ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

椰壳纤维-石灰协同作用改良黏土性能试验研究

李丽华, 刘文, 白玉霞, 王翠英, 李双琴

李丽华,刘文,白玉霞,等. 椰壳纤维-石灰协同作用改良黏土性能试验研究[J]. 水文地质工程地质,2025,52(1): 130-140. DOI: 10.16030/j.cnki.issn.1000-3665.202311016
引用本文: 李丽华,刘文,白玉霞,等. 椰壳纤维-石灰协同作用改良黏土性能试验研究[J]. 水文地质工程地质,2025,52(1): 130-140. DOI: 10.16030/j.cnki.issn.1000-3665.202311016
LI Lihua, LIU Wen, BAI Yuxia, et al. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 130-140. DOI: 10.16030/j.cnki.issn.1000-3665.202311016
Citation: LI Lihua, LIU Wen, BAI Yuxia, et al. Experimental study on the synergistic effect of coir fiber and lime to improve soil performance[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 130-140. DOI: 10.16030/j.cnki.issn.1000-3665.202311016

椰壳纤维-石灰协同作用改良黏土性能试验研究

基金项目: 湖北省基金创新群体项目(2024AFA009);国家自然科学基金项目(52278347;U22A20232);湖北省高等学校优秀中青年科技创新团队项目(T2023006)
详细信息
    作者简介:

    李丽华(1978—),女,博士,教授,主要从事加筋土、路基工程、环境岩土等方面研究。E-mail:researchmailbox@163.com

    通讯作者:

    白玉霞(1991—),女,博士,讲师,主要从事土体加固、微生物岩土、边坡生态修复与防护等研究工作。E-mail:byxhhu@163.com

  • 中图分类号: TU443

Experimental study on the synergistic effect of coir fiber and lime to improve soil performance

  • 摘要:

    为了解决黏土工程性质差和椰壳纤维利用率低的问题,采用椰壳纤维与石灰协同对黏土进行加固,研究出一种绿色环保、性能高强的土体。通过击实试验、无侧限抗压强度试验研究了纤维掺量、石灰掺量等因素对加固黏土早期击实特性、抗压强度、变形特性、变形模量的影响,并通过扫描电镜和X射线衍射研究了加固黏土微观特征,揭示其协同作用机理。结果表明:石灰的掺入使得黏土最大干密度降低,最佳含水率增大;随着石灰掺量增加,土体抗压强度先增加后减小,土体破坏应变则先减小后增加,土体破坏形式呈现脆性;随着纤维掺量增加,土体抗压强度先增加后减小,土体破坏应变逐渐增加,土体破坏形式呈现塑性;改良土变形模量与抗压强度表现为一定线性关系;改良土中石灰通过与土体反应生成胶凝物质填充土体孔隙,纤维通过形成三维网状结构,并且为水化产物提供生长区域,二者协同作用加固土体。研究结果可为路基改良、边坡修复提供理论和技术指导。

    Abstract:

    To solve the problems of poor engineering properties of clay and low utilisation of coir fiber, a green and high-performance soil was obtained by using coir fiber in synergy with lime for clay reinforcement. Compaction test and unconfined compression test were carried out to analyze the influence of fiber content and lime content on the early compressive strength, axial compression deformation characteristics, and deformation modulus parameters of clay. The microscopic mechanism of the synergistic effect of fiber-lime soil was analyzed by scanning electron microscope and X-ray diffraction, and then the synergistic mechanism was discussed. The results show that the addition of lime reduces the maximum dry density and increases the optimum moisture content of the clay. With an increase in lime content, the compressive strength of the soil initially exhibits a rise followed by a decline. The strain of the soil failure shows a decrease first and then an increase, indicating a brittle failure mode. Similarly, as the fiber content increases, the compressive strength of the soil also experiences an initial increase followed by a subsequent decrease. However, in this case, there is a gradual increase in failure strain suggesting a plastic failure mode. The relationship between deformation modulus and compressive strength of improved soil is linear. Lime fills up pores by reacting with the soil to form gelled substances, while fibers form a three-dimensional network structure providing growth areas for hydration products, thereby synergistically reinforcing the soil. This study can provide theoretical and technical guidance for roadbed improvement and slope repair.

  • 目前,土体改良方法有很多种,如生物改良法、化学改良法和物理改良法等。生物改良法主要包括微生物改良[1]和植物改良[23]两种;化学改良方法[4]是利用化学改良剂与土体发生反应,产生新物质,从而提高土体强度;物理改良方法,大多使用土工合成材料[5]加筋土体。纤维作为一种新型加筋材料,具有分散性好、增强效果好等优点[68],受到很多学者青睐。

    采用纤维作为加筋材料,石灰、水泥、碱渣、稻壳灰等材料作为固化剂改良土体十分常见[912]。Zhang等[13]对纤维稳定电石渣固化土工程性能进行试验研究,考虑聚丙烯纤维长度、纤维含量、养护龄期对电石渣稳定土无侧限抗压和间接抗拉强度的影响,最终表明28 d龄期、0.3%纤维掺量、19 mm纤维长度对电石渣固化土增强效果最显著;李丽华等[14]开展了纤维底渣混合土循环剪性能研究,对垃圾焚烧后的底渣、聚丙烯纤维、黏土按照一定比例混合,研究不同竖向应力、剪切位移幅值以及压实度对纤维加筋底渣混合黏土循环剪切特性及循环后单调直剪特性,结果表明聚丙烯纤维的加入可以与底渣混合土形成空间网络骨架,从而增加试样抵抗变形能力,减小竖向沉降,增强稳定性;Muñoz等[15]研究了稻壳灰、水泥、聚丙烯纤维对土无侧限抗压强度和劈裂抗拉强度变化,结果表明固化剂与纤维协同作用下对土力学性能产生了积极作用;Duong等[16]将玉米丝纤维加入到水泥土里,结果表明纤维含量的增加导致了能量吸收增加,增强了水泥土韧性,提高了水泥土的抗压强度和抗拉强度。上述研究中采用的纤维多为人工合成纤维,人工合成纤维在生产过程和对土体加筋过程中会给环境造成一定污染,因此亟需大力开发绿色环保、造价低廉、高性能改良土体技术相关研究。

