Loading [MathJax]/jax/output/SVG/jax.js
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

岩性圈闭型压缩气体地质储能场地适宜性评价方法及应用研究

郭朝斌, 王福刚, 李采, 朱宇通

郭朝斌,王福刚,李采,等. 岩性圈闭型压缩气体地质储能场地适宜性评价方法及应用研究[J]. 水文地质工程地质,2024,51(4): 10-20. DOI: 10.16030/j.cnki.issn.1000-3665.202403010
引用本文: 郭朝斌,王福刚,李采,等. 岩性圈闭型压缩气体地质储能场地适宜性评价方法及应用研究[J]. 水文地质工程地质,2024,51(4): 10-20. DOI: 10.16030/j.cnki.issn.1000-3665.202403010
GUO Chaobin, WANG Fugang, LI Cai, et al. Site suitability evaluation method and application of compressed gas geological energy storage in lithologic trap[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 10-20. DOI: 10.16030/j.cnki.issn.1000-3665.202403010
Citation: GUO Chaobin, WANG Fugang, LI Cai, et al. Site suitability evaluation method and application of compressed gas geological energy storage in lithologic trap[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 10-20. DOI: 10.16030/j.cnki.issn.1000-3665.202403010

岩性圈闭型压缩气体地质储能场地适宜性评价方法及应用研究

基金项目: 国家自然科学基金项目(42372286;42002255;U2244215;U2344226);中国地质调查局地质调查项目(DD20221819);中国地质科学院基本科研业务费专项经费(JKYQN202306;JKY202413)
详细信息
    作者简介:

    郭朝斌(1989—),男,博士,副研究员,主要从事多相流体数值模拟工作。E-mail:guochaobin123@hotmail.com

    通讯作者:

    李采(1979—),女,博士,正高级工程师,主要从事多相流体数值模拟工作。E-mail:licai@cags.ac.cn

  • 中图分类号: X701;P542+.5

Site suitability evaluation method and application of compressed gas geological energy storage in lithologic trap

  • 摘要:

    针对目前岩性圈闭型压缩气体地质储能场地适宜性评价多基于静态因素,缺乏动态多因素的耦合分析,导致评估结果与实际工程应用存在较大差异这一问题,开展细化储能场地适宜性评价方法研究。通过考虑储气层储集性、储能安全性、实际操作性等方面,提出场地静态可行性分析与动态性能评估相结合的方法,并以胜利油田孤东辖区A2砂体为例开展应用研究。通过场地地质特征静态分析、GPSFLOW数值模拟软件定量评价以及现场先导性注气试验评估,结果显示A2砂体井口压力在注入标况空气9.4×104 m3结束后下降8.16%,显示密封性良好,符合储能空间要求。表明考虑储能系统动态性能的场地适宜性评价方法可为项目的选址和建设、储能效率的评价及优化提供更准确的数据支撑,有利于促进清洁能源利用与能源转型的可持续发展。

    Abstract:

    The current evaluation of the suitability of lithological trap-type compressed gas geological storage sites is mostly based on static factors. It lacks a coupled analysis of dynamic multiple factors, leading to a significant gap between the assessment results and actual engineering applications. To develop a refined method for evaluating the suitability of energy storage sites, an integrated approach that combines static feasibility analysis with dynamic performance assessment, considering key aspects such as reservoir properties, energy storage safety, and practical operability was proposed. The method was applied in the A2 geological formation of the Gudong Oilfield. Through the static analysis of site geological features, quantitative evaluation using GPSFLOW numerical simulation software, and on-site pilot gas injection tests, the results show that after injecting 9.4×104 m3 of air, the pressure in the A2 geological formation decreases by 8.16% within 6 days. It indicates the good sealing performance meeting the requirements of energy storage space. Considering the dynamic performance of energy storage systems, the suitability evaluation method can provide more accurate data support for the site selection, construction, evaluation, and optimization of energy storage efficiency, further promoting sustainable development of clean energy utilization and energy transition.

