Processing math: 100%
ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

黄土-古土壤互层对土壤水分运移及土体微结构的影响

李培月, 李佳慧, 吴健华, 王远航, 陈银富

李培月,李佳慧,吴健华,等. 黄土-古土壤互层对土壤水分运移及土体微结构的影响[J]. 水文地质工程地质,2024,51(3): 1-11. DOI: 10.16030/j.cnki.issn.1000-3665.202403039
引用本文: 李培月,李佳慧,吴健华,等. 黄土-古土壤互层对土壤水分运移及土体微结构的影响[J]. 水文地质工程地质,2024,51(3): 1-11. DOI: 10.16030/j.cnki.issn.1000-3665.202403039
LI Peiyue, LI Jiahui, WU Jianhua, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 1-11. DOI: 10.16030/j.cnki.issn.1000-3665.202403039
Citation: LI Peiyue, LI Jiahui, WU Jianhua, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 1-11. DOI: 10.16030/j.cnki.issn.1000-3665.202403039

黄土-古土壤互层对土壤水分运移及土体微结构的影响

基金项目: 国家自然科学基金项目(42272302;42072286;42090053);国家重点研发计划项目(2023YFC3706901)
详细信息
    作者简介:

    李培月(1984—),博士,教授,博士生导师,主要从事旱区环境水文地质研究。E-mail:lipy2@163.com

    通讯作者:

    吴健华(1986—),博士,教授,主要从事黄土渗流与水资源开发方面的研究。E-mail:wujianhua@chd.edu.cn

  • 中图分类号: P641.69

Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure

  • 摘要:

    黄土地区地质灾害问题的发生大多与水在黄土中的入渗有关,而马兰黄土-古土壤互层结构对土壤水分入渗规律的影响显著。为揭示古土壤阻滞作用下黄土水分运移规律及其对黄土体微结构的影响,为黄土地区工程实践提供理论基础,该研究以陕西省泾阳县南塬的黄土为研究对象,采用土柱模型进行水分入渗试验,研究黄土-古土壤互层条件下土壤水分运移规律。在此基础上,通过微结构测试、分形维数和概率熵等指标的计算,分析黄土-古土壤互层条件下土壤水分运移对黄土微结构的影响。结果表明:古土壤层的透水性弱,湿润锋抵达黄土与古土壤界面处产生瞬态滞水,且随着入渗强度增加滞水时间增加;古土壤层影响下黄土与古土壤界面处的滞水会导致孔隙结构相互连通,孔隙空间平均增加4.13%,孔隙方向概率熵平均减少0.029,分形维数平均减小0.076,即古土壤层的阻水作用使得界面处黄土的孔隙空间增大,孔隙排列有序,孔隙形态规则。研究结果为黄土地区的工程建设和生态环境保护提供科学支撑。

    Abstract:

    Geological disaster occurrences in loess regions are intrinsically linked to water infiltration in loess, with the Malan loess-paleosol interlayer structure significantly influencing the infiltration patterns of soil moisture. This research was carried out to reveal the moisture migration characteristics in loess-paleosol interlayers, and to investigate the influence of the moisture migration on the microstructure of loess, providing a theoretical basis for engineering practice and scientific research in loess areas. In this study, we focused on the loess of the South Plateau in Jingyang County, Shaanxi Province, and conducted water infiltration tests using a soil column model to investigate the soil moisture transport dynamics under loess-paleosol interlayer conditions. Subsequently, we analyzed the impact of soil moisture transport on the loess microstructure under these conditions through microstructural testing, and calculation of fractal dimension and probability entropy. The findings revealed that the permeability of the paleosol layer was low, causing transient water stagnation when the wetting front reached the loess-paleosol interface. The stagnant water at the interface of loess and paleosol under the influence of the paleosol layer will lead to the interconnection of pore structure, and the pore space will increase by 4.13% on average, and the analysis of the indexes of fractal dimension and probability entropy shows that the probability entropy of the pore direction decreases by 0.029 on average, and the fractal dimension decreases by 0.076 on average, i.e., the water-blocking effect of the paleosol layer makes the pore space of the loess at the interface increase, the pores are arranged in an orderly manner, and the pore morphology is regular. The results of the study provide scientific support for the engineering construction and eco-environmental protection in loess areas.

  • 黄土是一种广泛分布于我国西部地区的第四纪土状堆积物,主要形成于干旱和半干旱气候环境中。在全球范围内广泛分布,占据了约十分之一的全球陆地面积[15]。黄土因其特有的孔隙结构和湿陷性等特征,遇水后其力学性质会发生显著变化,从而使得黄土地区地质灾害频发,如崩塌、滑坡、泥石流等[68]。因此,研究水分入渗过程及其对黄土微结构的影响,对于解决黄土地区地质灾害问题具有重要作用。

    目前,国内外不少学者已经关注到土壤中的弱渗透夹层对水分有阻滞作用[912]。Trochon等[13]发现由于地下存在渗透性较低的土层,引起土壤水间歇性聚集于山坡上,从而导致了局部内涝。Munadi等[9]发现弱透水层附近的土壤基质势值偏高。Jain等[14]通过研究层状土壤中孔隙水流动过程发现,嵌入的淤泥层对孔隙水的流动存在阻碍作用。在黄土地区,古土壤层是典型的弱透水层。亓星等[7]和曹春山等[15]研究发现,在黄土斜(边)坡区域,由于古土壤的弱渗透性,水分运移受阻,导致土层交界处容易形成层间饱水带。这些成果都为研究弱透水层对水流的阻滞作用提供了借鉴。尽管如此,有关黄土与古土壤互层条件下的水分运移规律仍然有待进一步研究。此外,由于黄土具有湿陷性,水分运移对黄土体的微观结构具有显著影响[1619]。Xie等[20]通过分析黄土的微结构,发现水流入渗过后微观结构演变导致黄土易发生湿润塌陷。McHirgui等[21]通过研究多孔介质的微观结构传递特性,揭示了水蒸气在不同含水率之间的传输行为。

