Site suitability evaluation method and application of compressed gas geological energy storage in lithologic trap
-
摘要:
针对目前岩性圈闭型压缩气体地质储能场地适宜性评价多基于静态因素,缺乏动态多因素的耦合分析,导致评估结果与实际工程应用存在较大差异这一问题,开展细化储能场地适宜性评价方法研究。通过考虑储气层储集性、储能安全性、实际操作性等方面,提出场地静态可行性分析与动态性能评估相结合的方法,并以胜利油田孤东辖区A2砂体为例开展应用研究。通过场地地质特征静态分析、GPSFLOW数值模拟软件定量评价以及现场先导性注气试验评估,结果显示A2砂体井口压力在注入标况空气9.4×104 m3结束后下降8.16%,显示密封性良好,符合储能空间要求。表明考虑储能系统动态性能的场地适宜性评价方法可为项目的选址和建设、储能效率的评价及优化提供更准确的数据支撑,有利于促进清洁能源利用与能源转型的可持续发展。
Abstract:The current evaluation of the suitability of lithological trap-type compressed gas geological storage sites is mostly based on static factors. It lacks a coupled analysis of dynamic multiple factors, leading to a significant gap between the assessment results and actual engineering applications. To develop a refined method for evaluating the suitability of energy storage sites, an integrated approach that combines static feasibility analysis with dynamic performance assessment, considering key aspects such as reservoir properties, energy storage safety, and practical operability was proposed. The method was applied in the A2 geological formation of the Gudong Oilfield. Through the static analysis of site geological features, quantitative evaluation using GPSFLOW numerical simulation software, and on-site pilot gas injection tests, the results show that after injecting 9.4×104 m3 of air, the pressure in the A2 geological formation decreases by 8.16% within 6 days. It indicates the good sealing performance meeting the requirements of energy storage space. Considering the dynamic performance of energy storage systems, the suitability evaluation method can provide more accurate data support for the site selection, construction, evaluation, and optimization of energy storage efficiency, further promoting sustainable development of clean energy utilization and energy transition.
-
Keywords:
- geological storage /
- suitability evaluation /
- numerical simulation /
- hydrological /
- lithologic trap
-
-
表 1 压缩气体地质储能场地适宜性静态评价指标
Table 1 Index for site assessment of compressed gas geological energy storage
类别 评价对象 影响因子 意义 储集性 储层 厚度 垂向距离影响储能空间体积 面积 横向距离影响储能空间体积 孔隙度 储能空间体积 渗透率 影响气体可占据储集空间比例 深度 影响压缩气体的压力及密度 温度 影响流体的密度 安全性 盖层 厚度 可能的密封有效性 岩石学特征 渗透性和孔隙度 已知的密封性 流体逃逸的潜在性 横向连续性 完整性和溢出点 次级盖层 主盖层之上的密封性 断层 破碎 流体转移潜能 渗透性 流体运移时间 构造 构造的稳定性影响新旧断层 井孔 注入井 注入井的密封性 废弃井 潜在的直接通道 地表 地形气候 潜在泄露后羽流的延伸 土地利用 气体暴露的影响 人口密集程度 气体暴露的影响 水文特征 气体的扩散形式 操作性 经济性 源汇匹配 与能源站的距离影响建设成本 峰谷差价 峰谷差价影响储能系统的效益 场地建设 注入井孔 井孔的数量及建设成本 场地位置 保护区等占地影响批复性 政策 政府、民众支持 表 2 边界条件敏感性分析方案示例
Table 2 Scenarios demonstration of boundary sensitivity analysis
模型 参数 1 上、下及四周边界为封闭边界 2 上边界为开放边界,其余为封闭边界,逐步设置下、四周边界开放 3 上、下及四周边界为开放边界 表 3 GPSFLOW质能守恒方程
Table 3 The mass and energy balance equations solved in GPSFLOW
参数 公式 质能守恒方程 ddt∫VnMidVn=∫ΓnFi⋅ndΓn+∫VnqidVn 质量累积方程 Mi=φNPH∑β=1SβρβXiβ,i=1,NK;β=1,NPH 能量累积方程 MNK+1=φNPH∑β=1SβρβUβ+(1−φ)ρRCRT 质量通量 Fi=NPH∑β=1Xiβρβuβ 能量通量 FNK+1=−λ∇T+φNPH∑β=1hβρβuβ 注:i为组分,NK表示组分总数量;Mi为组分i在单位体积中的质量或能量积累项;Vn为由闭合表面所界定的任意子域;F为质量或热通量;n为指向Vn的面元Γn上的法向量;q为质量或能量的汇/源项;φ为孔隙度;β为相态指数,从1到相态总数量(NPH);Sβ为相β的饱和度(各相占据的孔隙空间的体积分数);ρβ为相β的密度;Xiβ为相β中组分i的质量分数;Uβ表示相β的比内能;CR为岩石比热;T为温度;uβ为达西速度;λ为导热系数;hβ为相β的比焓。 表 4 岩石基本性质
Table 4 Basic parameters of rocks
参数 砂岩 泥岩 孔隙度 0.345 0.05 水平向渗透率/(10−15 m2) 2000 0.01 垂向渗透率/(10−15 m2) 200 0.001 岩石颗粒密度/(kg·m−3) 2600 压缩系数/Pa−1 1.0×10−10 比热/(J·kg−1·°C−1) 920.0 表 5 不同边界范围敏感性分析方案设计
Table 5 Different boundary ratio scenarios design
编号 边界范围 B1 0.6 B2 0.8 B3 1.2 B4 1.4 表 6 不同孔隙度敏感性分析方案设计
Table 6 Different porosity scenarios design
编号 孔隙度 P1 0.1 P2 0.2 P3 0.345 P4 0.4 表 7 不同渗透率敏感性分析方案设计