    传统的固化材料大多采用水泥,但水泥在生产过程中产生对环境造成污染的CO2[17],而采用石灰作为固化剂则具有加固效果好且对环境无污染的特点。世界上椰壳纤维产量大,造成了椰壳纤维过剩,并且椰壳纤维对环境友好、绿色环保、造价低、易获取、具有优良力学性能[18],采用椰壳纤维作为加筋材料,既解决了纤维过剩的问题又能对土体起到加固作用。

    本文以石灰作为固化剂、椰壳纤维作为加筋材料,通过击实试验、无侧限抗压强度试验研究石灰掺量、纤维长度对加固黏土早期抗压强度[19]、轴向压缩变形特性、变形模量的影响,并结合扫描电子显微镜(scanning electron microscope,SEM)观察石灰纤维土的微观形貌,利用X射线衍射(X-ray diffractometer,XRD)试验对纤维石灰土进行物相分析,揭示椰壳纤维-石灰加固土体的作用机理。研究成果对路基改良、边坡支护等工程建设具有参考意义。

    试验用土取自武汉市江夏区,土体呈现黄色,状态为硬塑。将取回土样放入105 ℃烘箱烘干24 h,碾碎过2 mm筛,进行室内土工试验,得到黏土基本物理指标如表1,试验所用土为高液限黏土。

    表  1  试验用土基本物理性质
    Table  1.  Basic physical properties of soil for testing
    参数 天然含
    水率/%
    塑限
    /%
    液限
    /%
    塑性
    指数
    最大干密度
    /(g·cm−3
    最优含
    水率/%
    数值 13.5 26.2 51.3 25.1 1.7 19.6
    下载: 导出CSV 
    | 显示表格

    本试验所用加固材料包括生石灰和椰壳纤维,石灰颜色为灰白色,椰壳纤维为黄棕色,如图1所示。图2为石灰XRD图谱,从图可知,石灰主要成分为CaO,其次含有少量的Ca(OH)2。椰壳纤维具有良好的力学性能,耐湿性、耐热性、耐久性好,基本性质见表2,椰壳纤维SEM图如图3所示。

    图  1  加固材料
    Figure  1.  Test Materials
    图  2  石灰XRD图
    Figure  2.  XRD spectrum of lime
    表  2  椰壳纤维基本性质
    Table  2.  Basic properties of coir fiber
    参数 纤维直
    径/mm
    纤维密度
    /(g·cm−3
    抗拉强度/MPa 延伸率/% 初始弹性
    模量/GPa
    数值 2.0~2.5 1.1~1.2 85.2~110.5 0.2~0.3 2.1~2.4
    下载: 导出CSV 
    | 显示表格
    图  3  椰壳纤维SEM图
    Figure  3.  SEM image of coir fiber

    根据现有研究结果[20]综合考虑,本试验选择的石灰掺量为0、1%、3%、6%、9%,椰壳纤维掺量为0、0.25%、0.50%、0.75%、1.00%,纤维长度为1,2,3,4 cm;试样养护龄期为7 d,测试纤维石灰固化土早期强度。其中,石灰和椰壳纤维掺量均为与干土质量的比值。

    由于试验配比较多,为方便表述,将每种配比用简单代号表示,如L3F0.75,3表示石灰掺量3%、椰壳纤维掺量0.75%、椰壳纤维长度3 cm,其余配比以此类推。试验配比见表3

    表  3  试验配比
    Table  3.  Test proportions
    试验名称 试验组别 含水率/% 石灰掺量/% 纤维掺量/% 纤维长度/cm 龄期/d
    击实试验 1 0,1,3,6,9 1
    无侧限抗压强度试验 1 19.6 0.25,0.50,0.75,1.00 1,2,3,4 7
    2 最优含水率 0,1,3,6,9 7
    3 最优含水率 1,3,6,9 0.25,0.50,0.75,1.00 3 7
      注:—表示相应试验组别不涉及此量。
    下载: 导出CSV 
    | 显示表格

    (1)击实试验

    击实试验使用DZY-III型多功能电动击实仪。根据《公路土工试验规程》(JTG 3430—2020)[21],采用轻型击实方法得到最优含水率和最佳干密度。本文采用干土法将不同配比石灰与烘干过筛土混合,按照先预估的最佳含水率,以3%含水率梯度加入不同质量水,拌料均匀后闷料24 h,以确保土和固化剂之间充分反应,进行击实试验。可以得到不同固化剂配比下含水率和干密度关系曲线,测出最大干密度和最佳含水率。

    (2)无侧限抗压强度试验

    无侧限抗压强度试验使用WDW-10E型微机控制电子万能试验机。先将石灰和土以最优含水率拌合,搅拌均匀后称量出每个试样需要的石灰土、椰壳纤维质量,再次进行拌合,使纤维均匀分布在土里,以击实试验所得最大干密度的96%制备试样,采用静压法制备直径(38±2)mm、高度(76±4) mm的圆柱型试样,试样制好用千斤顶取出试样,然后用保鲜膜包裹、密封,放置在温度为(22±2)℃和湿度为99%±5%的标准养护箱中养护到需要龄期。无侧限抗压强度试验按照《土工试验方法标准》(GB/T 50123—2019)[22]进行,以1 mm/min速率加载,出现峰值后停止加载。

