ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

水动力条件对东营凹陷气藏的制约及对CO2封存靶区的启示

张保建, 郭朝斌, 何庆成, 杨利超, 朱宇通, 汪心雯, 李宗祎

张保建,郭朝斌,何庆成,等. 水动力条件对东营凹陷气藏的制约及对CO2封存靶区的启示[J]. 水文地质工程地质,2024,51(4): 33-40. DOI: 10.16030/j.cnki.issn.1000-3665.202402006
引用本文: 张保建,郭朝斌,何庆成,等. 水动力条件对东营凹陷气藏的制约及对CO2封存靶区的启示[J]. 水文地质工程地质,2024,51(4): 33-40. DOI: 10.16030/j.cnki.issn.1000-3665.202402006
ZHANG Baojian, GUO Chaobin, HE Qingcheng, et al. Constraints of hydrodynamic conditions on gas reservoirs in Dongying depression and its enlightenment to CO2 storage target area[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 33-40. DOI: 10.16030/j.cnki.issn.1000-3665.202402006
Citation: ZHANG Baojian, GUO Chaobin, HE Qingcheng, et al. Constraints of hydrodynamic conditions on gas reservoirs in Dongying depression and its enlightenment to CO2 storage target area[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 33-40. DOI: 10.16030/j.cnki.issn.1000-3665.202402006

水动力条件对东营凹陷气藏的制约及对CO2封存靶区的启示

基金项目: 国家自然科学基金项目(U2244215;U2344226;42372286;42002255;42302297);中国地质调查局地质调查项目(DD20221819);中国地质科学院基本科研业务费专项经费(JKY202413;JKYQN202306)
详细信息
    作者简介:

    张保建(1972—),男,博士(后),正高级工程师,从事碳封存、地热、水文地质相关研究。E-mail:zbjsddk@126.com

    通讯作者:

    何庆成(1962—),男,博士,教授级高级工程师,主要从事水文地质、工程地质和环境地质研究。Email:479400160@qq.com

  • 中图分类号: X701;P618.130.2

Constraints of hydrodynamic conditions on gas reservoirs in Dongying depression and its enlightenment to CO2 storage target area

  • 摘要:

    东营凹陷及周边大量的天然气藏预示着这些区域具有良好的CO2地质封存条件。为了优选出东营凹陷及周边适宜CO2封存的靶区,通过收集资料与盆地流场综合分析,总结归纳了东营凹陷及周边埋深为500~1500 m的天然气成藏的主控因素、赋存模式,以及东营凹陷地下流体动力场对天然气藏形成的制约作用。研究结果显示:(1)按照地下流体运动特征与方式,天然气藏形成的输导方式可划分为侧向型输导体系与垂向型输导体系,侧向型主要分布在凹陷边缘高凸起带,垂向型主要分布在盆内凹陷区。(2)压实流是凹陷中心的深部气源向上运移的主要驱动力,一部分深源气体自凹陷中心向凹陷边缘产生较长距离的运动,在凹陷边缘的高凸起部位压实流与重力流的接合区形成封闭的水动力圈闭,形成侧向型天然气藏;另一部分深源气体在压实流驱动下,沿高孔渗断裂带垂向运移进入顶部的圈闭中聚集成藏。由于断层错断导致的岩性圈闭比较发育,与水动力圈闭一起构成气体的有效圈闭,形成垂向型天然气藏。(3)东营凹陷CO2封存最有利靶区主要位于凹陷西、北方向的青城凸起、林樊家凸起、滨县凸起、陈家庄凸起、广饶凸起等高凸起及其周边;东部的广饶凸起、青坨子凸起等凸起及凹陷区的垂向断裂发育区为CO2封存较有利靶区。研究认识对我国东部沉积盆地高碳排放区CO2地质封存场地优选具有参考意义。

    Abstract:

    A large number of natural gas reservoirs in Dongying depression and its surrounding areas indicate that there are good conditions for CO2 geological storage in these areas. To optimize the target area suitable for CO2 storage, through data collection and comprehensive analysis of Dongying basin flow field, this study summarized the main controlling factors and occurrence modes of natural gas accumulation in Dongying depression and its surrounding areas with a buried depth of 500-1500 m, and analyzed the restrictive effect of underground hydrodynamic field on the formation of natural gas reservoirs. The results show the migration pathways of shallow gas reservoirs can be divided into lateral migration pathways and vertical migration pathways based on the characteristics and modes of underground fluid movement. The lateral type is mainly distributed in the high uplift belt at the edge of the depression, and the vertical type is mainly distributed in the depression area in the basin. Compaction flow is the main driving force for the upward migration of the deep gas source in the center of the depression. A part of the deep gas moves for a long distance from the center of the depression to the edge of the depression, forming a closed hydrodynamic trap and a lateral shallow gas reservoir at the junction of compaction flow and gravity flow in the high convex part of the edge of the depression. The other part of deep gas, driven by compaction flow, migrates vertically along the high porosity and permeability fault zone and accumulates in the trap at the top. Lithologic traps caused by fault dislocation are relatively developed, which together with hydrodynamic traps form an effective trap of gas and form a vertical shallow gas reservoir. The most favorable target area for CO2 storage in the shallow part (500-1500 m) of Dongying depression is mainly located in the west and north direction of the depression, such as Gaoqing Uplift, Linfanjia Uplift, Binxian Uplift, Chenjiazhuang Uplift, Guangrao Uplift, and their surrounding areas. The vertical fault development areas of Guangrao uplift, Qingtuozi uplift, and other depressions in the east are favorable targets for CO2 storage in the shallows.