  • 图  1   孤东A2结构体结构解释图(东—西)

    Figure  1.   Structure explanation of A2 (east-west)

    图  2   网格剖分

    Figure  2.   Domain discretization

    图  3   相对渗透率和毛细压力计算函数曲线

    Figure  3.   Parameter of relative permeability and capillary pressure calculation function

    图  4   基本模型中井底压力随时间变化图

    Figure  4.   Pressure variation in the basic model

    图  5   不同时间气相饱和度分布

    Figure  5.   Gas saturation distribution on different days

    图  6   不同边界范围示意图

    Figure  6.   Schematic diagram of different boundary ranges

    图  7   不同边界范围模型中井底压力随时间变化图

    Figure  7.   Pressure variation of different boundary ratio scenarios

    图  8   不同孔隙度敏感性分析方案井底压力变化对比

    Figure  8.   Comparison of pressure variation for different porosity scenarios

    图  9   不同渗透率敏感性分析方案井底压力变化对比

    Figure  9.   Comparison of pressure variation for different permeability scenarios

    图  10   注气压力试验中井口压力变化

    Figure  10.   Wellhead pressure variation during gas injection test

    表  1   压缩气体地质储能场地适宜性静态评价指标

    Table  1   Index for site assessment of compressed gas geological energy storage

    类别 评价对象 影响因子 意义
    储集性 储层 厚度 垂向距离影响储能空间体积
    面积 横向距离影响储能空间体积
    孔隙度 储能空间体积
    渗透率 影响气体可占据储集空间比例
    深度 影响压缩气体的压力及密度
    温度 影响流体的密度
    安全性 盖层 厚度 可能的密封有效性
    岩石学特征 渗透性和孔隙度
    已知的密封性 流体逃逸的潜在性
    横向连续性 完整性和溢出点
    次级盖层 主盖层之上的密封性
    断层 破碎 流体转移潜能
    渗透性 流体运移时间
    构造 构造的稳定性影响新旧断层
    井孔 注入井 注入井的密封性
    废弃井 潜在的直接通道
    地表 地形气候 潜在泄露后羽流的延伸
    土地利用 气体暴露的影响
    人口密集程度 气体暴露的影响
    水文特征 气体的扩散形式
    操作性 经济性 源汇匹配 与能源站的距离影响建设成本
    峰谷差价 峰谷差价影响储能系统的效益
    场地建设 注入井孔 井孔的数量及建设成本
    场地位置 保护区等占地影响批复性
    政策 政府、民众支持
    下载: 导出CSV

    表  2   边界条件敏感性分析方案示例

    Table  2   Scenarios demonstration of boundary sensitivity analysis

    模型参数
    1上、下及四周边界为封闭边界
    2上边界为开放边界,其余为封闭边界,逐步设置下、四周边界开放
    3上、下及四周边界为开放边界
    下载: 导出CSV

    表  3   GPSFLOW质能守恒方程

    Table  3   The mass and energy balance equations solved in GPSFLOW

    参数 公式
    质能守恒方程 ddtVnMidVn=ΓnFindΓn+VnqidVn
    质量累积方程 Mi=φNPHβ=1SβρβXiβ,i=1,NK;β=1,NPH
    能量累积方程 MNK+1=φNPHβ=1SβρβUβ+(1φ)ρRCRT
    质量通量 Fi=NPHβ=1Xiβρβuβ
    能量通量 FNK+1=λT+φNPHβ=1hβρβuβ
      注:i为组分,NK表示组分总数量;Mi为组分i在单位体积中的质量或能量积累项;Vn为由闭合表面所界定的任意子域;F为质量或热通量;n为指向Vn的面元Γn上的法向量;q为质量或能量的汇/源项;φ为孔隙度;β为相态指数,从1到相态总数量(NPH);Sβ为相β的饱和度(各相占据的孔隙空间的体积分数);ρβ为相β的密度;Xiβ为相β中组分i的质量分数;Uβ表示相β的比内能;CR为岩石比热;T为温度;uβ为达西速度;λ为导热系数;hβ为相β的比焓。
    下载: 导出CSV

    表  4   岩石基本性质

    Table  4   Basic parameters of rocks

    参数 砂岩 泥岩
    孔隙度 0.345 0.05
    水平向渗透率/(10−15 m2 2000 0.01
    垂向渗透率/(10−15 m2 200 0.001
    岩石颗粒密度/(kg·m−3 2600
    压缩系数/Pa−1 1.0×10−10
    比热/(J·kg−1·°C−1 920.0
    下载: 导出CSV