    (3)微观试验

    扫描电镜分辨率为1.0 nm(15 kV)/1.3 nm(1 kV),加速电压为0.1~30.0 kV。取无侧限抗压试块中心区域代表性土,面积5 mm×5 mm、厚度小于2 mm,将其置于真空冷冻干燥机进行干燥,放入密封袋里备用。备用土样通过真空金属喷涂技术对样品表面预处理,用来减弱样品在扫描、记录时因为样品表面重放电产生的干扰,最后在不同方法倍数下进行观察。

    物相分析采用X射线衍射仪,线性度≤0.030,分辨率≤0.130,重复率≤0.0020。工作电压40 kV,扫描角度10°~80°(2θθ为掠射角),步长0.02,速率8°/min。

    击实试验结果如图4所示,可以看出,随着石灰掺量的增加,固化土的最大干密度逐渐减小,最佳含水率逐渐增大[23]。随着石灰掺量增加,最优含水率从19.6%升高到23.4%,最大干密度从1.71 g/cm3下降到1.60 g/cm3。土样最佳含水率不断增加的原因在于:一方面生石灰加到土中与土体中的水发生放热反应,消耗大量的水,生成氢氧化物,因此随着石灰掺量增加,需要的水越多;另一方面,随着石灰掺量增加,不同阳离子与土颗粒发生水合反应需要水,并且石灰与土体进行反应生成絮凝结构,此过程需要更多的水[24]。由于土颗粒之间产生凝聚和絮聚作用,形成颗粒更大的改良土粒[25],导致土的压实效果变差,干密度随石灰掺量增加而减小。

    图  4  击实试验曲线
    Figure  4.  Compaction test curve

    图5是土体掺入不同比例、不同长度的椰壳纤维进行无侧限抗压强度试验结果。从图中可以观察到,当纤维长度一定时,随着纤维掺量的增加,土的抗压强度呈现先增大后减小的趋势,在掺量为0.75%时达到最大值。当纤维掺量一定时,随着纤维长度的增加,土的抗压强度表现为先增大后减小的趋势,在长度为3 cm时抗压强度最大。由此可知当纤维长度为3 cm、掺量为0.75%时土的强度最佳,抗压强度为883.3 kPa,对比素土提高了64.3%。

    图  5  纤维掺量、纤维长度对土无侧限抗压强度影响
    Figure  5.  Effect of different dosages and lengths of fibers on unconfined compressive strength

    由此可见,在土体中加入纤维可以增强土体的抗压强度。当土体中加入纤维,在受力时,由于土体和纤维产生的变形不一样会使两者界面产生摩擦力,摩擦力会影响土体变形,提高土体强度,起到“桥接”作用;并且向土体中加入纤维,纤维和纤维之间相互搭接交织形成网状结构,对土体变形起到约束作用。当纤维掺量少且长度短时,纤维数量少,没有充分发挥作用;当纤维掺量多且长度长时,纤维在土中相互缠绕,在土里面不均匀分布,导致土体和纤维没有协同受力,从而影响土体强度。由此可见只有适量的纤维才会使土和纤维发挥充分作用。

    图6为石灰掺量对固化土抗压强度的影响。从图可知,随着石灰掺量增加,石灰土体的抗压强度表现为先增大后减小的变化趋势。石灰掺量为3%时,抗压强度达到最大,对比素土强度提高了136.7%。

    图  6  石灰掺量对土无侧限抗压强度的影响
    Figure  6.  Influence of lime content on unconfined compressive strength of soil

    由此可见在土体里加入适量石灰有利于土体抗压强度的增加。这是由于石灰加入土体后进行水化反应、离子间相互交换作用以及火山灰反应等,产生了胶凝产物[26],土体孔隙率降低,土骨架强度增高。随着石灰掺量增多,存在一个临界值,当石灰掺量过多会使多余石灰无法反应,抗压强度减小。

    图7为纤维-石灰土抗压强度试验结果。前述研究中纤维最佳长度为3 cm,因此采用3 cm纤维进行纤维-石灰土抗压强度试验。

    图  7  纤维-石灰土无侧限抗压强度
    Figure  7.  Unconfined compressive strength of fiber-lime soil

    图7可以看出,对于石灰和纤维混合土试样,石灰掺量一定时,随着纤维掺量的增加,土体强度先增加后减小,在纤维掺量0.75%时有最优值;纤维掺量一定时,随着石灰掺量的增加,土体强度也先增后减,在石灰掺量3%时达到最优值。对比素土,纤维、石灰对土体起到强化作用,两者耦合作用显著提高了土体强度。这是由于生石灰的加入产生了胶结物质,而纤维在土体里面形成空间网状结构,对土体的强度和变形都起到积极作用,能够协同作用提高土体抗压强度。最合适配比是L3F0.75,强度为1714.2 kPa,对比素土强度提高了218.9%。

    上述研究表明,在不同加固材料最优配比情况下,纤维-石灰土抗压强度>石灰土抗压强度>纤维土抗压强度>素土抗压强度。表明石灰、椰壳纤维加入对土体强度起到积极作用,并且纤维和石灰协同作用时效果最好。

    在一定条件下,纤维-石灰土的无侧限抗压强度(qu)随着纤维掺量增加的变化规律十分明显,为进一步了解纤维-石灰土强度特性发展规律,对其强度进行回归预测模型建立[27]。对试验数据进行回归分析,建立纤维-石灰土随着纤维掺量增加的强度模型,得到的回归模型如图8所示。

    图  8  不同纤维掺量下无侧限抗压强度拟合曲线
    Figure  8.  Fitting curves of unconfined compressive strength under different fiber dosages

    图9为单掺3 cm纤维加筋土轴向应力-应变曲线。从图中可以看到:随着纤维掺量的增加,峰值应力对应的应变沿x轴向右移动,曲线呈现明显应变硬化,为塑性破坏。到达峰值应力后,轴向应力下降趋势减缓,虽然土体出现了破坏面,但由于纤维约束土体变形,土体的应力并没有迅速丧失[28]。这是由于纤维的加入,纤维与土颗粒之间的摩擦力和机械锚固力[29]限制了土体变形。