  • CO2地质封存(geological CO2 sequestration, GCS)是指模仿化石能源的埋存,在类似的地质结构中把从地下开采出来的碳再放回到地下[1]。GCS的主要场所包括枯竭油气藏、不可开采煤层和深部咸水含水层。其中深部咸水含水层是封存场地广泛和封存效果最好的场所,根据张洪涛等[2]、李小春等[3]的估算,中国CO2地质潜力封存量巨大,其中以深部咸水层封存量为主,完全可满足我国CO2地质封存使用。GCS是实现碳达峰、碳中和的主要地质路径[4],也是能够有效减少大型工业碳排放的手段,它将分担未来大约14%的全球碳排放量来满足巴黎协定“2 °C目标”[5]

    封存效果是GCS最受关注的问题[6]。因此,我国研究者在优选CO2地质储存场所时,均将盖层封闭性、封存体稳定性、水动力封闭(封堵)作用等作为靶区筛选的主要指标[710]。CO2在深部咸水含水层中的封存机理包括构造与地层封存/水动力封存、毛细封存、溶解封存和矿化封存等[1112];涉及多个复杂的地质过程,包括多相多组分的运移过程、储层热响应、地下流体动力场、水岩相互作用和地质力学变化等。咸水层CO2地质封存本质上相当于寻找或营造一个地下“人工气藏”[13],这就为我们提供了一个思路:可以根据天然气藏的有利构造部位与赋存地质条件,寻找类似地质条件的地质构造部位,作为GCS的有利场所。

    东营凹陷是我国重要的油区,不但发现了大量油田,也发现了大量伴生气藏[1415],气藏以高含CH4为主,少量为高含CO2气藏。尤其是埋深为500~1 500 m的天然气藏[1617]的赋存规律,对咸水层CO2浅部地质封存具有重要的启示意义,可以选取与天然气藏所处类似地质条件的构造部位,作为咸水层CO2地质封存的靶区,以实现较好的CO2封存效果。本文全面分析研究了前人关于东营凹陷及周边天然气藏的研究成果和天然气成藏的主控因素及模式,特别是重点分析地下流体的运移规律、水动力条件与圈闭作用对CO2地质封存的控制作用,在此基础上,优选出东营凹陷及周边适宜CO2地质封存的靶区,为东部高碳排放区CO2封存场地选择提供参考。

    东营凹陷位于渤海湾盆地济阳坳陷的东南部,东西长约100 km,南北宽约64 km,面积5700 km2。东营凹陷是一个含天然气丰富的负向构造单元,四周以隆起或凸起为界:东为垦东凸起、青坨子凸起,北为陈家庄凸起,西为滨县凸起和青城凸起,南面的鲁西南隆起既是东营凹陷的南界,也是济阳坳陷的南界(图1)。

    图  1  东营凹陷及周边稠油与天然气藏分布(据文献[1416]修改)
    Figure  1.  Distribution of heavy oil and shallow gas reservoirs in Dongying depression and its surrounding areas (modified after Ref. [14, 16])

    天然气田主要分布于东营凹陷的边缘、凹陷与周边凸起的接合部位,埋深为500~1 500 m。如青城凸起的花沟气田,滨县凸起、林樊家凸起顶部的气藏,陈家庄凸起南北两侧的盐家气田与三合村气田等(图1),沿东营凹陷的边缘基本呈环状分布[14]

    (1)垂向分布

    东营凹陷已发现的探明的含气层位自下而上为前震旦系、中生界、新生界的孔店组、沙(河街组)四段、沙三段、沙二段、沙一段、东营组、馆陶组和明化镇组共10套含气层系。埋藏深度628.6~1 848.0 m,主要气藏的埋藏深度为800~1 500 m。含气层系多、埋藏浅是东营凹陷气藏分布的显著特点。

    (2)横向分布

    东营凹陷天然气的储集分为溶解气、气顶气、纯气藏三种状态[14]。这三种状态的天然气在凹陷中的分布具有明显的规律性,自凹陷内部到凹陷边缘天然气可分为三个环形分布区。一为油藏中的溶解气,分布于东营凹陷的中心区;二为油藏顶部的气顶气,分布于中心区的外围;三为纯气藏,主要分布于东营凹陷边缘的凸起部位(图1)。

    东营凹陷及周边气藏既有无机成因又有有机成因,其中高含CO2气藏以无机成因为主[1617]。油气的运移、聚集与地下流体动力场的分布规律紧密相关,从流体动力学的角度分析,油气可以在不同的局部水动力环境中聚集[18]

    在厚度巨大的松散碎屑岩类沉积盆地中,一般均存在着两种不同成因的地下水动力系统,一种是渗入成因,另一种是沉积成因水[19]。含油气盆地水文地质的相关研究认为[2021],大型沉积盆地地下水动力系统由大气降水渗入成因水和沉积成因水共同组成,具有区域性的水力连续性或统一的水力联系。渗入成因水在重力作用下,沿盆地边缘流向盆地中心或地势较低的盆地另一侧边缘,因此表现为“向心流”;沉积成因水主要来自于盆地内沉积物经压实而被排挤出来的水(即压实流),其流向从盆地沉积中心向周边呈放射状流动,表现为“离心流”。两种不同成因、不同流向的地下流体,在盆地一定部位形成动力平衡[19]