    扫描电镜测试和图像处理分析常被用于测定土壤微观孔隙[22]。Yang等[23]和Xu等[24]发现土壤结构可以通过分形维数和概率熵等指标进行描述,通过指标的定量分析,表明渗透过后孔隙形态趋向复杂。王静等[25]和陈正汉等[26]发现水分入渗过程中水分子与土壤颗粒之间的相互作用会导致颗粒之间的重新排列,从而影响土体的整体结构。

    由上述可知,水分入渗后黄土体微观结构会发生变化,学者们已达共识,但古土壤层的阻滞作用如何影响水分入渗以及黄土体微观结构还有待深入研究。因此,探究在黄土-古土壤阻滞作用下水分在土体中的运移规律,揭示古土壤阻滞作用对水土接触过程中土体微观结构变化,有助于深入理解黄土在水分作用下的变形和破坏机制,也可为黄土地区未来工程建设提供指导及借鉴。

    泾阳县位于陕西省咸阳市,在渭北平原泾河下游[27]。黄土台塬区位于泾阳县南部,海拔430~500 m。泾阳南塬的黄土地层出露较为完整,黄土与古土壤相间沉积,是典型的黄土–古土壤序列。根据王永焱等[28]对地层的划分方法,地层自上而下分别为第四系全新统Qh、上更新统Qp3、中更新统Qp2和早更新统Qp1,对应的黄土类型分别为风积黄土、马兰黄土、离石黄土上部和离石黄土下部,整个剖面古土壤层与黄土层相间分布,出露地层连续且完整。整个塬区的L1黄土土层较厚,通过前人对天然降雨条件下水分运移情况的分析[29],发现在该层水分下渗的深度有限,因此,选取L1—S1层作为研究对象,对L1黄土土层和S1古土壤土层取样研究。取样点位置及取样地黄土剖面示意图见图1

    图  1  取样点位置及取样地黄土剖面示意图
    Figure  1.  Location map of sampling points and schematic diagram of loess profile of sampling sites

    植被根系和人类活动的干扰对黄土结构和性质会造成一定影响[3031]。因此,本研究取得的马兰黄土样品位于地表以下约3.5 m处。古土壤剖面近似直立且出露时间长。长期的风化作用使得外层古土壤松散且裂隙大,因此人工剥蚀掉表层古土壤,取受风化等作用影响较小的古土壤样品。取样完成后,将黄土与古土壤装入密封袋运回实验室,自然风干。依据《土工试验方法标准》(GB/T 50123—2019),对野外取得的土样进行基本物理指标测定[27],包括天然密度、天然含水率、干密度、比重、饱和质量含水率等,为后续试验提供数据支撑。

    本次试验设计了4种不同的入渗强度,旨在更精确地揭示黄土的水分运动特性,从而为黄土地区的建设活动提供坚实的理论依据。试验方案见表1。依照自然条件下典型黄土的层状结构,通过土柱试验模拟自然条件下黄土-古土壤沉积情况,在土体表面以下4,8,12,16 cm深度处布置水分传感器,监测不同深度处含水率变化过程。每组入渗强度下设置2组试验土柱,一组土柱装填20 cm的L1黄土,考虑到天然环境中古土壤沉积厚度小,因此另一组土柱装填15 cm的L1黄土和5 cm的S1古土壤。4组试验的渗水量均为500 mL。

    表  1  室内土柱渗水试验方案
    Table  1.  Scenarios of seepage test using soil columns
    试验
    编号
    土柱类型 入渗速率
    /(mL·min−1
    渗水
    时长/h
    入渗强度
    /(mm·d−1
    1 L1 1 8.0 18
    L1—S1
    2 L1 2 4.0 36
    L1—S1
    3 L1 3 2.8 55
    L1—S1
    4 L1 5 1.7 92
    L1—S1
    下载: 导出CSV 
    | 显示表格

    黄土的含水量和干密度对其性质有较大影响[32]。为模拟天然条件下的黄土与古土壤,入渗试验土柱均按照实测的天然状态下黄土的物理指标对土柱进行填装。黄土实测干密度为1.3 g/cm3,古土壤实测干密度为1.6 g/cm3。2种土样的平均天然含水率为15%。在土样装填完成后铺设滤纸,防止水分入渗时破坏土样表面结构,使试样进水不均匀。相同入渗强度的2组土柱同时进行观测,数据采集时长均为24 h,试验过程中记录积水出现以及消失的时间。

    利用水分传感器记录了不同深度处含水率的变化过程,4组试验的含水率历时曲线见图2。由图2可知,含水率变化曲线大致分为稳定不变、迅速上升、趋于稳定3个阶段[29, 33]。当湿润锋未到达监测点时,监测点处的土体含水率保持不变,随着湿润锋不断向下运移至相应位置的监测点处时,监测点处的土体含水率迅速升高,之后土体含水率在某个值附近波动,基本保持不变。

    图  2  不同入渗强度下黄土土柱与黄土-古土壤土柱含水率变化趋势图
    Figure  2.  Trends of water content of loess soil column and loess-paleosol soil column under 4 groups of infiltration intensities

    在18 mm/d的入渗强度下(图2中1—L1、1—L1-S1),黄土土柱中水分湿润锋在6.4 h时到达16 cm处,黄土-古土壤土柱中水分在4.7 h时到达16 cm处,说明黄土-古土壤土柱中湿润锋到达相同深处的时间早于黄土土柱,这一规律在其他入渗强度条件下均有所体现。在停止供水后的6 h内,黄土土柱不同深度的含水率均保持在30%~35%,而黄土-古土壤土柱中16 cm处的含水率只达到20%,同时,含水率增加过程明显慢于其他曲线,说明古土壤层的水分运移速率慢于黄土层[12, 34]。前人通过对古土壤的微观结构测定,证实古土壤的孔隙结构与黄土差异明显[3536],二者的颗粒组成也存在较大差异,黄土层中粗粉粒的含量大于古土壤,而古土壤中的黏粒含量大于黄土层[27],这些差异导致二者的渗透能力有所不同。