Table 7 Different permeability scenarios design
编号 渗透率/(10−15 m2) K1 50 K2 100 K3 500 K4 1000 K5 2000 K6 3000 K7 4000 -
[1] 李红,白雨鑫,何青. 压缩二氧化碳储能系统膨胀机研究进展[J]. 热力发电,2024,53(2):17 − 26. [LI Hong,BAI Yuxin,HE Qing. Research progress of expander for compressed carbon dioxide energy storage system[J]. Thermal Power Generation,2024,53(2):17 − 26. (in Chinese with English abstract)] LI Hong, BAI Yuxin, HE Qing. Research progress of expander for compressed carbon dioxide energy storage system[J]. Thermal Power Generation, 2024, 53(2): 17 − 26. (in Chinese with English abstract)
[2] 黄宽,张万益,王丰翔,等. 地下空间储能国内外发展现状及调查建议[J]. 中国地质,2024,51(1):105 − 117. [HUANG Kuan,ZHANG Wanyi,WANG Fengxiang,et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China,2024,51(1):105 − 117. (in Chinese with English abstract)] HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 2024, 51(1): 105 − 117. (in Chinese with English abstract)
[3] 凌晨,吴斌,朱学成,等. 350MW级先进压缩空气储能系统建模与特性分析[J]. 能源研究与利用,2023(5):28 − 32. [LING Chen,WU Bin,ZHU Xuecheng,et al. Modeling and characteristic analysis of 350MW advanced compressed air energy storage system[J]. Energy Research & Utilization,2023(5):28 − 32. (in Chinese)] LING Chen, WU Bin, ZHU Xuecheng, et al. Modeling and characteristic analysis of 350MW advanced compressed air energy storage system[J]. Energy Research & Utilization, 2023(5): 28 − 32. (in Chinese)
[4] 国家能源局发布2022年全国电力工业统计数据[EB]. (2023-01-18)[2024-03-01]. [National Energy Administration released statistical data of national electric power industry for 2022[EB]. (2023-01-18)[2024-03-01]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm. (in Chinese)] National Energy Administration released statistical data of national electric power industry for 2022[EB]. (2023-01-18)[2024-03-01]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm. (in Chinese)
[5] 中电建协发布《中国电力建设行业年度发展报告2022》[EB]. (2022-08-29)[2024-03-01]. [CECC releases China Power Construction Industry Annual Development Report 2022[EB]. (2022-08-29)[2024-03-01]. http://www.chinapower.com.cn/xw/gnxw/20220829/165036.html. (in Chinese)] CECC releases China Power Construction Industry Annual Development Report 2022[EB]. (2022-08-29)[2024-03-01]. http://www.chinapower.com.cn/xw/gnxw/20220829/165036.html. (in Chinese)
[6] 孙晓霞,桂中华,高梓玉,等. 压缩空气储能系统动态运行特性[J]. 储能科学与技术,2023,12(6):1840 − 1853. [SUN Xiaoxia,GUI Zhonghua,GAO Ziyu,et al. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology,2023,12(6):1840 − 1853. (in Chinese with English abstract)] SUN Xiaoxia, GUI Zhonghua, GAO Ziyu, et al. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1840 − 1853. (in Chinese with English abstract)
[7] 何青,王珂. 等温压缩空气储能技术及其研究进展[J]. 热力发电,2022,51(8):11 − 19. [HE Qing,WANG Ke. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation,2022,51(8):11 − 19. (in Chinese with English abstract)] HE Qing, WANG Ke. Research progress of isothermal compressed air energy storage technology[J]. Thermal Power Generation, 2022, 51(8): 11 − 19. (in Chinese with English abstract)
[8] LIU Hejuan,YANG Chunhe,LIU Jianjun,et al. An overview of underground energy storage in porous media and development in China[J]. Gas Science and Engineering,2023,117:205079. DOI: 10.1016/j.jgsce.2023.205079
[9] GUO Chaobin,LI Cai,ZHANG Keni,et al. The promise and challenges of utility-scale compressed air energy storage in aquifers[J]. Applied Energy,2021,286:116513. DOI: 10.1016/j.apenergy.2021.116513