    表  5   不同边界范围敏感性分析方案设计

    Table  5   Different boundary ratio scenarios design

    编号边界范围
    B10.6
    B20.8
    B31.2
    B41.4
    下载: 导出CSV

    表  6   不同孔隙度敏感性分析方案设计

    Table  6   Different porosity scenarios design

    编号 孔隙度
    P1 0.1
    P2 0.2
    P3 0.345
    P4 0.4
    下载: 导出CSV

    表  7   不同渗透率敏感性分析方案设计

    Table  7   Different permeability scenarios design

    编号渗透率/(10−15 m2
    K150
    K2100
    K3500
    K41000
    K52000
    K63000
    K74000
    下载: 导出CSV
  • [1] 李红,白雨鑫,何青. 压缩二氧化碳储能系统膨胀机研究进展[J]. 热力发电,2024,53(2):17 − 26. [LI Hong,BAI Yuxin,HE Qing. Research progress of expander for compressed carbon dioxide energy storage system[J]. Thermal Power Generation,2024,53(2):17 − 26. (in Chinese with English abstract)]

    LI Hong, BAI Yuxin, HE Qing. Research progress of expander for compressed carbon dioxide energy storage system[J]. Thermal Power Generation, 2024, 53(2): 17 − 26. (in Chinese with English abstract)

    [2] 黄宽,张万益,王丰翔,等. 地下空间储能国内外发展现状及调查建议[J]. 中国地质,2024,51(1):105 − 117. [HUANG Kuan,ZHANG Wanyi,WANG Fengxiang,et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China,2024,51(1):105 − 117. (in Chinese with English abstract)]

    HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 2024, 51(1): 105 − 117. (in Chinese with English abstract)

    [3] 凌晨,吴斌,朱学成,等. 350MW级先进压缩空气储能系统建模与特性分析[J]. 能源研究与利用,2023(5):28 − 32. [LING Chen,WU Bin,ZHU Xuecheng,et al. Modeling and characteristic analysis of 350MW advanced compressed air energy storage system[J]. Energy Research & Utilization,2023(5):28 − 32. (in Chinese)]

    LING Chen, WU Bin, ZHU Xuecheng, et al. Modeling and characteristic analysis of 350MW advanced compressed air energy storage system[J]. Energy Research & Utilization, 2023(5): 28 − 32. (in Chinese)

    [4] 国家能源局发布2022年全国电力工业统计数据[EB]. (2023-01-18)[2024-03-01]. [National Energy Administration released statistical data of national electric power industry for 2022[EB]. (2023-01-18)[2024-03-01]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm. (in Chinese)]

    National Energy Administration released statistical data of national electric power industry for 2022[EB]. (2023-01-18)[2024-03-01]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm. (in Chinese)

    [5] 中电建协发布《中国电力建设行业年度发展报告2022》[EB]. (2022-08-29)[2024-03-01]. [CECC releases China Power Construction Industry Annual Development Report 2022[EB]. (2022-08-29)[2024-03-01]. http://www.chinapower.com.cn/xw/gnxw/20220829/165036.html. (in Chinese)]

    CECC releases China Power Construction Industry Annual Development Report 2022[EB]. (2022-08-29)[2024-03-01]. http://www.chinapower.com.cn/xw/gnxw/20220829/165036.html. (in Chinese)

    [6] 孙晓霞,桂中华,高梓玉,等. 压缩空气储能系统动态运行特性[J]. 储能科学与技术,2023,12(6):1840 − 1853. [SUN Xiaoxia,GUI Zhonghua,GAO Ziyu,et al. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology,2023,12(6):1840 − 1853. (in Chinese with English abstract)]

    SUN Xiaoxia, GUI Zhonghua, GAO Ziyu, et al. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1840 − 1853. (in Chinese with English abstract)

    [7] 何青,王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电,2022,51(8):11 − 19. [HE Qing,WANG Ke. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation,2022,51(8):11 − 19. (in Chinese with English abstract)]

    HE Qing, WANG Ke. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation, 2022, 51(8): 11 − 19. (in Chinese with English abstract)

    [8]

    LIU Hejuan,YANG Chunhe,LIU Jianjun,et al. An overview of underground energy storage in porous media and development in China[J]. Gas Science and Engineering,2023,117:205079. DOI: 10.1016/j.jgsce.2023.205079

    [9]