    含油气流体自凹陷中心的地层高压区(压力系数>1.2)[22]沿孔隙度较高的含水层与导水性能较好的断层,向凹陷边缘的常压区(压力系数<1.0)流动,携带着油气的压实流与来自补给区的循环深度较浅(一般在3 000 m以浅)的渗入水相遇,形成封闭的地下流体动力平衡环境,在浮力或压差作用下向顶部运移,并发生重力分异[2324],在有利的构造圈闭部位形成气藏(图2),动力平衡区流体一般表现为高矿化咸水特征[19]

    图  2  东营凹陷油气藏差异富集及水动力特征(剖面位置见图1)(据文献[22]修改)
    注:Nm—新近系明化镇组;Ng—新近系馆陶组;Ed—古近系东营组;Es1—古近系沙河街组一段;Es2—古近系沙河街组二段;Es3—古近系沙河街组三段;Es4—古近系沙河街组四段;Ek——古近系孔店组。下图同。
    Figure  2.  Differential enrichment and hydrodynamic characteristics of oil and gas reservoirs in Dongying depression (see fig. 1 for profile position) (modified after Ref. [22])

    天然气藏的形成研究成果比较丰富,按促使其形成的地下流体运动的主要方向,可划分为侧向型输导体系与垂向型输导体系[2527]。侧向型输导体系重点在于量化表征骨架砂体对于天然气的输导能力,而垂向型输导体系则表现为断裂的垂向活动特征对于天然气运移的影响。

    浅层气藏多分布于东营凹陷的边缘高凸起部位,含气流体主要是在压实流的控制下,从凹陷中心沿孔隙度较高的含水层向侧上方盆地边缘的凸起运移,压实流流体势逐渐变弱,遇到循环深度较浅的重力流则形成封闭的地下流体动力平衡区,在合适的构造圈闭部位形成浅部气藏,其圈闭类型主要为水动力圈闭(图3)。输导砂体与古地貌的叠合,明确了侧向型浅层气输导体系骨架砂体的分布特征,为侧向型输导模式的建立奠定了基础[28],如青城凸起的花沟气田、林樊家凸起的林樊家气田、滨县凸起的单家寺气田等(图1)。

    图  3  东营凹陷侧向输导形成的天然气藏剖面(底图据文献[25]修改)
    Figure  3.  Shallow gas reservoir profile formed by lateral transport in Dongying depression (base map modified after Ref. [25])

    深部沉积成因水不仅沿储层进行侧向运移,在导水断裂构造发育的情况下,深部的沉积成因水还会沿断层向浅部作垂向运移,渗透到较浅部的渗入成因水中,在盖层和重力流配合下,CO2向上扩散时将被地下水封堵,在合适的构造部位形成浅部气藏(图4)。其圈闭类型主要为水动力圈闭和岩性圈闭,其中岩性圈闭是因为断层错断导致储层与隔水层对接而形成的圈闭[29],主要分布于凹陷区内垂向断裂比较发育的构造部位,如三合村气田、盐家气田等(图1)。

    图  4  东营凹陷垂向输导形成的天然气藏剖面(底图据文献[25]修改)
    Figure  4.  Shallow gas reservoir profile formed by vertical transport in Dongying depression (base map modified after Ref. [25])

    综上所述,东营凹陷的CO2气藏的形成赋存模式主要分为侧向型和垂向型2种。

    侧向型输导模式可归纳为:凹陷中心的深部气源在压实流驱动下,通过储层的骨架砂体向盆地边缘侧向上运移,通过断层的垂向沟通进入凸起带,使得天然气进一步向高部位运移。同时天然气还可穿越泥岩盖层垂向运移之后进入上部层组砂体中,进入有效圈闭聚集成藏。在压实流与重力流的接合区形成封闭的地下流体动力平衡区(即水动力圈闭),为主要的圈闭方式(图5)。气藏赋存层位主要为埋藏较浅的新生界明化镇组、馆陶组、东营组砂体。

    图  5  东营凹陷CO2咸水层地质封存模式(底图据文献[30]修改)
    Figure  5.  Geological sealing mode of CO2 shallow salt water layer in Dongying depression (base map modified after Ref. [30])

    垂向型输导模式可归纳为:凹陷中心的深部气源在压实流驱动下,进入相对较高渗透性的断裂带内,天然气沿断裂带垂向运移进入顶部的圈闭中聚集成藏。由于高孔渗断裂带的存在,使得在垂向型输导模式中天然气穿越盖层垂向运移的概率较低,主要沿断裂带垂向运移。由于断层错断导致的岩性圈闭比较发育,与水动力圈闭一起构成气体的有效圈闭(图5)。气藏赋存层位为气源层之上的砂体。

    馆陶组顶部—明化镇组底部泥岩组成区域性盖层,累积厚度350~500 m,尤其明化镇组泥岩是阻止油气散失的最后一道屏障,构成东营凹陷天然气藏成藏的良好盖层[3132]

