J]. Science Technology and Engineering, 2020, 20(14): 5489 − 5498. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.14.006

    [23] 严小丽,康慧敏,王光杰,等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展,2019,34(5):1945 − 1953. [YAN Xiaoli,KANG Huimin,WANG Guangjie,et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics,2019,34(5):1945 − 1953. (in Chinese with English abstract)] DOI: 10.6038/pg2019CC0083

    YAN Xiaoli, KANG Huimin, WANG Guangjie, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics, 2019, 34(5): 1945 − 1953. (in Chinese with English abstract) DOI: 10.6038/pg2019CC0083

    [24] 胡祥云,李焱,杨文采,等. 大地电磁三维数据空间反演并行算法研究[J]. 地球物理学报,2012,55(12):3969 − 3978. [HU Xiangyun,LI Yan,YANG Wencai,et al. Three-dimensional magnetotelluic parallel inversion algorithm using data space method[J]. Chinese Journal of Geophysics,2012,55(12):3969 − 3978. (in Chinese with English abstract)] DOI: 10.6038/j.issn.0001-5733.2012.12.009

    HU Xiangyun, LI Yan, YANG Wencai, et al. Three-dimensional magnetotelluic parallel inversion algorithm using data space method[J]. Chinese Journal of Geophysics, 2012, 55(12): 3969 − 3978. (in Chinese with English abstract) DOI: 10.6038/j.issn.0001-5733.2012.12.009

    [25] 李焱,胡祥云,杨文采,等. 大地电磁三维交错网格有限差分数值模拟的并行计算研究[J]. 地球物理学报,2012,55(12):4036 − 4043. [LI Yan,HU Xiangyun,YANG Wencai,et al. A study on parallel computation for 3D magnetotelluric modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics,2012,55(12):4036 − 4043. (in Chinese with English abstract)] DOI: 10.6038/j.issn.0001-5733.2012.12.015

    LI Yan, HU Xiangyun, YANG Wencai, et al. A study on parallel computation for 3D magnetotelluric modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2012, 55(12): 4036 − 4043. (in Chinese with English abstract) DOI: 10.6038/j.issn.0001-5733.2012.12.015

    [26] 李世文,翁爱华,李建平,等. 三维电性结构揭示的中国东北地区新生代火山深部起源[J]. 中国科学(地球科学),2020,50(4):538 − 552. [LI Shiwen,WENG Aihua,LI Jianping,et al. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure[J]. Scientia Sinica Terrae,2020,50(4):538 − 552. (in Chinese with English abstract)] DOI: 10.1360/N072018-00330

    LI Shiwen, WENG Aihua, LI Jianping, et al. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure[J]. Scientia Sinica Terrae, 2020, 50(4): 538 − 552. (in Chinese with English abstract) DOI: 10.1360/N072018-00330

    [27] 孙翔宇,詹艳,赵国泽,等. 琼东北马鞍岭-雷虎岭火山区深部岩浆系统大地电磁三维探测[J]. 地震地质,2020,42(3):640 − 653. [SUN Xiangyu,ZHAN Yan,ZHAO Guoze,et al. Magnetotelluric imaging of magma distribution beneath Ma'anling and Leihuling volcanoes of northeastern Hainan,China[J]. Seismology and Geology,2020,42(3):640 − 653. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2020.03.007

    SUN Xiangyu, ZHAN Yan, ZHAO Guoze, et al. Magnetotelluric imaging of magma distribution beneath Ma'anling and Leihuling volcanoes of northeastern Hainan, China[J]. Seismology and Geology, 2020, 42(3): 640 − 653. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2020.03.007

    [28] 林昌洪,谭捍东,佟拓. 利用大地电磁三维反演方法获得二维剖面附近三维电阻率结构的可行性[J]. 地球物理学报,2011,54(1):245 − 256. [LIN Changhong,TAN Handong,TONG Tuo. The possibility of obtaining nearby 3D resistivity structure from magnetotelluric 2D profile data using 3D inversion[J]. Chinese Journal of Geophysics,2011,54(1):245 − 256. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5733.2011.01.026

    LIN Changhong, TAN Handong, TONG Tuo. The possibility of obtaining nearby 3D resistivity structure from magnetotelluric 2D profile data using 3D inversion[J]. Chinese Journal of Geophysics, 2011, 54(1): 245 − 256. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5733.2011.01.026

    [29]

    CALDWELL T G,BIBBY H M,BROWN C. The magnetotelluric phase tensor[J]. Geophysical Journal International,2004,158(2):457 − 469. DOI: 10.1111/j.1365-246X.2004.02281.x

    [30]

    XU Shan,HU Xiangyun,CHEN Chaojian,et al. The western segment of the precambrian suture between the Yangtze and cathaysia blocks:Constraints from magnetotelluric data in southwest China[J]. Geophysical Research Letters,2023,50(4):e2022GL101872. DOI: 10.1029/2022GL101872

    [31]

    RODI W,MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics,2001,66(1):174 − 187. DOI: 10.1190/1.1444893

    [32]

    KELBERT A,MEQBEL N,EGBERT G D,et al. ModEM:A modular system for inversion of electromagnetic geophysical data[J]. Computers & Geosciences,2014,66:40 − 53.

    [33]

    PLOTKIN V V,MOGILATOV V S,GUREV V A,et al. Detection of 3D-inhomogeneities of the medium at magnetotelluric sounding in the Arctic (numerical experiment)[J]. Geophysical Journal International,2019,220(2):1340 − 1351.

    [34]

    SUN Xiangyu,ZHAN Yan,UNSWORTH M,et al. 3‐D magnetotelluric imaging of the easternmost kunlun fault:Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake[J]. Journal of Geophysical Research:Solid earth,2020,125(5):e2020JB019731. DOI: 10.1029/2020JB019731

    [35]

    HORMOZZADE GHALATI F,CRAVEN J A,MOTAZEDIAN D,et al. Modeling a fractured geothermal reservoir using 3-D AMT data inversion:Insights from Garibaldi Volcanic Belt,British Columbia,Canada[J]. Geothermics,2022,105:102528. DOI: 10.1016/j.geothermics.2022.102528

图(7)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  15
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 修回日期:  2024-01-14
  • 网络出版日期:  2025-02-10
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回