[10] 刘笑驰,梅生伟,丁若晨,等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备,2023,43(10):38 − 47. [LIU Xiaochi,MEI Shengwei,DING Ruochen,et al. Current situation,development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment,2023,43(10):38 − 47. (in Chinese with English abstract)] LIU Xiaochi, MEI Shengwei, DING Ruochen, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 2023, 43(10): 38 − 47. (in Chinese with English abstract)
[11] 张文,王龙轩,丛晓明,等. 新型压缩空气储能及其技术发展[J]. 科学技术与工程,2023,23(36):15335 − 15347. [ZHANG Wen,WANG Longxuan,CONG Xiaoming,et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering,2023,23(36):15335 − 15347. (in Chinese with English abstract)] ZHANG Wen, WANG Longxuan, CONG Xiaoming, et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering, 2023, 23(36): 15335 − 15347. (in Chinese with English abstract)
[12] 杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729 − 1759. [YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729 − 1759. (in Chinese with English abstract)] YANG Chunhe, WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1729 − 1759. (in Chinese with English abstract)
[13] WU Fan, XU Mingyang, ZHONG Wei, et al. Thermodynamic and economic analyses of a modified adiabatic compressed air energy storage system coupling with thermal power generation [J]. Case Studies in Thermal Engineering, 2024, 59: 104521.
[14] 李子钰,吕宏,李祖辉,等. 空气压缩储能的发展现状及其应用前景[J]. 资源节约与环保,2023(8):5 − 8. [LI Ziyu,LYU Hong,LI Zuhui,et al. Development status of air compression energy storage and its application prospect[J]. Resources Economization & Environmental Protection,2023(8):5 − 8. (in Chinese)] LI Ziyu, LYU Hong, LI Zuhui, et al. Development status of air compression energy storage and its application prospect[J]. Resources Economization & Environmental Protection, 2023(8): 5 − 8. (in Chinese)
[15] 叶磊. 基于TOUGH-FLAC集成的含水层压气储能THM多场耦合研究[D]. 徐州:中国矿业大学,2020. [YE Lei. Study on THM multi field coupled compressed air energy storage in aquifers based on TOUGH-FLAC integration[D]. Xuzhou:China University of Mining and Technology,2020. (in Chinese with English abstract)] YE Lei. Study on THM multi field coupled compressed air energy storage in aquifers based on TOUGH-FLAC integration[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese with English abstract)
[16] 左锐,潘明浩,刘嘉蔚,等. 含水层压缩空气储能过程中储层渗流特性及地球化学过程研究进展[J]. 环境科学研究,2022,35(8):1769 − 1778. [ZUO Rui,PAN Minghao,LIU Jiawei,et al. Review on flow characteristics and geochemical process during compressed air energy storage in aquifer[J]. Research of Environmental Sciences,2022,35(8):1769 − 1778. (in Chinese with English abstract)] ZUO Rui, PAN Minghao, LIU Jiawei, et al. Review on flow characteristics and geochemical process during compressed air energy storage in aquifer[J]. Research of Environmental Sciences, 2022, 35(8): 1769 − 1778. (in Chinese with English abstract)
[17] 董家伟,李毅. 含水层压缩空气储能选址评价方法研究[J]. 安全与环境工程,2021,28(3):228 − 239. [DONG Jiawei,LI Yi. Study of the site evaluation of compressed air energy storage in aquifers[J]. Safety and Environmental Engineering,2021,28(3):228 − 239. (in Chinese with English abstract)] DONG Jiawei, LI Yi. Study of the site evaluation of compressed air energy storage in aquifers[J]. Safety and Environmental Engineering, 2021, 28(3): 228 − 239. (in Chinese with English abstract)
[18] 谢珺河. 含水层压气储能热流固耦合并行模拟研究[D]. 徐州:中国矿业大学,2022. [XIE Junhe. Study on parallel computing simulation of thm coupling behavior of compressed air energy storage in aquifers[D]. Xuzhou:China University of Mining and Technology,2022. (in Chinese with English abstract)] XIE Junhe. Study on parallel computing simulation of thm coupling behavior of compressed air energy storage in aquifers[D]. Xuzhou: China University of Mining and Technology, 2022. (in Chinese with English abstract)