    根据以上CO2气藏形成赋存模式,可大致判断出东营凹陷CO2封存的靶区。东营凹陷周边的高凸起部位,为压实流与重力流的水动力平衡区,流体运动滞缓,是气体长期贮存的有效圈闭区,也是CO2封存的有利靶区。由于重力流的流动方向主要是自南、西、北3个方向向东流动,所以CO2封存靶区主要位于东营凹陷的南、西、北3个方向的青城凸起、林樊家凸起、滨县凸起、陈家庄凸起、广饶凸起等高凸起靠近凹陷的部位(图6)。同时,在凹陷区的垂向断裂发育区,由于断裂错断形成的岩性圈闭比较发育,CO2封存靶区需要根据具体地质构造发育情况确定。

    图  6  东营凹陷CO2咸水层地质封存靶区分布(图中沙四段上压力系数等值线据文献[33],重力流、压实流据文献[34]。)
    Figure  6.  Distribution of geological storage targets in shallow saline water layer of CO2 in Dongying depression (The isoline of pressure coefficient on the fourth member of Shahejie Formation is adapted by Ref. [33] ,and the gravity flow and compaction flow are adaptet by Ref. [34].)

    因此,判断位于重力流主要来水方向的西部、北部的青城凸起、林樊家凸起、滨县凸起、陈家庄凸起及周边为CO2封存的最有利靶区,东部的广饶凸起、青坨子凸起等凸起及凹陷区垂向断裂发育区为CO2封存的较有利靶区。

    当然,对于具有开发意义但尚未开发的天然气藏,不宜直接用来进行CO2地质封存。对于那些具备了CO2气藏形成赋存地质条件的构造部位,但缺乏气源而没有形成气藏的区域,或者已经开发完成的枯竭气田[35],是当前可用于CO2地质封存的有利靶区。

    (1)根据东营凹陷地下流体动力场特征及其运动的主要方向,将气藏形成的输导方式划分为侧向型输导体系与垂向型输导体系。侧向型主要分布在凹陷边缘高凸起带,垂向型主要分布在盆内凹陷区。

    (2)压实流是凹陷中心深部气源向上运移的主要驱动力。一部分深源气体自凹陷中心向边缘产生较长距离的运动,在凹陷边缘高凸起部位压实流与重力流的接合区形成封闭的水动力圈闭,形成侧向型天然气藏。另一部分深源气体在压实流驱动下,沿高孔渗断裂带垂向运移进入顶部的圈闭中聚集成藏,由于断层错断导致岩性圈闭比较发育,与水动力圈闭一起构成气体的有效圈闭,形成垂向型天然气藏。

    (3)东营凹陷CO2地质封存最有利靶区主要位于凹陷西、北方向的青城凸起、林樊家凸起、滨县凸起、陈家庄凸起、广饶凸起等高凸起及其周边。东部的广饶凸起、青坨子凸起等凸起及凹陷区的垂向断裂发育区为CO2地质封存较有利靶区。

    需要提出的是,本文主要是从地下流体的水动力条件及地质圈闭作用这一角度来确定CO2地质封存的有利靶区,而CO2地质封存有利靶区的综合确定,还要全面分析CO2储存容量、技术成熟度、经济适宜性、地质安全、生态环境和社会意识等。

  • 图  1   东营凹陷及周边稠油与天然气藏分布(据文献[1416]修改)

    Figure  1.   Distribution of heavy oil and shallow gas reservoirs in Dongying depression and its surrounding areas (modified after Ref. [14, 16])

    图  2   东营凹陷油气藏差异富集及水动力特征(剖面位置见图1)(据文献[22]修改)

    注:Nm—新近系明化镇组;Ng—新近系馆陶组;Ed—古近系东营组;Es1—古近系沙河街组一段;Es2—古近系沙河街组二段;Es3—古近系沙河街组三段;Es4—古近系沙河街组四段;Ek——古近系孔店组。下图同。

    Figure  2.   Differential enrichment and hydrodynamic characteristics of oil and gas reservoirs in Dongying depression (see fig. 1 for profile position) (modified after Ref. [22])

    图  3   东营凹陷侧向输导形成的天然气藏剖面(底图据文献[25]修改)

    Figure  3.   Shallow gas reservoir profile formed by lateral transport in Dongying depression (base map modified after Ref. [25])

    图  4   东营凹陷垂向输导形成的天然气藏剖面(底图据文献[25]修改)

    Figure  4.   Shallow gas reservoir profile formed by vertical transport in Dongying depression (base map modified after Ref. [25])

    图  5   东营凹陷CO2咸水层地质封存模式(底图据文献[30]修改)

    Figure  5.   Geological sealing mode of CO2 shallow salt water layer in Dongying depression (base map modified after Ref. [30])

    图  6   东营凹陷CO2咸水层地质封存靶区分布(图中沙四段上压力系数等值线据文献[33],重力流、压实流据文献[34]。)

    Figure  6.   Distribution of geological storage targets in shallow saline water layer of CO2 in Dongying depression (The isoline of pressure coefficient on the fourth member of Shahejie Formation is adapted by Ref. [33] ,and the gravity flow and compaction flow are adaptet by Ref. [34].)