    图  9  纤维土轴向应力-应变曲线
    Figure  9.  Axial stress-strain curve of fibrous soil

    图10为石灰土轴向应力-应变曲线。图中可以清楚看到,曲线在达到峰值应力前,曲线增长速率随石灰掺量先增加后减小,到达峰值应力后曲线下降速率随石灰掺量增加也先增大后减小。曲线到达峰值后急剧下降,峰值应力随石灰掺量增加先增大后减小,其对应的应变沿x轴先向左移动后向右移动,曲线呈现典型应变软化,为典型脆性破坏。这是由于石灰掺量超过3%时石灰土中石灰掺量过剩,存在过剩的石灰无法参与水化反应,土体胶结程度无法进一步提升,最终导致强度劣化,应力减小[30]

    图  10  石灰土轴向应力-应变曲线
    Figure  10.  Axial stress-strain curve of lime soil

    图11为纤维和石灰混掺加固土轴向应力-应变曲线。图11(a)为最优石灰掺量下纤维-石灰土轴向应力-应变曲线,从图中可以看到,随着纤维加入,峰值应力呈现先增大后减小的趋势,其峰值应力对应的应变逐渐增大,曲线呈现明显应变软化。纤维掺量为0.75%时应力达到最大。图11(b)为最优纤维掺量下纤维-石灰土轴向应力-应变曲线,从图中可以看到随着石灰掺量增加,峰值应力呈现先增大后减小的趋势,其对应的应变则呈现先减小后增大的趋势(图12),当石灰掺量为3%时,土体破坏形式为典型的脆性破坏。综上所述在石灰掺量3%、纤维掺量0.75%时,纤维-石灰土峰值应力最大,其对应的应力-应变曲线图包含面积更多,说明试样有较高抵抗变形的能力。

    图  11  纤维-石灰土轴向应力-应变曲线
    Figure  11.  Axial stress-strain curve of fiber-lime soil
    图  12  破坏应变试验结果
    Figure  12.  Results of failure strain test

    出现上述情况主要是石灰加入,固化剂生成的物质起到填充土孔隙和胶结土作用。纤维的加入起到加筋作用,通过自身优良的力学性能阻碍或者延缓土体变形。在加入纤维时,纤维在土体内相互交织搭接形成空间网状结构,当受到外力,纤维替土体承担部分压力承受土体变形,并且土体和纤维之间会产生摩擦力,限制土体变形强度增加。

    变形模量E50[31]是岩土材料变形特性重要参数,计算方法如下:

    E50=σ1/21/2εf (1)

    式中:εf——破坏应变;

    σ1/2——破坏应变达到一半时对应的应力值/MPa;

    E50——此时的割线模量/MPa。

    不同类型土的变形模量如图13所示。从图中可以看出,石灰掺量增加会使变形模量存在一个临界值,石灰临界掺量为3%;纤维掺入增加,变形模量大致呈现逐渐变小的趋势,未有明显峰值。

    图  13  变形模量E50试验结果
    Figure  13.  Test results of deformation modulus E50

    图14E50和无侧限抗压强度的关系图。L0F0~1是指未掺石灰,纤维掺量分别为0、0.25%、0.50%、0.75%、1.00%的试样配比,L1F0~1、L3F0~1、L6F0~1 、L9F0~1与L0F0~1同义。研究表明,E50qu之间存在某种线性关系,陈瑞敏等[32]对CSFG-FR协同作用改良淤泥固化土性能试验研究,发现E50qu的54.3~112.9倍;李丽华等[26]对稻壳灰-水泥固化土进行qu试验研究,表明E50qu的85.6~142.5倍。通过图14表明,纤维-石灰土E50qu之间存在对比其他研究较小的线性关系,E50qu的24.9~54.8倍,反映了石灰和椰壳纤维掺量对土改良后变形模量的影响。

    图  14  E50qu的关系
    Figure  14.  Relationship between E50 and qu

    研究表明,土宏观力学性能与微观结构之间有较大关系,土体微观结构决定宏观性能。图15为养护7 d后不同土样的微观结构特征。从图15(a)可以看到,素土试样中有许多孔隙和裂缝分布。从图15(b)(d)中可知,石灰的加入主要经过水化反应与火山灰反应,生成了片状结构、簇状结构等胶凝物质,生成的产物附着在土颗粒表面,填充土颗粒与土颗粒之间孔隙,有助于进一步提高土的密实度,使骨架强度提高,从而提高土体强度。图15(c)为放大300倍下石灰纤维土的SEM图像,可以看到纤维表面角质层部分被去除,表面呈现出清晰有序的凹坑,这有利于椰壳纤维与石灰土的界面黏合[33],并且上面有胶结物质附着生长。

    图  15  不同土样的SEM图
    Figure  15.  SEM image of different soil samples

    为探究纤维-石灰土水化产物组成,对7 d龄期固化样进行XRD试验,其水化产物图谱如图16所示。从图中可以看出素土主要存在石英、钙长石和白云母等矿物。对比石灰土、纤维-石灰土、素土试样,纤维-石灰土试样石英峰的衍射强度最高,可能是由于石灰的加入,造成了碱性环境,碱会影响纤维表面的纤维素等因素,从而无法使过多石灰与土体进行反应,导致SiO2过多,石灰固化作用受到一定抑制。从图中还可以看到,石灰土和纤维石灰土中都有新的水化产物生成,主要是水化铝酸钙(C-A-H)、水化硅酸钙(C-S-H)和水化硅铝酸钙(C-A-S-H)等胶凝物质,这主要是由于石灰发生水化反应,产生的OH破坏土中Ca—O、Si—O、Al—O键,游离的Ca2+促使硅、铝反应逐渐形成C-A-H、C-S-H、C-A-S-H凝胶[34]

