ISSN 1000-3665 CN 11-2202/P

    山谷型小流域地表水与地下水时空交互模拟研究

    Integrated model for estimation of the interaction between surface water and groundwater based on in valley watershed

    • 摘要: 以往地表水-地下水交互过程研究集中于平原河网地区,而水动力交互作用强烈的山谷型流域研究甚少。选取句容北山水库流域为研究区,聚焦山谷型流域地表产汇流与浅层地下水渗流交互过程,基于SWAT-MODFLOW模型构建了地表水-地下水耦合模型评价流域水量交互过程及时空变化规律。结果表明:流域范围内地下水与地表水的交互存在一定的时空差异性; 2016—2019年期间整体呈现地下水补给地表水,但在丰水期局部时段,地表水补给地下水;研究区西北部、东北部山区以及南部北山水库周边地区表现为地下水补给地表水;耦合模型可较好地刻画研究区地表水与地下水的交互流量,流域地下水对河道净补给量的贡献率为8.72%,其中地下水补给量在空间分布上西部支流和中部支流区域分别占28.8%、79.8%,东部支流地表水补给地下水,地下水的补给率逆差为−8.6%。研究可为流域水资源联合调度和开发利用提供技术支撑。

       

      Abstract: Previous studies on surface water-groundwater (SW-GW) interactions have primarily focused on plain river networks, with limited understanding on hydrodynamic interactions in valley-type watersheds. This study focuses on the Beishan Reservoir Basin (BRB) in Jurong, specifically investigating surface runoff and shallow groundwater interactions in a valley-type watershed Jurong. A coupled SWAT-MODFLOW model was developed to evaluate the spatiotemporal variations in SW-GW interaction processes. The results show that the interaction between SW-GW varies both temporally and spatially. Temporally, the groundwater discharged into the surface water during 2016−2019, while the surface water replenished the groundwater during certain periods of wet season. Spatially, the mountainous areas in the northwest and northeast of the study area and the surrounding areas of BRB in the south of the study area are characterized by groundwater discharge into surface water. The coupling model effectively describes the surface water-groundwater (SW-GW) interaction, with groundwater contributing 8.72% to the net replenishment of rivers in the basin. The western tributaries and central tributaries of the basin receive 28.8% and 79.8% groundwater recharge in the whole basin, respectively. The eastern tributaries with negative groundwater recharge rate of -8.6% exhibit surface water discharge into groundwater. This study provides a technical support for joint scheduling and development and utilization of watershed water resources.

       

    /

    返回文章
    返回