  • [1] 李采,郭朝斌,李霞,等. 地质调查助力碳达峰碳中和目标实现的路径浅析[J]. 中国地质调查,2021,8(4):1 − 12. [LI Cai,GUO Chaobin,LI Xia,et al. Analysis of the role of geological survey on the roadmap design for realizing the goal of carbon emissions peak and carbon neutrality[J]. Geological Survey of China,2021,8(4):1 − 12. (in Chinese with English abstract)]

    LI Cai, GUO Chaobin, LI Xia, et al. Analysis of the role of geological survey on the roadmap design for realizing the goal of carbon emissions peak and carbon neutrality[J]. Geological Survey of China, 2021, 8(4): 1 − 12. (in Chinese with English abstract)

    [2] 张洪涛,文冬光,李义连,等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报,2005,24(12):1107 − 1110. [ZHANG Hongtao,WEN Dongguang,LI Yilian,et al. Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China,2005,24(12):1107 − 1110. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-2552.2005.12.004

    ZHANG Hongtao, WEN Dongguang, LI Yilian, et al. Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 2005, 24(12): 1107 − 1110. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2005.12.004

    [3] 李小春,刘延锋,白冰,等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报,2006,25(5):963 − 968. [LI Xiaochun,LIU Yanfeng,BAI Bing,et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963 − 968. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2006.05.015

    LI Xiaochun, LIU Yanfeng, BAI Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963 − 968. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2006.05.015

    [4] 李万伦,徐佳佳,贾凌霄,等. 玄武岩封存CO2技术方法及其进展[J]. 水文地质工程地质,2022,49(3):164 − 173. [LI Wanlun,XU Jiajia,JIA Lingxiao,et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology,2022,49(3):164 − 173. (in Chinese with English abstract)]

    LI Wanlun, XU Jiajia, JIA Lingxiao, et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 164 − 173. (in Chinese with English abstract)

    [5] 刘宁. 陆相沉积盆地砂岩储层CO2地质封存流体运移和水岩相互作用研究[D]. 武汉:中国地质大学(武汉), 2018. [LIU Ning. Study on fluids transportation and water-rock interactions of CO2 geological storage in sandstone reservoirs in continental sedimentary basins[D]. Wuhan:China University of Geosciences, 2018. (in Chinese with English abstract)]

    LIU Ning. Study on fluids transportation and water-rock interactions of CO2 geological storage in sandstone reservoirs in continental sedimentary basins[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)

    [6] 张志雄,谢健,戚继红,等. 地质封存二氧化碳沿断层泄漏数值模拟研究[J]. 水文地质工程地质,2018,45(2):109 − 116. [ZHANG Zhixiong,XIE Jian,QI Jihong,et al. Numerical simulation of CO2 leakage along faults from geologic carbon dioxide sequestration[J]. Hydrogeology & Engineering Geology,2018,45(2):109 − 116. (in Chinese with English abstract)]

    ZHANG Zhixiong, XIE Jian, QI Jihong, et al. Numerical simulation of CO2 leakage along faults from geologic carbon dioxide sequestration[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 109 − 116. (in Chinese with English abstract)

    [7] 贾小丰,张杨,张徽,等. 中国二氧化碳地质储存目标靶区筛选技术方法[J]. 吉林大学学报(地球科学版),2014,44(4):1314 − 1326. [JIA Xiaofeng,ZHANG Yang,ZHANG Hui,et al. Method of target area selection of CO2 geological storage in China[J]. Journal of Jilin University(Earth Science),2014,44(4):1314 − 1326. (in Chinese with English abstract)]

    JIA Xiaofeng, ZHANG Yang, ZHANG Hui, et al. Method of target area selection of CO2 geological storage in China[J]. Journal of Jilin University(Earth Science), 2014, 44(4): 1314 − 1326. (in Chinese with English abstract)

    [8]

    LEUNG D Y C,CARAMANNA G,MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renew Sustain Energy Rev,2014,39:426 − 443. DOI: 10.1016/j.rser.2014.07.093

    [9]

    BACHU S. Review of CO2 storage efficiency in deep saline aqui fers[J]. Int J Greenh Gas Control,2015,40:188 − 202. DOI: 10.1016/j.ijggc.2015.01.007

    [10] 刁玉杰,刘廷,魏宁,等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质,2023,50(3):943 − 951. [DIAO Yujie,LIU Ting,WEI Ning,et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China,2023,50(3):943 − 951. (in Chinese with English abstract)] DOI: 10.12029/gc20221030001

    DIAO Yujie, LIU Ting, WEI Ning, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 2023, 50(3): 943 − 951. (in Chinese with English abstract) DOI: 10.12029/gc20221030001

    [11]

    ZHAO Xiaoliang,LIAO Xinwei,WANG Wanfu,et al. The CO2 storage capacity evaluation:ethodology and determination of key factors[J]. Journal of the Energy Institute,2014,87(4):297 − 305. DOI: 10.1016/j.joei.2014.03.032

    [12]

    MA Xin, WEN Dongguang, YANG Guangdong, et al. Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin[J]. Journal of Groundwater Science and Engineering,2021,9(4):279 − 291.