    图  16  研究对象XRD图谱分析
    注:Q—石英;A—钙长石;M—白云母;C—方解石;A1—水化铝酸钙;S—水化硅酸钙;G—水化铝硅酸钙。
    Figure  16.  XRD spectrum analysis

    本文固化土的强度来源为纤维的物理加固作用与石灰固化剂的化学加固作用。将石灰加入到土体里会进行水化反应、离子交换与火山灰反应。离子间交换作用是由于CaO溶于水生成Ca(OH)2形成Ca2+和OH,土体表面存在着K+、Na+,石灰中高价的离子和土体表面低价的离子进行交换,高价的钙离子会大量的团聚附着于土颗粒的表面[35],填充土颗粒和土颗粒之间的空隙。火山灰反应主要是生石灰遇水生成Ca(OH)2(式2),Ca(OH)2分解成游离Ca2+和OH(式3),土体本身含有SiO2和Al2O3,他们之间进行火山灰反应生成C-S-H(式4)、C-A-H(式5)和C-A-S-H(式6)[36]这3种胶凝物质,使土颗粒联结方式产生变化,让原本分散的土粒胶结在一起,孔隙率减小,提高土的黏结力,增强土强度,当石灰过多时会产生多余Ca2+、OH游离在土体中。

    CaO+H2OCa(OH)2 (2)
    Ca(OH)2Ca2++2OH (3)
    Ca2++2OH+SiO2C-S-H (4)
    Ca2++2OH+Al2O3C-A-H (5)
    Ca2++2OH+Al2O3+SiO2C-A-S-H (6)

    天然纤维经过碱处理后除去了纤维结构中的非纤维素,破坏结构中的氢键,从而使纤维表面变得更加容易与土体黏结[37]。从图15(c)中可以看到纤维表面粗糙,在受力时纤维与土体之间产生较大的摩擦力,从而限制土体变形。椰壳纤维也有分散性好的优点,在土体里面随机分布形成空间网状结构,直接约束土颗粒移动,当受到外力时,纤维桥接作用抑制土体破坏面进一步发展。如图17所示,纤维为水化物提供生长环境,增加生成面积促进胶凝物质生长,从而发挥与石灰之间的协同作用。

    图  17  纤维-石灰土微观机制示意图
    Figure  17.  Microstructure of fiber-lime soil

    除石灰本身可以与土体发生一系列反应生成水化硅酸钙、水化铝酸钙、水化硅铝酸钙等物质外,石灰还与椰壳纤维一起发挥作用。椰壳纤维为石灰与土体反应生成的物质、石灰本身水化后生成的物质提供了生长区域,使产物附着在纤维表面。纤维穿插在土体里,在孔隙中的纤维将更多的水化物结合在相邻土颗粒间的孔喉处[38],使产物分布广泛,促进其生长。并且石灰使得纤维表面变粗糙,增加纤维与土颗粒界面之间力学性能,从而试样整体强度提高。最佳石灰和纤维掺量的土无侧限抗压强度较素土提高了218.9%,说明纤维与石灰充分发挥协同作用,最大限度提高了土体强度。

    (1)随着石灰掺量增加,土体最大干密度逐渐下降,从1.71 g/cm3下降到1.60 g/cm3;最佳含水率逐渐上升,从19.6%升高到23.4%。

    (2)对比素土试样,石灰土、纤维土、纤维-石灰土的抗压强度均有较大提升,均存在先增后减的趋势,并且纤维和石灰协同作用下土强度提升最大,强度最高可提高218.9%。石灰掺量存在最佳掺量为3%,纤维长度存在最佳长度为3 cm,最佳纤维-石灰土掺量为石灰3%和纤维0.75%。

    (3)随着纤维掺量增加,破坏应变逐渐增大,土体破坏形式逐渐变为塑性破坏;石灰掺量增加,破坏应变先减小后增大,土体破坏形式为典型的脆性破坏。纤维-石灰土轴向变形模量和抗压强度之间存在线性关系,变形模量是无侧限抗压强度的24.9~54.8倍。

    (4)石灰加入土中会产生片状结构、絮状结构、簇状结构等凝胶,分布在土体表面及填充孔隙,胶结土体。纤维加入土中后,一方面为胶凝物质提供生长环境,使产物附着生长,导致纤维与土体紧密黏结在一起;另一方面纤维在土体中形成空间网状结构,阻止土体开裂,增强土体抵抗变形能力。结果证实椰壳纤维主要起到加筋作用、石灰起到固化作用,从而改变土体本身性质。

  • 图  1   加固材料

    Figure  1.   Test Materials

    图  2   石灰XRD图

    Figure  2.   XRD spectrum of lime

    图  3   椰壳纤维SEM图

    Figure  3.   SEM image of coir fiber

    图  4   击实试验曲线

    Figure  4.   Compaction test curve

    图  5   纤维掺量、纤维长度对土无侧限抗压强度影响

    Figure  5.   Effect of different dosages and lengths of fibers on unconfined compressive strength

    图  6   石灰掺量对土无侧限抗压强度的影响

    Figure  6.   Influence of lime content on unconfined compressive strength of soil

    图  7   纤维-石灰土无侧限抗压强度

    Figure  7.   Unconfined compressive strength of fiber-lime soil

    图  8   不同纤维掺量下无侧限抗压强度拟合曲线

    Figure  8.   Fitting curves of unconfined compressive strength under different fiber dosages