[19] 郭朝斌,张可倪,李采. 压缩空气含水层储能系统设计及可行性分析[J]. 同济大学学报(自然科学版),2016,44(7):1107 − 12. [GUO Chaobin,ZHANG Keni,LI Cai. Subsurface system design and feasibility analysis of compressed air energy storage in aquifers[J]. Journal of Tongji University(Natural Science),2016,44(7):1107 − 1112. (in Chinese with English abstract)] GUO Chaobin, ZHANG Keni, LI Cai. Subsurface system design and feasibility analysis of compressed air energy storage in aquifers[J]. Journal of Tongji University(Natural Science), 2016, 44(7): 1107 − 1112. (in Chinese with English abstract)
[20] 郭朝斌,李采,杨利超,等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查,2021,8(4):109 − 119. [GUO Chaobin,LI Cai,YANG Lichao,et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China,2021,8(4):109 − 119. (in Chinese with English abstract)] GUO Chaobin, LI Cai, YANG Lichao, et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 2021, 8(4): 109 − 119. (in Chinese with English abstract)
[21] 郭朝斌,王志辉,刘凯,等. 特殊地下空间应用与研究现状[J]. 中国地质,2019,46(3):482 − 492. [GUO Chaobin,WANG Zhihui,LIU Kai,et al. The application and research progress of special underground space[J]. Geology in China,2019,46(3):482 − 492. (in Chinese with English abstract)] GUO Chaobin, WANG Zhihui, LIU Kai, et al. The application and research progress of special underground space[J]. Geology in China, 2019, 46(3): 482 − 492. (in Chinese with English abstract)
[22] 许晓艺,李琦,刘桂臻,等. 基于多准则决策的CO2地质封存场地适宜性评价方法[J]. 第四纪研究,2023,43(2):551 − 559. [XU Xiaoyi,LI Qi,LIU Guizhen,et al. Suitability evaluation method for CO2 geological storage sites based on multi-criteria decision-making[J]. Quaternary Sciences,2023,43(2):551 − 559. (in Chinese with English abstract)] XU Xiaoyi, LI Qi, LIU Guizhen, et al. Suitability evaluation method for CO2 geological storage sites based on multi-criteria decision-making[J]. Quaternary Sciences, 2023, 43(2): 551 − 559. (in Chinese with English abstract)
[23] 王齐鑫, 马传明, 花勐健, 等. 安徽省沉积盆地CO2地质储存适宜性评价[J]. 水文地质工程地质,2017,44(5):121 − 121. [WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology,2017,44(5):121 − 121. (in Chinese with English abstract)] WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 121 − 121. (in Chinese with English abstract)
[24] SUN Dongmei,CHU Zhubin,CHEN Wenyuan,et al. Comparison of the characteristics of compressed air energy storage in dome-shaped and horizontal aquifers based on the Pittsfield aquifer field test[J]. Applied Energy,2023,348:121465. DOI: 10.1016/j.apenergy.2023.121465
[25] BENNETT J A,FITTS J P,CLARENS A F. Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling[J]. Applied Energy,2022,325:119830. DOI: 10.1016/j.apenergy.2022.119830
[26] BENNETT J A,SIMPSON J G,QIN Chao,et al. Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power[J]. Applied Energy,2021,303:117587. DOI: 10.1016/j.apenergy.2021.117587
[27] PFEIFFER W T,WITTE F,TUSCHY I,et al. Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES)[J]. Energy Conversion and Management,2021,249:114849. DOI: 10.1016/j.enconman.2021.114849
[28] AVIS J,CALDER N,WALSH R. MVIEW—a powerful pre- and post-processor for TOUGH2[C]//Proceedings of TOUGH Symposium 2012. California: Lawrence Berkeley National Laboratory, 2012.
[29] NARASIMHAN T N,WITHERSPOON P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research,1976,12(1):57 − 64. DOI: 10.1029/WR012i001p00057
[30] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892. DOI: 10.2136/sssaj1980.03615995004400050002x
[31] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. DOI: 10.1029/WR012i003p00513