    [13] 刁玉杰,马鑫,李旭峰,等. 咸水层CO2地质封存地下利用空间评估方法研究[J]. 中国地质调查,2021,8(4):87 − 91. [DIAO Yujie,MA Xin,LI Xufeng,et al. Evaluation methods of underground space utilization for CO2 geological storage in deep saline aqui fers[J]. Geological Survey of China,2021,8(4):87 − 91. (in Chinese with English abstract)]

    DIAO Yujie, MA Xin, LI Xufeng, et al. Evaluation methods of underground space utilization for CO2 geological storage in deep saline aqui fers[J]. Geological Survey of China, 2021, 8(4): 87 − 91. (in Chinese with English abstract)

    [14] 张春生,李春光. 东营凹陷天然气藏类型及分布特征[J]. 天然气工业,1997,17(4):23 − 25. [ZHANG Chunsheng,LI Chunguang. Gas reservoir types and distributive characteristics in Dongying sag[J]. Natural Gas Industry,1997,17(4):23 − 25. (in Chinese with English abstract)]

    ZHANG Chunsheng, LI Chunguang. Gas reservoir types and distributive characteristics in Dongying sag[J]. Natural Gas Industry, 1997, 17(4): 23 − 25. (in Chinese with English abstract)

    [15] 郭栋,王兴谋,张金功. 山东济阳坳陷二氧化碳气成藏模式分析[J]. 现代地质,2006,20(3):441 − 448. [GUO Dong,WANG Xingmou,ZHANG Jingong. Analysis on CO2 reservoir-forming patterns in Jiyang depression,Shandong[J]. Geoscience,2006,20(3):441 − 448. (in Chinese with English abstract)]

    GUO Dong, WANG Xingmou, ZHANG Jingong. Analysis on CO2 reservoir-forming patterns in Jiyang depression, Shandong[J]. Geoscience, 2006, 20(3): 441 − 448. (in Chinese with English abstract)

    [16] 高长海,张云银,王兴谋. 渤海湾盆地济阳坳陷浅层天然气成因及其来源[J]. 天然气工业,2020,40(5):26 − 33. [GAO Changhai,ZHANG Yunyin,WANG Xingmou. Genesis and source of shallow natural gas in the Jiyang Depression of the Bohai Bay Basin[J]. Natural Gas Industry,2020,40(5):26 − 33. (in Chinese with English abstract)] DOI: 10.3787/j.issn.1000-0976.2020.05.003

    GAO Changhai, ZHANG Yunyin, WANG Xingmou. Genesis and source of shallow natural gas in the Jiyang Depression of the Bohai Bay Basin[J]. Natural Gas Industry, 2020, 40(5): 26 − 33. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2020.05.003

    [17] 刘海宁,王兴谋,张云银,等. 盆缘稠油油藏与浅层气藏联合勘探方法及实践——以渤海湾盆地济阳坳陷三合村地区为例[J]. 中国矿业大学学报,2022,51(1):174 − 186. [LIU Haining,WANG Xingmou,ZHANG Yunyin,et al. Combined exploration method and application of viscous oil and shallow gas in Basin margin:A case study of Sanhecun area in Jiyang depression,Bohai Bay Basin[J]. Journal of China University of Mining & Technology,2022,51(1):174 − 186. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201016

    LIU Haining, WANG Xingmou, ZHANG Yunyin, et al. Combined exploration method and application of viscous oil and shallow gas in Basin margin: A case study of Sanhecun area in Jiyang depression, Bohai Bay Basin[J]. Journal of China University of Mining & Technology, 2022, 51(1): 174 − 186. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201016

    [18]

    TÓTH. Gravity-induced cross-formational flow of formation fluids,red earth region,Alberta,Canada:Analysis,patterns,and evolution[J]. Water Resources Research,1978,14(5):805 − 843. DOI: 10.1029/WR014i005p00805

    [19] 张保建,高宗军,张凤禹,等. 华北盆地地下热水的水动力条件及水化学响应[J]. 地学前缘,2015,22(6):217 − 226. [ZHANG Baojian,GAO Zongjun,ZHANG Fengyu,et al. Hydrodynamic condition and response of formation water chemical fields of geothermal water in North China Basin[J]. Earth Science Frontiers,2015,22(6):217 − 226. (in Chinese with English abstract)]

    ZHANG Baojian, GAO Zongjun, ZHANG Fengyu, et al. Hydrodynamic condition and response of formation water chemical fields of geothermal water in North China Basin[J]. Earth Science Frontiers, 2015, 22(6): 217 − 226. (in Chinese with English abstract)

    [20] 杨绪充. 论含油气盆地的地下水动力环境[J]. 石油学报,1989,10(4):27 − 34. [YANG Xuchong. On the underground hydrodynamic environment in an oil and gas basin[J]. Acta Petrolei Sinica,1989,10(4):27 − 34. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0253-2697.1989.04.001

    YANG Xuchong. On the underground hydrodynamic environment in an oil and gas basin[J]. Acta Petrolei Sinica, 1989, 10(4): 27 − 34. (in Chinese with English abstract) DOI: 10.3321/j.issn:0253-2697.1989.04.001

    [21] 楼章华,金爱民,田炜卓,等. 论陆相含油气沉积盆地地下水动力场与油气运移、聚集[J]. 地质科学,2005,40(3):305 − 318. [LOU Zhanghua,JIN Aimin,TIAN Weizhuo,et al. Origin and evolution of hydrodynamics and the migration,accumulation of petroleum in continental petroliferous sedimentary basins[J]. Chinese Journal of Geology,2005,40(3):305 − 318. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0563-5020.2005.03.001

    LOU Zhanghua, JIN Aimin, TIAN Weizhuo, et al. Origin and evolution of hydrodynamics and the migration, accumulation of petroleum in continental petroliferous sedimentary basins[J]. Chinese Journal of Geology, 2005, 40(3): 305 − 318. (in Chinese with English abstract) DOI: 10.3321/j.issn:0563-5020.2005.03.001