    图  9   纤维土轴向应力-应变曲线

    Figure  9.   Axial stress-strain curve of fibrous soil

    图  10   石灰土轴向应力-应变曲线

    Figure  10.   Axial stress-strain curve of lime soil

    图  11   纤维-石灰土轴向应力-应变曲线

    Figure  11.   Axial stress-strain curve of fiber-lime soil

    图  12   破坏应变试验结果

    Figure  12.   Results of failure strain test

    图  13   变形模量E50试验结果

    Figure  13.   Test results of deformation modulus E50

    图  14   E50qu的关系

    Figure  14.   Relationship between E50 and qu

    图  15   不同土样的SEM图

    Figure  15.   SEM image of different soil samples

    图  16   研究对象XRD图谱分析

    注:Q—石英;A—钙长石;M—白云母;C—方解石;A1—水化铝酸钙;S—水化硅酸钙;G—水化铝硅酸钙。

    Figure  16.   XRD spectrum analysis

    图  17   纤维-石灰土微观机制示意图

    Figure  17.   Microstructure of fiber-lime soil

    表  1   试验用土基本物理性质

    Table  1   Basic physical properties of soil for testing

    参数 天然含
    水率/%
    塑限
    /%
    液限
    /%
    塑性
    指数
    最大干密度
    /(g·cm−3
    最优含
    水率/%
    数值 13.5 26.2 51.3 25.1 1.7 19.6
    下载: 导出CSV

    表  2   椰壳纤维基本性质

    Table  2   Basic properties of coir fiber

    参数 纤维直
    径/mm
    纤维密度
    /(g·cm−3
    抗拉强度/MPa 延伸率/% 初始弹性
    模量/GPa
    数值 2.0~2.5 1.1~1.2 85.2~110.5 0.2~0.3 2.1~2.4
    下载: 导出CSV

    表  3   试验配比

    Table  3   Test proportions

    试验名称 试验组别 含水率/% 石灰掺量/% 纤维掺量/% 纤维长度/cm 龄期/d
    击实试验 1 0,1,3,6,9 1
    无侧限抗压强度试验 1 19.6 0.25,0.50,0.75,1.00 1,2,3,4 7
    2 最优含水率 0,1,3,6,9 7
    3 最优含水率 1,3,6,9 0.25,0.50,0.75,1.00 3 7
      注:—表示相应试验组别不涉及此量。
    下载: 导出CSV
  • [1] 熊雨,邓华锋,李建林,等. 火山灰增强微生物固化砂土效果的试验研究[J]. 岩土力学,2022,43(12):3403 − 3415. [XIONG Yu,DENG Huafeng,LI Jianlin,et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics,2022,43(12):3403 − 3415. (in Chinese with English abstract)]

    XIONG Yu, DENG Huafeng, LI Jianlin, et al. Experimental study of MICP-treated sand enhanced by pozzolan[J]. Rock and Soil Mechanics, 2022, 43(12): 3403 − 3415. (in Chinese with English abstract)

    [2] 李珍玉,欧阳淼,肖宏彬,等. 植物根系生长形态对膨胀土边坡土体抗剪强度的影响[J]. 中南大学学报(自然科学版),2022,53(1):181 − 189. [LI Zhenyu,OUYANG Miao,XIAO Hongbin,et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology),2022,53(1):181 − 189. (in Chinese with English abstract)] DOI: 10.11817/j.issn.1672-7207.2022.01.013

    LI Zhenyu, OUYANG Miao, XIAO Hongbin, et al. Influence of root growth configuration on shear strength of expansive soil slope[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 181 − 189. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2022.01.013

    [3] 刘亚斌,梁燊,石川,等. 青藏高原东北部黄土区柠条锦鸡儿根系的锚固效应[J]. 中国地质灾害与防治学报,2023,34(5):107 − 116. [LIU Yabin,LIANG Shen,SHI Chuan,et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):107 − 116. (in Chinese with English abstract)]

    LIU Yabin, LIANG Shen, SHI Chuan, et al. The root anchorage effect of shrub species Caragana Korshinskii Kom in the loess area of northeastern Qinghai–Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 107 − 116. (in Chinese with English abstract)

    [4]

    JARITNGAM S,YANDELL W O,TANEERANANON P. Development of strength model of lateritic soil-cement[J]. Engineering Journal,2013,17(1):69 − 78. DOI: 10.4186/ej.2013.17.1.69

    [5]

    MULUTI S S,KALUMBA D,SOBHEE-BEETUL L,et al. Shear strength of single and multi-layer soil–geosynthetic and geosynthetic–geosynthetic interfaces using large direct shear testing[J]. International Journal of Geosynthetics and Ground Engineering,2023,9(3):33. DOI: 10.1007/s40891-023-00450-1

    [6]

    LI Lihua,ZHANG Xin,XIAO Henglin,et al. The triaxial test of polypropylene fiber reinforced fly ash soil[J]. Materials,2022,15(11):3807.

    [7] 孙振兴,杨忠年,辛泽宇,等. 橡胶纤维加筋膨胀土的剪切强度与强度预测模型[J/OL]. 吉林大学学报(地球科学版),(2024-10-11)[2024-12-01]. [SUN Zhenxing,YANG Zhongnian,XIN Zeyu,et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition),(2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)]

    SUN Zhenxing, YANG Zhongnian, XIN Zeyu, et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition), (2024-10-11)[2024-12-01]. https://doi.org/10.13278/j.cnki.jjuese.20240001.(in Chinese with English abstract)

    [8] 宋琨,刘跃,阮迪,等. 玄武岩纤维改良弱膨胀土的强度及裂隙特性研究[J/OL]. 地质科技通报,(2024-08-09)[2024-10-11]. [SONG Kun,LIU Yue,RUAN Di,et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology,(2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)]

    SONG Kun, LIU Yue, RUAN Di, et al. Study on strength and cracking behavior of weak expansive soil improved by basalt fiber[J/OL]. Bulletin of GeologicalScience and Technology, (2024-08-09)[2024-10-11]. https://doi.org/10.19509/j.cnki.dzkq.tb20240143.(in Chinese with English abstract)