    在36 mm/d的入渗强度下(图2中2—L1、2—L1-S1),对比黄土土柱与黄土-古土壤土柱12 cm处的含水率,黄土-古土壤土柱在4 h时接近饱和含水率40%,6 h时逐渐稳定在35%左右,而黄土土柱在5 h时含水率增加至35%后基本稳定。在55 mm/d的入渗强度下(图2中3—L1、3—L1-S1),黄土-古土壤土柱12 cm处的含水率在2.8 h时接近35%,10 h后逐渐稳定在28%左右,对比黄土土柱相同位置处的含水率增加至30%后基本不变。在36,55 mm/d这2组入渗强度下,下层有古土壤的土柱含水率都存在突然上升现象,一段时间后下降,稳定值与黄土土柱12 cm处含水率接近,说明黄土-古土壤土柱在这一位置处出现水分积聚现象,即黄土与古土壤界面处产生暂态滞水,这与赵志强等[12]在野外进行的原位试验结果一致,证实古土壤层对水分确实存在阻滞作用,且入渗强度越大,滞水存在的时间越长。

    在92 mm/d的入渗强度下(图2中4—L1、4—L1-S1),两组土柱8 cm处的含水率曲线均在1 h时开始上升,黄土土柱中含水率曲线在5 h时上升至31%后保持稳定,而黄土-古土壤土柱中含水率曲线在3 h时已经达到30%左右,而后突然增加至33%并稳定不变,说明在黄土-古土壤土柱的8 cm位置处有突然的水分增加现象,即黄土与古土壤界面出现滞水高度达到8 cm且在之后的21 h内并未消失。同时,在这一入渗强度下,4 cm深度处的含水率始终低于35%,而36,55 mm/d入渗强度下4 cm深度处的含水率能够达到35%以上。由此可知,当入渗强度增加至一定程度时,土体的吸水能力变差,这是由于入渗强度过大时,土体表层迅速出现积水,导致土体内部的气体无法及时排出,阻碍了土体对水分的吸收以及水分的向下入渗[3738]

    为了研究黄土-古土壤互层条件下土壤水分运移对黄土微结构的影响,将渗透完成的土柱进行自然风干处理,取埋深12~15 cm处的黄土土样,采用扫描电镜分析方法,对其新鲜面进行微结构分析。试验前后土样新鲜面微结构图像如图3所示。

    图  3  渗透前后黄土土样新鲜面微结构图像
    Figure  3.  Microstructures of fresh surface of loess soil sample before and after infiltration

    图3可知,渗透前黄土试样的颗粒形态以较大的集粒为主,几乎无碎屑颗粒;各颗粒之间以架空孔隙为主(图3中初始试样),骨架颗粒表面无胶结物覆盖,颗粒轮廓清晰,孔隙连通性好。经过水分入渗后,试样的微结构骨架主要由不同尺度的集粒混合构成,其中填充有碎屑颗粒。颗粒间的接触方式由最初的架空接触转变为镶嵌接触和分散接触,孔隙的主要类型由之前的架空孔隙向镶嵌孔隙(图3中1—L1、1—L1-S1)和胶结物孔隙(图3中2—L1、2—L1-S1)转变,粗颗粒主要以外包黏土颗粒的形式存在(图3中3—L1、3—L1-S1),细颗粒以粉-黏土颗粒的形式存在(图3中4—L1、4—L1-S1),孔隙空间减少,连通性变差。通过对比黄土土柱与黄土−古土壤土柱可以发现,当土柱下部有古土壤层时,土样中的碎屑颗粒与黏土颗粒明显减少,骨架颗粒轮廓较黄土土柱中的更为清晰,孔隙空间增大,连通性变好。

    通过分析渗透前后土样新鲜面的微结构图像可知,黄土遇水过后其颗粒间的接触关系有明显的变化,孔隙间连通性变差。这是由于黄土的支架结构湿陷性显著,在渗水过程中结构遇水发生了坍塌[4]。当土柱下部有古土壤层时,土样中的碎屑颗粒与黏土颗粒明显减少,这是由于古土壤的存在,黄土与古土壤界面处产生滞水,黄土中部分颗粒间的空隙被水填满,形成了新的孔隙结构。这些孔隙结构相互连通,改善了黄土的孔隙连通性。同时,水分的存在也使得黄土颗粒间的黏聚力发生变化,进一步影响了孔隙的结构和连通性[1]。此外,黄土中通常含有一定量的可溶盐类,通过分析马兰黄土的易溶盐含量,可知土样中的总盐量达到887.5 mg/kg。当黄土浸水后,可溶盐类会溶解于水中,形成一定的离子浓度,各类离子均有淋出,特别是HCO3质量浓度可达到305 mg/L,即黄土中的可溶盐会发生溶解,离子在水分渗透过程中会起到润滑作用,有助于颗粒间的重新排列和孔隙结构的形成[30]

    为精确量化古土壤层影响下水分运移过程中黄土的微观孔隙变化,通过图像处理软件对微结构图像进行解析,累加统计孔隙内部与边界的所有像素评估孔隙尺寸[24, 30]。根据孔隙直径,可将孔隙划分为微孔(直径<2 μm)、小孔(直径在2~<8 μm)、中孔(直径8~<32 μm)以及大孔(直径≥32 μm)4类[39]。通过统计计算得到孔隙率变化及各类孔隙占比图(图4)。图像孔隙率(P)计算公式为:

    图  4  黄土试样孔隙率变化及各类孔隙占比图
    Figure  4.  Changes in porosity of loess specimens and the percentage of various types of pores
    P=AporeAtotal×100% (1)

    式中:Apore——孔隙像素和;

    Atotal——图像总像素和。

    图4可知,渗透后土样的孔隙率明显减少,且随着入渗强度的增加,试样孔隙率由渗透前的56.8%减少到30%左右,当土柱下部存在古土壤层时,试样孔隙率平均增加4.13%。对比渗透前后各类孔隙占比可以发现,初始试样中大孔占比明显多于渗透过后的土样,且渗透过后大孔与中孔占比均减少,说明水分的运移破坏了黄土中的原有结构,这与土样微观结构图像显示的变化一致。对比黄土土柱渗水过后不同大小的孔隙变化,发现在渗水过程中,微孔和小孔的孔隙占比分别平均增长了3.03%和8.24%,而中孔和大孔的孔隙占比分别下降了0.61%和10.66%。这一变化表明,大孔和中孔向小孔和微孔的转化是导致试样孔隙空间减少的关键因素[30]。通过分析相同入渗强度下的2组试样不同类别的孔隙分布,发现土柱下部有古土壤层时微孔占比均存在减小的情况,而大孔的占比均增加,随着入渗强度的增大,大孔的面积比分别增加了1.15%、1.32%、2.42%、5.32%,孔隙空间有增大的趋势。对比前人对原状黄土孔隙的特征分析可知,原状黄土孔隙组成以中孔和大孔为主,与本研究土样结构相似,证明该研究结果具有可靠性[4041]