    [22] 王永诗,郝雪峰,安天下,等. 盆地结构控制下的地层压力-流体-储集性协同演化及控藏作用——以东营凹陷古近系为例[J]. 石油学报,2023,44(7):1058 − 1071. [WANG Yongshi,HAO Xuefeng,AN Tianxia,et al. Co-evolution of formation pressure,fluid,and reservoir property under the control of basin structure and its controlling effect on reservoir accumulation:a case study of Paleogene in Dongying depression[J]. Acta Petrolei Sinica,2023,44(7):1058 − 1071. (in Chinese with English abstract)] DOI: 10.7623/syxb202307003

    WANG Yongshi, HAO Xuefeng, AN Tianxia, et al. Co-evolution of formation pressure, fluid, and reservoir property under the control of basin structure and its controlling effect on reservoir accumulation: a case study of Paleogene in Dongying depression[J]. Acta Petrolei Sinica, 2023, 44(7): 1058 − 1071. (in Chinese with English abstract) DOI: 10.7623/syxb202307003

    [23] 张建锋,张金功,吴汉宁,等. 济阳坳陷花沟CO2气藏形成与高青断裂活动性关系分析[J]. 天然气地球科学,2008,19(3):356 − 361. [ZHANG Jianfeng,ZHANG Jingong,WU Hanning,et al. Relationships between different strike activities of Gaoqing fault and Huagou gas reservoirs accumulation,Jiyang depression[J]. Natural Gas Geoscience,2008,19(3):356 − 361. (in Chinese with English abstract)] DOI: 10.11764/j.issn.1672-1926.2008.03.356

    ZHANG Jianfeng, ZHANG Jingong, WU Hanning, et al. Relationships between different strike activities of Gaoqing fault and Huagou gas reservoirs accumulation, Jiyang depression[J]. Natural Gas Geoscience, 2008, 19(3): 356 − 361. (in Chinese with English abstract) DOI: 10.11764/j.issn.1672-1926.2008.03.356

    [24] 孙扬,崔飞飞,孙雷,等. 重力分异和非均质性对天然气藏CO2埋存的影响——以中国南方XC气藏为例[J]. 天然气工业,2014,34(8):82 − 86. [SUN Yang,CUI Feifei,SUN Lei,et al. Influence of gravity differentiation and heterogeneity on CO2 sequestration in gas reservoirs:A case of the XC Gas Reservoir in South China[J]. Natural Gas Industry,2014,34(8):82 − 86. (in Chinese with English abstract)]

    SUN Yang, CUI Feifei, SUN Lei, et al. Influence of gravity differentiation and heterogeneity on CO2 sequestration in gas reservoirs: A case of the XC Gas Reservoir in South China[J]. Natural Gas Industry, 2014, 34(8): 82 − 86. (in Chinese with English abstract)

    [25] 王兴谋,张云银,张明振,等. 关于济阳坳陷浅层气藏与稠油油藏联合勘探的思考[J]. 油气地质与采收率,2014,21(5):14 − 17. [WANG Xingmou,ZHANG Yunyin,ZHANG Mingzhen,et al. An approach of exploring shallow gas and heavy oil in Jiyang depression based on their paragenetic relationship[J]. Petroleum Geology and Recovery Efficiency,2014,21(5):14 − 17. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-9603.2014.05.003

    WANG Xingmou, ZHANG Yunyin, ZHANG Mingzhen, et al. An approach of exploring shallow gas and heavy oil in Jiyang depression based on their paragenetic relationship[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 14 − 17. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-9603.2014.05.003

    [26] 白雪峰, 刘家军, 陆加敏,等. 松辽盆地北部中央古隆起带基岩风化壳气藏富集规律[J]. 吉林大学学报(地球科学版),2023,53(2):343 − 355. [BAI Xuefeng,LIU Jiajun,LU Jiamin,et al. Gas enrichment in basement weathering crust in the central paleouplift belt in Northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition),2023,53(2):343 − 355. (in Chinese with English abstract)]

    BAI Xuefeng, LIU Jiajun, LU Jiamin, et al. Gas enrichment in basement weathering crust in the central paleouplift belt in Northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 343 − 355. (in Chinese with English abstract)

    [27] 韩学雨, 李玉海, 楼达, 等. 黄骅坳陷孔西斜坡区奥陶系原生油气藏成藏过程及模式[J]. 吉林大学学报(地球科学版),2023,53(2):356 − 372. [HAN Xueyu, LI Yuhai, LOU Da, et al. Accumulation process and model of the primary ordovician oil and gas reservoirs in Kongxi Slope Area, Huanghua Depression[J]. Journal of Jilin University (Earth Science Edition),2023,53(2):356 − 372. (in Chinese with English abstract)]

    HAN Xueyu, LI Yuhai, LOU Da, et al. Accumulation process and model of the primary ordovician oil and gas reservoirs in Kongxi Slope Area, Huanghua Depression[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 356 − 372. (in Chinese with English abstract)