    [9] 柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96 − 105. [CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2022,49(5):96 − 105. (in Chinese with English abstract)]

    CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96 − 105. (in Chinese with English abstract)

    [10] 魏洪山,王伟志,徐永福,等. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质,2022,49(6):81 − 89. [WEI Hongshan,WANG Weizhi,XU Yongfu,et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(6):81 − 89. (in Chinese with English abstract)]

    WEI Hongshan, WANG Weizhi, XU Yongfu, et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81 − 89. (in Chinese with English abstract)

    [11] 何俊,栗志翔,石小康,等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质,2019,46(6):83 − 89. [HE Jun,LI Zhixiang,SHI Xiaokang,et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology,2019,46(6):83 − 89. (in Chinese with English abstract)]

    HE Jun, LI Zhixiang, SHI Xiaokang, et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 83 − 89. (in Chinese with English abstract)

    [12] 李丽华,岳雨薇,肖衡林,等. 稻壳灰-水泥固化镉污染土性能及影响机制[J]. 岩土工程学报,2023,45(2):252 − 261. [LI Lihua,YUE Yuwei,XIAO Henglin,et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering,2023,45(2):252 − 261. (in Chinese with English abstract)] DOI: 10.11779/CJGE20211326

    LI Lihua, YUE Yuwei, XIAO Henglin, et al. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252 − 261. (in Chinese with English abstract) DOI: 10.11779/CJGE20211326

    [13]

    ZHANG Hongzhou,TIAN Limei,WANG Shuang,et al. Experimental study on engineering properties of fiber-stabilized carbide-slag-solidified soil[J]. PLoS One,2022,17(4):e0266732. DOI: 10.1371/journal.pone.0266732

    [14] 李丽华,臧天宝,刘永莉,等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报,2021,40(1):196 − 205. [LI Lihua,ZANG Tianbao,LIU Yongli,et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):196 − 205. (in Chinese with English abstract)]

    LI Lihua, ZANG Tianbao, LIU Yongli, et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 196 − 205. (in Chinese with English abstract)

    [15]

    MUÑOZ Y O,DOS SANTOS IZZO R L,DE ALMEIDA J L,et al. The role of rice husk ash,cement and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba Formation[J]. Transportation Geotechnics,2021,31:100673. DOI: 10.1016/j.trgeo.2021.100673

    [16]

    DUONG N T,SATOMI T,TAKAHASHI H. Potential of corn husk fiber for reinforcing cemented soil with high water content[J]. Construction and Building Materials,2021,271:121848. DOI: 10.1016/j.conbuildmat.2020.121848

    [17] 吴萌. 石灰基低碳胶凝材料的设计制备与水化机理研究[D]. 南京:东南大学,2021. [WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing:Southeast University,2021. (in Chinese with English abstract)]

    WU Meng. Study on design method and hydration mechanism of lime-based low carbon cemetitious materials[D]. Nanjing: Southeast University, 2021. (in Chinese with English abstract)

    [18] 杨莉,王孝锋,邹梨花,等. 混杂工艺对椰壳-大麻/聚丙烯复合材料力学性能的影响[J]. 复合材料学报,2019,36(9):2093 − 2100. [YANG Li,WANG Xiaofeng,ZOU Lihua,et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2093 − 2100. (in Chinese with English abstract)]

    YANG Li, WANG Xiaofeng, ZOU Lihua, et al. Effects of hybrid process on mechanical properties of coir-hemp/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2093 − 2100. (in Chinese with English abstract)

    [19] 薛艳华,高明星,袁飞龙,等. 聚丙烯酰胺对石灰稳定土早期强度和破坏形式的影响[J]. 复合材料学报,2021,38(4):1283 − 1291. [XUE Yanhua,GAO Mingxing,YUAN Feilong,et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica,2021,38(4):1283 − 1291. (in Chinese with English abstract)]

    XUE Yanhua, GAO Mingxing, YUAN Feilong, et al. Effect of polyacrylamide on early strength and failure form of lime stabilized soil[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1283 − 1291. (in Chinese with English abstract)

    [20] 陈一新,王保田,张永奇,等. 石灰改良淤泥质土的试验研究[J]. 科学技术与工程,2014,14(34):273 − 277. [Chen Yixin,Wang Baotian,Zhang Yongqi,et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering,2014,14 (34):273 − 277. (in Chinese with English abstract)]

    Chen Yixin, Wang Baotian, Zhang Yongqi, et al Experimental study on lime improving muddy soil [J] Science Technology and Engineering, 2014, 14 (34): 273 − 277. (in Chinese with English abstract)

    [21] 中华人民共和国交通运输部. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:China Communications Press,2020. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

    [22] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [23] 李丽华,余肖婷,肖衡林,等. 稻壳灰加筋土力学性能研究[J]. 岩土力学,2020,41(7):2168 − 2178. [LI Lihua,YU Xiaoting,XIAO Henglin,et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics,2020,41(7):2168 − 2178. (in Chinese with English abstract)]

    LI Lihua, YU Xiaoting, XIAO Henglin, et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41(7): 2168 − 2178. (in Chinese with English abstract)

    [24]

    SATYANARAYANA P,BHARADWAJ C P,PATRUDU P N,et al. A study on the engineering properties of expansive soil stabilized with high volume rice husk ash[J]. International Journal of Engineering Science and Technology,2016,8:71 − 76.