    孔隙定向分布特征通过有序性指标概率熵(Hm)表征[42]Hm的值越大,孔隙或颗粒的排列越趋向于无序,其定向性也就越差[24, 42]。渗透前后黄土试样的概率熵,见表2。渗水过后,试样的Hm值增大,随着入渗强度的增加,黄土土柱试样的概率熵分别增加了0.114,0.133,0.124,0.169,说明水分入渗使得孔隙定向性变差,且入渗强度越大对孔隙排列影响越大。但有古土壤存在的情况下,孔隙方向概率熵平均减少0.029,说明界面滞水使得黄土试样的孔隙排列方向趋于有序。

    表  2  渗透前后黄土试样的孔隙方向概率熵
    Table  2.  Probability entropy of pore direction of loess specimens before and after infiltration
    试验样品 初始试样 1 2 3 4
    L1 L1—S1 L1 L1—S1 L1 L1—S1 L1 L1—S1
    概率熵 0.785 0.899 0.878 0.918 0.861 0.909 0.883 0.954 0.944
    下载: 导出CSV 
    | 显示表格

    孔隙形态分布特征通过孔隙分形维数(D)表征,该指标能够反映孔隙与骨架颗粒接触边界的复杂程度,即孔隙形态的复杂性特征[43]D越大,孔隙形态越复杂。分形维数通常采用周长-面积法计算[44]

    lgA=D2lgL+C (2)

    式中:L——孔隙的周长;

    A——孔隙的像素和;

    C——拟合常数。

    渗透前后黄土试样孔隙的分形维数如表3所示。由表3可知,当土柱下层有古土壤时,黄土与古土壤界面处土样的孔隙分形维数平均减小0.076,说明黄土与古土壤界面处的滞水影响孔隙形态,使得骨架颗粒的接触边界更加规则。对比渗透前后黄土土柱中试样的孔隙分形维数可以发现,除第1组入渗强度下试样的孔隙分形维数较初始试样小以外,其他入渗强度下的孔隙分形维数平均增加0.084,说明当入渗强度达到一定程度时,水分在土体内运移会导致孔隙形态趋于复杂。

    表  3  渗透前后黄土试样的孔隙分形维数
    Table  3.  Pore fractal dimension of loess specimens before and after infiltration
    试验样品 拟合方程 孔隙分形维数
    初始试样 lgA = 0.843lgL − 0.128 1.686
    1 L1 lgA = 0.814lgL − 0.098 1.628
    L1—S1 lgA = 0.807lgL − 0.069 1.614
    2 L1 lgA = 0.894lgL − 0.526 1.788
    L1—S1 lgA = 0.810lgL − 0.047 1.620
    3 L1 lgA = 0.860lgL − 0.133 1.720
    L1—S1 lgA = 0.820lgL − 0.343 1.640
    4 L1 lgA = 0.901lgL − 0.314 1.802
    L1—S1 lgA = 0.880lgL − 0.125 1.760
    下载: 导出CSV 
    | 显示表格

    当黄土下部存在古土壤层时,一方面会加速水分在黄土层中的运移速率,另一方面会使水分滞存在黄土与古土壤界面处,且滞存的时间随着入渗强度的增加而增加。出现这一规律的原因是非饱和土体中存在基质吸力,通过对比黄土与古土壤的土水特征曲线[12]可以得知,初始状态下古土壤基质吸力大于黄土的基质吸力,因此在相同高度范围内,黄土土柱内的基质吸力基本一致,而黄土-古土壤土柱内存在较大的基质吸力梯度,会加速上部黄土内的水分下渗,导致黄土-古土壤土柱同一深度处的含水率响应时间早于黄土土柱。随着入渗时间的增长,土体内部含水率增加,基质吸力梯度减小,土体吸水能力减弱,含水率增加速率逐渐减小[33],土体内部含水率最终都趋于稳定。同时,由于古土壤的弱透水性,水分到达黄土与古土壤界面处时无法及时向下进一步入渗,多余的水分滞存于此界面处。入渗强度越大,相同时间内进入土体内部的水分越多,滞水的高度就越大。韩同春等[38]对层状土结构中的降雨入渗分析发现,上粗下细型层状土入渗速率主要由细层土控制。因此,上部的入渗速率增加而下部的排水速率较慢,黄土与古土壤界面处滞存的水量增多,滞存时间增长。此外,入渗强度过大时,土体表层迅速出现积水,导致土体内部的气体无法及时排出[37],使得土体内部稳定后的含水率偏低,水分下渗受阻,这也就解释了入渗强度越大,积水时间越长的现象。

    由于黄土的支架结构湿陷性显著,在水分入渗过后这类结构极易发生破坏,导致孔隙空间迅速减小,而在古土壤层的影响下,黄土与古土壤界面产生暂态滞水,导致黄土中部分颗粒间的空隙被水填满,形成了新的孔隙结构。利用图像处理方法对试样微观结构孔隙空间变化进行精确量化发现,随着入渗强度的增加,试样孔隙率变小。这可能是两个方面的原因:(1)黄土骨架遇水发生塌陷;(2)入渗强度越大,土柱内部水分入渗速度越快,颗粒在水流作用下被剥离迁移的越多[41],顺水流向下运移至黄土与古土壤界面处,由于古土壤层水分运移速度减慢,颗粒便停留在界面处填充原本较大的孔隙,使得试样的孔隙率降低。以往的研究表明,水分子充分填充黄土颗粒间的空隙,导致颗粒间的间距增大。此外,水分还会引起黄土颗粒的膨胀,进一步扩大了孔隙的空间[25]。因此,当古土壤存在时,由于古土壤对水的阻滞作用,黄土与古土壤界面处土体孔隙率增加。黄土中的某些矿物质和胶结物在水的作用下会发生溶解或分散。这些溶解或分散的物质会从黄土颗粒表面脱离,进而增加孔隙的面积。特别是黄土中的可溶盐类,在水的作用下溶解,黄土颗粒间的胶结物减少,颗粒间的连接变得更为松散,孔隙面积相应增大[24]