    GUO Chaobin,LI Cai,ZHANG Keni,et al. The promise and challenges of utility-scale compressed air energy storage in aquifers[J]. Applied Energy,2021,286:116513. DOI: 10.1016/j.apenergy.2021.116513

    [10] 刘笑驰,梅生伟,丁若晨,等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备,2023,43(10):38 − 47. [LIU Xiaochi,MEI Shengwei,DING Ruochen,et al. Current situation,development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment,2023,43(10):38 − 47. (in Chinese with English abstract)]

    LIU Xiaochi, MEI Shengwei, DING Ruochen, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 2023, 43(10): 38 − 47. (in Chinese with English abstract)

    [11] 张文,王龙轩,丛晓明,等. 新型压缩空气储能及其技术发展[J]. 科学技术与工程,2023,23(36):15335 − 15347. [ZHANG Wen,WANG Longxuan,CONG Xiaoming,et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering,2023,23(36):15335 − 15347. (in Chinese with English abstract)]

    ZHANG Wen, WANG Longxuan, CONG Xiaoming, et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering, 2023, 23(36): 15335 − 15347. (in Chinese with English abstract)

    [12] 杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729 − 1759. [YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729 − 1759. (in Chinese with English abstract)]

    YANG Chunhe, WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1729 − 1759. (in Chinese with English abstract)

    [13]

    WU Fan, XU Mingyang, ZHONG Wei, et al. Thermodynamic and economic analyses of a modified adiabatic compressed air energy storage system coupling with thermal power generation [J]. Case Studies in Thermal Engineering, 2024, 59: 104521.

    [14] 李子钰,吕宏,李祖辉,等. 空气压缩储能的发展现状及其应用前景[J]. 资源节约与环保,2023(8):5 − 8. [LI Ziyu,LYU Hong,LI Zuhui,et al. Development status of air compression energy storage and its application prospect[J]. Resources Economization & Environmental Protection,2023(8):5 − 8. (in Chinese)]

    LI Ziyu, LYU Hong, LI Zuhui, et al. Development status of air compression energy storage and its application prospect[J]. Resources Economization & Environmental Protection, 2023(8): 5 − 8. (in Chinese)

    [15] 叶磊. 基于TOUGH-FLAC集成的含水层压气储能THM多场耦合研究[D]. 徐州:中国矿业大学,2020. [YE Lei. Study on THM multi field coupled compressed air energy storage in aquifers based on TOUGH-FLAC integration[D]. Xuzhou:China University of Mining and Technology,2020. (in Chinese with English abstract)]

    YE Lei. Study on THM multi field coupled compressed air energy storage in aquifers based on TOUGH-FLAC integration[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese with English abstract)

    [16] 左锐,潘明浩,刘嘉蔚,等. 含水层压缩空气储能过程中储层渗流特性及地球化学过程研究进展[J]. 环境科学研究,2022,35(8):1769 − 1778. [ZUO Rui,PAN Minghao,LIU Jiawei,et al. Review on flow characteristics and geochemical process during compressed air energy storage in aquifer[J]. Research of Environmental Sciences,2022,35(8):1769 − 1778. (in Chinese with English abstract)]

    ZUO Rui, PAN Minghao, LIU Jiawei, et al. Review on flow characteristics and geochemical process during compressed air energy storage in aquifer[J]. Research of Environmental Sciences, 2022, 35(8): 1769 − 1778. (in Chinese with English abstract)

    [17] 董家伟,李毅. 含水层压缩空气储能选址评价方法研究[J]. 安全与环境工程,2021,28(3):228 − 239. [DONG Jiawei,LI Yi. Study of the site evaluation of compressed air energy storage in aquifers[J]. Safety and Environmental Engineering,2021,28(3):228 − 239. (in Chinese with English abstract)]

    DONG Jiawei, LI Yi. Study of the site evaluation of compressed air energy storage in aquifers[J]. Safety and Environmental Engineering, 2021, 28(3): 228 − 239. (in Chinese with English abstract)

    [18] 谢珺河. 含水层压气储能热流固耦合并行模拟研究[D]. 徐州:中国矿业大学,2022. [XIE Junhe. Study on parallel computing simulation of thm coupling behavior of compressed air energy storage in aquifers[D]. Xuzhou:China University of Mining and Technology,2022. (in Chinese with English abstract)]