    [25] 祝艳波,余宏明,杨艳霞,等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报,2013,32(2):425 − 432. [ZHU Yanbo,YU Hongming,YANG Yanxia,et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):425 − 432. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-6915.2013.02.026

    ZHU Yanbo, YU Hongming, YANG Yanxia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425 − 432. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-6915.2013.02.026

    [26] 李丽华,岳雨薇,李文涛,等. 稻壳灰固化重金属污染土力学性能及微观结构研究[J]. 铁道科学与工程学报,2022,19(11):3275 − 3282. [LI Lihua,YUE Yuwei,LI Wentao,et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering,2022,19(11):3275 − 3282. (in Chinese with English abstract)]

    LI Lihua, YUE Yuwei, LI Wentao, et al. Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3275 − 3282. (in Chinese with English abstract)

    [27] 栗培龙,裴仪,胡晋川,等. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报,2021,35(22):22092 − 22097. [LI Peilong,PEI Yi,HU Jinchuan,et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports,2021,35(22):22092 − 22097. (in Chinese with English abstract)] DOI: 10.11896/cldb.20080213

    LI Peilong, PEI Yi, HU Jinchuan, et al. Research on influencing factors and prediction model of compressive strength of carbide slag stabilized soil[J]. Materials Reports, 2021, 35(22): 22092 − 22097. (in Chinese with English abstract) DOI: 10.11896/cldb.20080213

    [28] 宫亚峰,申杨凡,谭国金,等. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版),2018,48(3):712 − 719. [GONG Yafeng,SHEN Yangfan,TAN Guojin,et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition),2018,48(3):712 − 719. (in Chinese with English abstract)]

    GONG Yafeng, SHEN Yangfan, TAN Guojin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 712 − 719. (in Chinese with English abstract)

    [29] 阮波,阮晨希,邓林飞,等. 聚丙烯纤维加筋水泥搅拌土拉压性能试验研究[J]. 铁道科学与工程学报,2021,18(1):95 − 103. [Ruan Bo,Ruan Chenxi,Deng Linfei,et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering,2021,18(1):95 − 103. (in Chinese with English abstract)]

    Ruan Bo, Ruan Chenxi, Deng Linfei, et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering, 2021, 18(1): 95 − 103. (in Chinese with English abstract)

    [30] 张亭亭,李江山,王平,等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. 岩土力学,2016,37(增刊1):215 − 225. [ZHANG Tingting,LI Jiangshan,WANG Ping,et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics,2016,37(Sup 1):215 − 225. (in Chinese with English abstract)]

    ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Study on stress-strain characteristics of lead contaminated soil solidified with Trimagnesium phosphate cement [J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 215 − 225. (in Chinese with English abstract)

    [31] 李建军,梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学,2009,30(2):473 − 477. [LI Jianjun,LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics,2009,30(2):473 − 477. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2009.02.032

    LI Jianjun, LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473 − 477. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2009.02.032

    [32] 陈瑞敏,简文彬,张小芳,等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学,2022,43(4):1020 − 1030. [CHEN Ruimin,JIAN Wenbin,ZHANG Xiaofang,et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics,2022,43(4):1020 − 1030. (in Chinese with English abstract)]

    CHEN Ruimin, JIAN Wenbin, ZHANG Xiaofang, et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43(4): 1020 − 1030. (in Chinese with English abstract)

    [33] 王威,黄故. 碱处理对椰壳纤维形态结构的影响[J]. 上海纺织科技,2008,36(10):20 − 22. [WANG Wei,HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology,2008,36(10):20 − 22. (in Chinese with English abstract)]

    WANG Wei, HUANG Gu. The influence of alkali processing on coconut fiber performance[J]. Shanghai Textile Science & Technology, 2008, 36(10): 20 − 22. (in Chinese with English abstract)

    [34]

    LI Wentao,NI Pengpeng,YI Yaolin. Comparison of reactive magnesia,quick lime,and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment,2019,671:741 − 753. DOI: 10.1016/j.scitotenv.2019.03.270

    [35] 陈仁朋,DAITA R K,DRNEVICH V P,等. 室内TDR试验监测石灰矿渣加固粘性土的物理化学反应过程[J]. 岩土工程学报,2006,28(2):249 − 255. [CHEN Renpeng,DAITA R K,DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering,2006,28(2):249 − 255. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2006.02.020

    CHEN Renpeng, DAITA R K, DRNEVICH V P et al. Laboratory TDR monitoring of physico-chemical process in lime kiln dust stabilized clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 249 − 255. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2006.02.020

    [36]

    TIWARI N,SATYAM N,PUPPALA A J. Strength and durability assessment of expansive soil stabilized with recycled ash and natural fibers[J]. Transportation Geotechnics,2021,29:100556. DOI: 10.1016/j.trgeo.2021.100556

    [37] 杨政险,李慷,张勇,等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报,2022,50(2):522 − 532. [YANG Zhengxian,LI Kang,ZHANG Yong,et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society,2022,50(2):522 − 532. (in Chinese with English abstract)]

    YANG Zhengxian, LI Kang, ZHANG Yong, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522 − 532. (in Chinese with English abstract)

    [38] 章定文,曹智国,张涛,等. 碳化对水泥固化铅污染土物理力学特性的影响及其微观机理[J]. 天津大学学报(自然科学与工程技术版),2020,53(2):192 − 200. [ZHANG Dingwen,CAO Zhiguo,ZHANG Tao,et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology),2020,53(2):192 − 200. (in Chinese with English abstract)]

    ZHANG Dingwen, CAO Zhiguo, ZHANG Tao, et al. Effect of carbonation on physical-mechanical properties and microstructural characteristics of cement solidified lead-contaminated soils[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 192 − 200. (in Chinese with English abstract)

  • 期刊类型引用(1)

    1. 亓星,刘焕,杨浪,曹汝亮. 水泥聚丙烯纤维加固黏性土的浸水软化时效特性. 中国地质灾害与防治学报. 2025(02): 145-151 . 百度学术

    其他类型引用(1)

图(17)  /  表(3)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  13
  • PDF下载量:  20
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-11-05
  • 修回日期:  2023-12-27
  • 网络出版日期:  2024-11-19
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回