    通过分析孔隙的定向分布与形态分布特征(表2表3),结合孔隙空间分布特征(图3)可知,当土柱下层存在古土壤时,孔隙的定向性更好,孔隙形态分布更规则。这是由于古土壤层的存在,黄土与古土壤界面处产生滞水,降低了颗粒间的摩擦力,颗粒能够重新排列形成更为有序的结构。这种重新排列的过程通常伴随着颗粒的定向排列,即颗粒的长轴方向趋于一致,从而导致孔隙也呈现出一定的定向性。这与Chen等[43]得到的结论相一致。黄土中的黏土矿物和胶结物质在水的作用下会发生溶解、分散或重排。这些过程有助于消除或减弱颗粒间的无序连接,使得孔隙结构更为清晰和规则[24, 30]。此外,水分的运移会使孔隙的定向性变差,孔隙形态分布复杂。这主要是由于:(1)在渗透过程中大孔、中孔向小孔、微孔转化,削弱了孔隙的定向性;(2)随着入渗强度的增加,水分运移速率加快,土体中溶解或分散的物质被运移到其他位置,参与新的孔隙结构的形成,使得孔隙或颗粒的排列趋向无序,孔隙接触趋向不规则[4, 42]

    (1)水分入渗时,土体内部含水率基本可以分为稳定不变、迅速上升、趋于稳定3个阶段。黄土下部的古土壤层一方面会加速黄土层中的水分运移,另一方面会使水分滞存在黄土与古土壤界面处,且滞存的时间随着入渗强度的增加而增加。

    (2)整体来说水分入渗后黄土孔隙连通性变差,黄土颗粒骨架在渗水过程中遇水发生了坍塌。但古土壤层存在时,黄土与古土壤界面处的滞水会导致孔隙结构相互连通,会对黄土的孔隙连通性有所改善。

    (3)古土壤影响下黄土与古土壤界面处土样的孔隙空间平均增加4.13%,孔隙方向概率熵平均减少0.029,孔隙分形维数平均减小0.076,表明古土壤层的阻水作用使得孔隙空间增大,孔隙排列有序,孔隙形态规则。

  • 图  1   取样点位置及取样地黄土剖面示意图

    Figure  1.   Location map of sampling points and schematic diagram of loess profile of sampling sites

    图  2   不同入渗强度下黄土土柱与黄土-古土壤土柱含水率变化趋势图

    Figure  2.   Trends of water content of loess soil column and loess-paleosol soil column under 4 groups of infiltration intensities

    图  3   渗透前后黄土土样新鲜面微结构图像

    Figure  3.   Microstructures of fresh surface of loess soil sample before and after infiltration

    图  4   黄土试样孔隙率变化及各类孔隙占比图

    Figure  4.   Changes in porosity of loess specimens and the percentage of various types of pores

    表  1   室内土柱渗水试验方案

    Table  1   Scenarios of seepage test using soil columns

    试验
    编号
    土柱类型 入渗速率
    /(mL·min−1
    渗水
    时长/h
    入渗强度
    /(mm·d−1
    1 L1 1 8.0 18
    L1—S1
    2 L1 2 4.0 36
    L1—S1
    3 L1 3 2.8 55
    L1—S1
    4 L1 5 1.7 92
    L1—S1
    下载: 导出CSV

    表  2   渗透前后黄土试样的孔隙方向概率熵

    Table  2   Probability entropy of pore direction of loess specimens before and after infiltration

    试验样品 初始试样 1 2 3 4
    L1 L1—S1 L1 L1—S1 L1 L1—S1 L1 L1—S1
    概率熵 0.785 0.899 0.878 0.918 0.861 0.909 0.883 0.954 0.944
    下载: 导出CSV

    表  3   渗透前后黄土试样的孔隙分形维数

    Table  3   Pore fractal dimension of loess specimens before and after infiltration

    试验样品 拟合方程 孔隙分形维数
    初始试样 lgA = 0.843lgL − 0.128 1.686
    1 L1 lgA = 0.814lgL − 0.098 1.628
    L1—S1 lgA = 0.807lgL − 0.069 1.614
    2 L1 lgA = 0.894lgL − 0.526 1.788
    L1—S1 lgA = 0.810lgL − 0.047 1.620
    3 L1 lgA = 0.860lgL − 0.133 1.720
    L1—S1 lgA = 0.820lgL − 0.343 1.640
    4 L1 lgA = 0.901lgL − 0.314 1.802
    L1—S1 lgA = 0.880lgL − 0.125 1.760
    下载: 导出CSV
  • [1]

    SHAO Xianxian,ZHANG Huyuan,TAN Yu. Collapse behavior and microstructural alteration of remolded loess under graded wetting tests[J]. Eng Geol,2018,233:11 − 22. DOI: 10.1016/j.enggeo.2017.11.025

    [2]

    LUO Hao,WU Faquan,CHANG Jinyuan,et al. Microstructural constraints on geotechnical properties of Malan Loess:A case study from Zhaojiaan landslide in Shaanxi Province,China[J]. Engineering Geology,2018,236:60 − 69. DOI: 10.1016/j.enggeo.2017.11.002

    [3]

    LI Yanrong,SHI Wenhui,AYDIN A,et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews,2020,201:102947. DOI: 10.1016/j.earscirev.2019.102947

    [4] 魏亚妮,范文,麻广林. 黄土高原马兰黄土微结构特征及湿陷机理[J]. 地球科学与环境学报,2022,44(4):581 − 592. [WEI Yani,FAN Wen,MA Guanglin. Characteristics of microstructure and collapsible mechanism of Malan Loess in Loess Plateau,China[J]. Journal of Earth Sciences and Environment,2022,44(4):581 − 592. (in Chinese with English abstract)]