    XIE Junhe. Study on parallel computing simulation of thm coupling behavior of compressed air energy storage in aquifers[D]. Xuzhou: China University of Mining and Technology, 2022. (in Chinese with English abstract)

    [19] 郭朝斌,张可倪,李采. 压缩空气含水层储能系统设计及可行性分析[J]. 同济大学学报(自然科学版),2016,44(7):1107 − 12. [GUO Chaobin,ZHANG Keni,LI Cai. Subsurface system design and feasibility analysis of compressed air energy storage in aquifers[J]. Journal of Tongji University(Natural Science),2016,44(7):1107 − 1112. (in Chinese with English abstract)]

    GUO Chaobin, ZHANG Keni, LI Cai. Subsurface system design and feasibility analysis of compressed air energy storage in aquifers[J]. Journal of Tongji University(Natural Science), 2016, 44(7): 1107 − 1112. (in Chinese with English abstract)

    [20] 郭朝斌,李采,杨利超,等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查,2021,8(4):109 − 119. [GUO Chaobin,LI Cai,YANG Lichao,et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China,2021,8(4):109 − 119. (in Chinese with English abstract)]

    GUO Chaobin, LI Cai, YANG Lichao, et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 2021, 8(4): 109 − 119. (in Chinese with English abstract)

    [21] 郭朝斌,王志辉,刘凯,等. 特殊地下空间应用与研究现状[J]. 中国地质,2019,46(3):482 − 492. [GUO Chaobin,WANG Zhihui,LIU Kai,et al. The application and research progress of special underground space[J]. Geology in China,2019,46(3):482 − 492. (in Chinese with English abstract)]

    GUO Chaobin, WANG Zhihui, LIU Kai, et al. The application and research progress of special underground space[J]. Geology in China, 2019, 46(3): 482 − 492. (in Chinese with English abstract)

    [22] 许晓艺,李琦,刘桂臻,等. 基于多准则决策的CO2地质封存场地适宜性评价方法[J]. 第四纪研究,2023,43(2):551 − 559. [XU Xiaoyi,LI Qi,LIU Guizhen,et al. Suitability evaluation method for CO2 geological storage sites based on multi-criteria decision-making[J]. Quaternary Sciences,2023,43(2):551 − 559. (in Chinese with English abstract)]

    XU Xiaoyi, LI Qi, LIU Guizhen, et al. Suitability evaluation method for CO2 geological storage sites based on multi-criteria decision-making[J]. Quaternary Sciences, 2023, 43(2): 551 − 559. (in Chinese with English abstract)

    [23] 王齐鑫, 马传明, 花勐健, 等. 安徽省沉积盆地CO2地质储存适宜性评价[J]. 水文地质工程地质,2017,44(5):121 − 121. [WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology,2017,44(5):121 − 121. (in Chinese with English abstract)]

    WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 121 − 121. (in Chinese with English abstract)

    [24]

    SUN Dongmei,CHU Zhubin,CHEN Wenyuan,et al. Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test[J]. Applied Energy,2023,348:121465. DOI: 10.1016/j.apenergy.2023.121465

    [25]

    BENNETT J A,FITTS J P,CLARENS A F. Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling[J]. Applied Energy,2022,325:119830. DOI: 10.1016/j.apenergy.2022.119830

    [26]

    BENNETT J A,SIMPSON J G,QIN Chao,et al. Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power[J]. Applied Energy,2021,303:117587. DOI: 10.1016/j.apenergy.2021.117587

    [27]

    PFEIFFER W T,WITTE F,TUSCHY I,et al. Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES)[J]. Energy Conversion and Management,2021,249:114849. DOI: 10.1016/j.enconman.2021.114849

    [28]

    AVIS J,CALDER N,WALSH R. MVIEW—a powerful pre- and post-processor for TOUGH2[C]//Proceedings of TOUGH Symposium 2012. California: Lawrence Berkeley National Laboratory, 2012.

    [29]

    NARASIMHAN T N,WITHERSPOON P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research,1976,12(1):57 − 64. DOI: 10.1029/WR012i001p00057

    [30]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892. DOI: 10.2136/sssaj1980.03615995004400050002x

    [31]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. DOI: 10.1029/WR012i003p00513

图(10)  /  表(7)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  25
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-05-06
  • 网络出版日期:  2024-05-26
  • 刊出日期:  2024-07-14

目录

    /

    返回文章
    返回