    [28] 张伟忠,张云银,王兴谋,等. 济阳坳陷盆缘次生气藏输导模式[J]. 石油实验地质,2019,41(2):185 − 192. [ZHANG Weizhong,ZHANG Yunyin,WANG Xingmou,et al. Transmission model of secondary gas reservoir on the basin margin of Jiyang Depression[J]. Petroleum Geology & Experiment,2019,41(2):185 − 192. (in Chinese with English abstract)] DOI: 10.11781/sysydz201902185

    ZHANG Weizhong, ZHANG Yunyin, WANG Xingmou, et al. Transmission model of secondary gas reservoir on the basin margin of Jiyang Depression[J]. Petroleum Geology & Experiment, 2019, 41(2): 185 − 192. (in Chinese with English abstract) DOI: 10.11781/sysydz201902185

    [29] 张保建,文冬光,沈照理,等. 一种值得重视的地热资源概念模式——构造圈闭型地热资源[J]. 中国地质,2009,36(4):927 − 931. [ZHANG Baojian,WEN Dongguang,SHEN Zhaoli,et al. Geothermal resource of structural trap type:an important geothermal resource conceptual model[J]. Geology in China,2009,36(4):927 − 931. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3657.2009.04.022

    ZHANG Baojian, WEN Dongguang, SHEN Zhaoli, et al. Geothermal resource of structural trap type: an important geothermal resource conceptual model[J]. Geology in China, 2009, 36(4): 927 − 931. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.04.022

    [30] 董雨洋. 渤海湾盆地歧口凹陷断砂组合对油气成藏的耦合控制作用[D]. 北京:中国石油大学(北京),2022. [DONG Yuyang. Coupling Control Effect of Fault-Sand Combination on Hydrocarbon Accumulation in the Qikou Sag,Bohai Bay Basin[D]. Beijing: China University of Petroleum(Beijing),2022. (in Chinese with English abstract)]

    DONG Yuyang. Coupling Control Effect of Fault-Sand Combination on Hydrocarbon Accumulation in the Qikou Sag, Bohai Bay Basin[D]. Beijing: China University of Petroleum(Beijing), 2022. (in Chinese with English abstract)

    [31] 林松辉,王华,张桂霞,等. 东营凹陷西部潜山油气藏特征[J]. 石油与天然气地质,2000,21(4):360 − 363. [LIN Songhui,WANG Hua,ZHANG Guixia,et al. Pool features of buried hill in west part of Dongying depression[J]. Oil & Gas Geology,2000,21(4):360 − 363. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0253-9985.2000.04.019

    LIN Songhui, WANG Hua, ZHANG Guixia, et al. Pool features of buried hill in west part of Dongying depression[J]. Oil & Gas Geology, 2000, 21(4): 360 − 363. (in Chinese with English abstract) DOI: 10.3321/j.issn:0253-9985.2000.04.019

    [32] 杨显成. 东营凹陷天然气成藏及分布主控因素分析[J]. 断块油气田,2005,12(4):11 − 13. [YANG Xiancheng. The Main control factors of natural gas reservior forming and distribute in Dongying depression[J]. Fault-Block Oil & Gas Field,2005,12(4):11 − 13. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1005-8907.2005.04.004

    YANG Xiancheng. The Main control factors of natural gas reservior forming and distribute in Dongying depression[J]. Fault-Block Oil & Gas Field, 2005, 12(4): 11 − 13. (in Chinese with English abstract) DOI: 10.3969/j.issn.1005-8907.2005.04.004

    [33] 徐兴友. 东营凹陷含烃流体驱动过程中的地球化学效应[J]. 海洋地质与第四纪地质,2012,32(6):159 − 164. [XU Xingyou. Geochemical effects of the movement of hydrocarbon bearing fluid:A case study in Dongying sag[J]. Marine Geology & Quaternary Geology,2012,32(6):159 − 164. (in Chinese with English abstract)]

    XU Xingyou. Geochemical effects of the movement of hydrocarbon bearing fluid: A case study in Dongying sag[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 159 − 164. (in Chinese with English abstract)

    [34] 楼章华,朱蓉,金爱民,等. 东营凹陷地下水动力场的形成与演化[J]. 地质科学,2003,38(1):85-96. [LOU Zhanghua,ZHU Rong,JIN Aimin. Formation and evolution of hydrodynamic field in the Dongying depression[J]. Scientia Geologica Sinica,2003,38(1):85-96. (in Chinese with English abstract)]

    LOU Zhanghua, ZHU Rong, JIN Aimin. Formation and evolution of hydrodynamic field in the Dongying depression[J]. Scientia Geologica Sinica, 2003, 38(1): 85-96. (in Chinese with English abstract)

    [35] 王欢,郑宇舟,王为. 澳大利亚地球科学局在地质碳封存方面开展的主要工作与启示[J]. 中国地质,2022,49(3):1005 − 1008. [WANG Huan,ZHENG Yuzhou,WANG Wei. The major work and implication of Geoscience Australia on geological carbon sequestration[J]. Geology in China,2022,49(3):1005 − 1008. (in Chinese with English abstract)] DOI: 10.12029/j.issn.1000-3657.2022.3.zgdizhi202203027

    WANG Huan, ZHENG Yuzhou, WANG Wei. The major work and implication of Geoscience Australia on geological carbon sequestration[J]. Geology in China, 2022, 49(3): 1005 − 1008. (in Chinese with English abstract) DOI: 10.12029/j.issn.1000-3657.2022.3.zgdizhi202203027

图(6)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  17
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-04-29
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回