    WEI Yani, FAN Wen, MA Guanglin. Characteristics of microstructure and collapsible mechanism of Malan Loess in Loess Plateau, China[J]. Journal of Earth Sciences and Environment, 2022, 44(4): 581 − 592. (in Chinese with English abstract)

    [5]

    LI Peiyue,KOU Xiaomei,WANG Yong,et al. Building a more sustainable Chinese Loess Plateau[J]. Journal of Earth Science,2024,35(1):283 − 287. DOI: 10.1007/s12583-024-1970-3

    [6] 许领,戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J]. 水文地质工程地质,2008,35(5):28 − 32. [XU Ling,DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology,2008,35(5):28 − 32. (in Chinese with English abstract)]

    XU Ling, DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 28 − 32. (in Chinese with English abstract)

    [7] 亓星,许强,李斌,等. 甘肃黑方台黄土滑坡地表水入渗机制初步研究[J]. 工程地质学报,2016,24(3):418 − 424. [QI Xing,XU Qiang,LI Bin,et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology,2016,24(3):418 − 424. (in Chinese with English abstract)]

    QI Xing, XU Qiang, LI Bin, et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 2016, 24(3): 418 − 424. (in Chinese with English abstract)

    [8]

    CHEN Yinfu,LI Peiyue,WANG Yuanhang,et al. Unraveling the mystery of water-induced loess disintegration:A comprehensive review of experimental research[J]. Sustainability,2024,16(6):2463. DOI: 10.3390/su16062463

    [9]

    MUNADI,SOLEKHUDIN I,ZULIJANTO A. A numerical study of steady infiltration from a single irrigation channel with an impermeable soil layer[J]. Eng Lett,2020,28(3):643 − 650.

    [10]

    ZACHARA J,BRANTLEY S,CHOROVER J,et al. Internal domains of natural porous media revealed:Critical locations for transport,storage,and chemical reaction[J]. Environmental Science & Technology,2016,50(6):2811 − 2829.

    [11]

    LUO Zuosen,LI Jianlin,JIANG Qiao,et al. Effect of the water-rock interaction on the creep mechanical properties of the sandstone rock[J]. Periodica Polytechnica Civil Engineering,2018,62(2):451 − 461.

    [12] 赵志强,戴福初,闵弘,等. 原状黄土-古土壤中水分入渗过程研究[J]. 岩土力学,2021,42(9):2611 − 2621. [ZHAO Zhiqiang,DAI Fuchu,MIN Hong,et al. Research on infiltration process in undisturbed loess-paleosol sequence[J]. Rock and Soil Mechanics,2021,42(9):2611 − 2621. (in Chinese with English abstract)]

    ZHAO Zhiqiang, DAI Fuchu, MIN Hong, et al. Research on infiltration process in undisturbed loess-paleosol sequence[J]. Rock and Soil Mechanics, 2021, 42(9): 2611 − 2621. (in Chinese with English abstract)

    [13]

    TROCHON B,BUSTILLO V,CANER L,et al. Main water pathways in cultivated clayey calcisols in molassic hills in southwestern France:Toward spatialization of soil waterlogging[J]. Vadose Zone Journal,2023,22(5):e20272. DOI: 10.1002/vzj2.20272

    [14]

    JAIN A,MITTAL S,SHUKLA S K. Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(7):1826 − 1845. DOI: 10.1016/j.jrmge.2022.09.015

    [15] 曹春山,吴树仁,潘懋,等. 古土壤力学特性及其对黄土滑坡的意义[J]. 水文地质工程地质,2016,43(5):127 − 132. [CAO Chunshan,WU Shuren,PAN Mao,et al. Mechanics characteristics of paleosol and its implication to loess landslide[J]. Hydrogeology & Engineering Geology,2016,43(5):127 − 132. (in Chinese with English abstract)]

    CAO Chunshan, WU Shuren, PAN Mao, et al. Mechanics characteristics of paleosol and its implication to loess landslide[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 127 − 132. (in Chinese with English abstract)

    [16] 胡庆国,袁宁,刘登生,等. 多层结构土质边坡降雨入渗过程及稳定性影响分析[J]. 中国公路学报,2018,31(2):67 − 74. [HU Qingguo,YUAN Ning,LIU Dengsheng,et al. Analysis of rainfall infiltration process and stability of soil slope with multilayer structure[J]. China Journal of Highway and Transport,2018,31(2):67 − 74. (in Chinese with English abstract)]

    HU Qingguo, YUAN Ning, LIU Dengsheng, et al. Analysis of rainfall infiltration process and stability of soil slope with multilayer structure[J]. China Journal of Highway and Transport, 2018, 31(2): 67 − 74. (in Chinese with English abstract)

    [17]

    AL-MUKHTAR M,KHATTAB S,ALCOVER J F. Microstructure and geotechnical properties of lime-treated expansive clayey soil[J]. Engineering Geology,2012,139/140:17 − 27. DOI: 10.1016/j.enggeo.2012.04.004

    [18]

    RABOT E,WIESMEIER M,SCHLÜTER S,et al. Soil structure as an indicator of soil functions:A review[J]. Geoderma,2018,314:122 − 137. DOI: 10.1016/j.geoderma.2017.11.009

    [19]

    SCHLÜTER S,SAMMARTINO S,KOESTEL J. Exploring the relationship between soil structure and soil functions via pore-scale imaging[J]. Geoderma,2020,370:114370. DOI: 10.1016/j.geoderma.2020.114370

    [20]

    XIE Wanli,LI Ping,ZHANG Maosheng,et al. Collapse behavior and microstructural evolution of loess soils from the Loess Plateau of China[J]. Journal of Mountain Science,2018,15(8):1642 − 1657. DOI: 10.1007/s11629-018-5006-2

    [21]

    MCHIRGUI W,MILLET O,AMIRI O. Theoretical study and simulation of moisture transport in unsaturated porous media by periodic homogenization[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(4):409 − 435. DOI: 10.1002/nag.2315

    [22] 李培月,何晓东,周长静,等. 苏里格地区致密砂岩矿物组成与微观结构及其对水力压裂的潜在影响[J]. 水文地质工程地质,2023,50(3):1 − 11. [LI Peiyue,HE Xiaodong,ZHOU Changjing,et al. Mineral compositions and microstructural characteristics of the tight sandstone reservoir in the Sulige Area and their potential influence on hydraulic fracturing[J]. Hydrogeology & Engineering Geology,2023,50(3):1 − 11. (in Chinese with English abstract)]

    LI Peiyue, HE Xiaodong, ZHOU Changjing, et al. Mineral compositions and microstructural characteristics of the tight sandstone reservoir in the Sulige Area and their potential influence on hydraulic fracturing[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 1 − 11. (in Chinese with English abstract)

    [23]

    YANG Chunliu,WU Jianhua,LI Peiyue,et al. Evaluation of soil-water characteristic curves for different textural soils using fractal analysis[J]. Water,2023,15(4):772. DOI: 10.3390/w15040772

    [24]

    XU Panpan,ZHANG Qiying,QIAN Hui,et al. Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage[J]. Engineering Geology,2021,282:105875. DOI: 10.1016/j.enggeo.2020.105875

    [25] 王静,周刘光,钟春玲,等. 冻融作用下粉砂土微观结构变化对宏观力学参数的影响研究[J]. 公路,2017,62(10):22 − 30. [WANG Jing,ZHOU Liuguang,ZHONG Chunling,et al. Impact of silty sand soil microstructure change on macro-mechanical parameters under freezing and thawing[J]. Highway,2017,62(10):22 − 30. (in Chinese with English abstract)]

    WANG Jing, ZHOU Liuguang, ZHONG Chunling, et al. Impact of silty sand soil microstructure change on macro-mechanical parameters under freezing and thawing[J]. Highway, 2017, 62(10): 22 − 30. (in Chinese with English abstract)

    [26] 陈正汉,郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学,2019,40(1):1 − 54. [CHEN Zhenghan,GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics,2019,40(1):1 − 54. (in Chinese with English abstract)]

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1 − 54. (in Chinese with English abstract)

    [27] 杨春柳. 基于分形理论的非饱和黄土渗透特性研究[D]. 西安:长安大学,2023. [YANG Chunliu. Permeability Characteristics of Unsaturated Loess Based on Fractal Theory[D]. Xi’an:Chang’an University,2023. (in Chinese with English abstract)]

    YANG Chunliu. Permeability Characteristics of Unsaturated Loess Based on Fractal Theory[D]. Xi’an: Chang’an University, 2023. (in Chinese with English abstract)

    [28] 王永焱,滕志宏. 中国黄土的地层划分[J]. 地质论评,1983,29(3):201 − 208. [WANG Yongyan,TENG Zhihong. Stratigraphical division of the loess in China[J]. Geological Review,1983,29(3):201 − 208. (in Chinese with English abstract)]

    WANG Yongyan, TENG Zhihong. Stratigraphical division of the loess in China[J]. Geological Review, 1983, 29(3): 201 − 208. (in Chinese with English abstract)

    [29] 李萍,李同录,王阿丹,等. 黄土中水分迁移规律现场试验研究[J]. 岩土力学,2013,34(5):1331 − 1339. [LI Ping,LI Tonglu,WANG Adan,et al. In-situ test research on regularities of water migration in loess[J]. Rock and Soil Mechanics,2013,34(5):1331 − 1339. (in Chinese with English abstract)]

    LI Ping, LI Tonglu, WANG Adan, et al. In-situ test research on regularities of water migration in loess[J]. Rock and Soil Mechanics, 2013, 34(5): 1331 − 1339. (in Chinese with English abstract)

    [30] 徐盼盼. 重塑黄土渗透性变化的水-土作用机制研究[D]. 西安:长安大学,2021. [XU Panpan. Study on water-soil interaction mechanism of permeability change of remolded loess[D]. Xi’an:Chang’an University,2021. (in Chinese with English abstract)]

    XU Panpan. Study on water-soil interaction mechanism of permeability change of remolded loess[D]. Xi’an: Chang’an University, 2021. (in Chinese with English abstract)

    [31] 洪勃,唐亚明,冯卫,等. 吕梁山区马兰黄土抗剪强度参数的区域变化规律及其影响因素试验研究[J]. 西北地质,2023,56(2):272 − 281. [HONG Bo,TANG Yaming,FENG Wei,et al. Regional variation and influencing factors of shear strength parameters of Malan loess in Lüliang area[J]. Northwestern Geology,2023,56(2):272 − 281. (in Chinese with English abstract)]

    HONG Bo, TANG Yaming, FENG Wei, et al. Regional variation and influencing factors of shear strength parameters of Malan loess in Lüliang area[J]. Northwestern Geology, 2023, 56(2): 272 − 281. (in Chinese with English abstract)

    [32]

    WU Jianhua,YANG Ningning,LI Peiyue,et al. Influence of moisture content and dry density on the compressibility of disturbed loess:a case study in Yan’an city,China[J]. Sustainability,2023,15(7):6212. DOI: 10.3390/su15076212

    [33] 李华,李同录,江睿君,等. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学,2020,41(3):895 − 904. [LI Hua,LI Tonglu,JIANG Ruijun,et al. Measurement of unsaturated permeability curve using filter paper method[J]. Rock and Soil Mechanics,2020,41(3):895 − 904. (in Chinese with English abstract)]

    LI Hua, LI Tonglu, JIANG Ruijun, et al. Measurement of unsaturated permeability curve using filter paper method[J]. Rock and Soil Mechanics, 2020, 41(3): 895 − 904. (in Chinese with English abstract)

    [34] 赵景波,王长燕,刘护军,等. 陕西洛川黄土剖面上部土层水分入渗规律与含水条件研究[J]. 水文地质工程地质,2010,37(1):124 − 129. [ZHAO Jingbo,WANG Changyan,LIU Hujun,et al. A study of water infiltration and water-bearing condition of the L1—S4 layers in Luochuan,Shaanxi[J]. Hydrogeology & Engineering Geology,2010,37(1):124 − 129. (in Chinese with English abstract)]

    ZHAO Jingbo, WANG Changyan, LIU Hujun, et al. A study of water infiltration and water-bearing condition of the L1—S4 layers in Luochuan, Shaanxi[J]. Hydrogeology & Engineering Geology, 2010, 37(1): 124 − 129. (in Chinese with English abstract)

    [35] 张龙,陈正汉,孙树国,等. 非饱和重塑Q2和Q3黄土的渗水特性研究[J]. 水利与建筑工程学报,2016,14(2):1 − 5. [ZHANG Long,CHEN Zhenghan,SUN Shuguo,et al. Permeability of unsaturated remolded Q2 and Q3 loess[J]. Journal of Water Resources and Architectural Engineering,2016,14(2):1 − 5. (in Chinese with English abstract)]

    ZHANG Long, CHEN Zhenghan, SUN Shuguo, et al. Permeability of unsaturated remolded Q2 and Q3 loess[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 1 − 5. (in Chinese with English abstract)

    [36] 赵枝艳,张常亮,沈伟,等. 黄土-古土壤饱和渗透性与孔隙分布特征关系研究[J]. 水文地质工程地质,2024,51(1):47 − 56. [ZHAO Zhiyan,ZHANG Changliang,SHEN Wei,et al. Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol[J]. Hydrogeology & Engineering Geology,2024,51(1):47 − 56. (in Chinese with English abstract)]

    ZHAO Zhiyan, ZHANG Changliang, SHEN Wei, et al. Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 47 − 56. (in Chinese with English abstract)

    [37] 邵龙潭,王助贫,关立军,等. 非饱和土中水流入渗和气体排出过程的求解[J]. 水科学进展,2000,11(1):8 − 13. [SHAO Longtan,WANG Zhupin,GUAN Lijun,et al. Numerical simulation of the process of pore water infiltration and pore gas flow in unsaturated soil[J]. Advances in Water Science,2000,11(1):8 − 13. (in Chinese with English abstract)]

    SHAO Longtan, WANG Zhupin, GUAN Lijun, et al. Numerical simulation of the process of pore water infiltration and pore gas flow in unsaturated soil[J]. Advances in Water Science, 2000, 11(1): 8 − 13. (in Chinese with English abstract)

    [38] 韩同春,苏钰钦,张宇. 双层结构边坡降雨入渗与坡面径流耦合分析[J]. 工程科学与技术,2020,52(6):145 − 152. [HAN Tongchun,SU Yuqin,ZHANG Yu. Coupling analysis of rainfall infiltration and slope runoff in two-layered slope[J]. Advanced Engineering Sciences,2020,52(6):145 − 152. (in Chinese with English abstract)]

    HAN Tongchun, SU Yuqin, ZHANG Yu. Coupling analysis of rainfall infiltration and slope runoff in two-layered slope[J]. Advanced Engineering Sciences, 2020, 52(6): 145 − 152. (in Chinese with English abstract)

    [39] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学 (B辑 化学 生物学 农学 医学 地学),1987,17(12):1309 − 1318. [LEI Xiangyi. Pore types and collapsibility of loess in China[J]. Science in China(Ser B),1987,17(12):1309 − 1318. (in Chinese)]

    LEI Xiangyi. Pore types and collapsibility of loess in China[J]. Science in China(Ser B), 1987, 17(12): 1309 − 1318. (in Chinese)

    [40] 郑佳,庄建琦,孔嘉旭,等. 基于CT扫描的黄土孔隙结构特征研究[J]. 地质科技通报,2022,41(6):211 − 222. [ZHENG Jia,ZHUANG Jianqi,KONG Jiaxu,et al. Study of loess pore structure characteristics based on CT scanning[J]. Bulletin of Geological Science and Technology,2022,41(6):211 − 222. (in Chinese with English abstract)]

    ZHENG Jia, ZHUANG Jianqi, KONG Jiaxu, et al. Study of loess pore structure characteristics based on CT scanning[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 211 − 222. (in Chinese with English abstract)

    [41] 任晓虎,许强,赵宽耀,等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报,2020,39(2):130 − 138. [REN Xiaohu,XU Qiang,ZHAO Kuanyao,et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology,2020,39(2):130 − 138. (in Chinese with English abstract)]

    REN Xiaohu, XU Qiang, ZHAO Kuanyao, et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 130 − 138. (in Chinese with English abstract)

    [42] 施斌. 粘性土击实过程中微观结构的定量评价[J]. 岩土工程学报,1996,18(4):60 − 65. [SHI Bin. Quantitative evaluation of microstructure of cohesive soil during compaction[J]. Chinese Journal of Geotechnical Engineering,1996,18(4):60 − 65. (in Chinese)]

    SHI Bin. Quantitative evaluation of microstructure of cohesive soil during compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60 − 65. (in Chinese)

    [43]

    CHEN Huie,JIANG Yaling,NIU Cencen,et al. Dynamic characteristics of saturated loess under different confining pressures:A microscopic analysis[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):931 − 944. DOI: 10.1007/s10064-017-1101-9

    [44] 霍润科,王龙飞,李曙光,等. 受酸腐蚀砂岩的损伤特性和分析模型[J]. 土木与环境工程学报(中英文),2022,44(1):1 − 9. [HUO Runke,WANG Longfei,LI Shuguang,et al. Characteristics and analytical model of acid-corroded sandstone[J]. Journal of Civil and Environmental Engineering,2022,44(1):1 − 9. (in Chinese with English abstract)]

    HUO Runke, WANG Longfei, LI Shuguang, et al. Characteristics and analytical model of acid-corroded sandstone[J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 1 − 9. (in Chinese with English abstract)

  • 期刊类型引用(1)

    1. 张详曙,陈晓冰,倪晓庆,刘雍鑫,义轩,许昊,杨婷. 坡耕地整地下农田土壤水分与团粒特征互作关系. 农业工程学报. 2025(02): 163-174 . 百度学术

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  46
  • PDF下载量:  141
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-03-31
  • 网络出版日期:  2024-04-18

目录

/

返回文章
返回