Geological carbon storage and compressed gas energy storage: current status, challenges, and prospects
-
摘要:
碳封存与地质储能对于减缓全球变暖、实现我国“双碳”目标都是不可缺少的重要技术。文章首先介绍了碳封存与地质储能的含义,明确两者的储库选择具有共性,含水层、枯竭油气层、盐穴都可作为储层,但碳封存要求长期储存,而地质储能则需多次循环储存和释放,选址评价时需充分考虑。碳捕集与封存(CCS)项目在全球快速增长,正在向网络化和集群化发展,我国CCS项目目前以CO2驱油为主,直接封存项目较少,但未来直接封存项目将成为主流,也在积极向集群式发展。我国碳封存地质条件良好,油气层封存潜力估计比较准确,咸水层封存潜力还存在较大不确定性。目前地质储能项目以盐穴压缩空气储能为主,德、美及我国共有5座压缩空气盐穴储能电站投产运行。我国盐穴资源丰富,但地质条件复杂,适宜的建库地点集中在东部地区,已有多个项目在建。相比盐穴,孔隙地层如含水层和枯竭油气层分布更广,具备储能潜力,但需解决多相流和化学反应等技术问题。现有场地选址、潜力评价、效率优化和监测预警技术与大规模实际工程应用要求仍存在显著差距。目前传统的水文地质勘查方法与技术已不能满足碳封存与地质储能的选址要求,另外也缺乏高效的CO2地质封存的地质环境背景监测与风险控制技术及针对储层及盖层压力和地应力变化的低成本、精准连续监测技术。在碳封存与地质储能工程应用中,一些关键设备组件(如监测、动力等)也比较缺乏自主知识产权的针对性设计与优化。我国储层模拟软件在超大规模实际场地复杂储层的高效模拟方面亟待突破。未来应在碳封存及地质储能资源调查与场地选址关键技术、碳封存与地质储能工程化装备方面加大研发力度,并针对咸水层、枯竭油气藏等主要储库资源开展多类型工程示范研究,建设多类型碳封存及压缩空气储能工程示范基地。
Abstract:Carbon capture and storage (CCS) and geological energy storage are essential technologies for mitigating global warming and achieving China’s “dual carbon” goals. Carbon storage involves injecting carbon dioxide into suitable geological formations at depth of 800 meters or more for permanent isolation. Geological energy storage, on the other hand, involves compressing air or other gases using surplus electricity during off-peak hours and temporarily storing them in underground reservoirs. These gases are then released during peak hours for power generation. Both technologies share commonalities in reservoir selection, with aquifers, depleted oil and gas reservoirs, and salt caverns all serving as potential storage sites. Carbon storage demands long-term containment, while geological energy storage necessitates multiple cycles of storage and release, requiring careful consideration during site evaluation. CCS projects are rapidly increasing globally, evolving towards networked and clustered configurations. In China, CCS projects are primarily focused on CO2-enhanced oil recovery, with fewer dedicated storage projects. However, direct storage projects are projected to dominate in the future and are also transitioning towards clustered development. China possesses favorable geological conditions for carbon storage, with relatively accurate estimates for oil and gas reservoir storage potential. Nevertheless, significant uncertainties persist regarding the storage capacity of saline aquifers. Compressed air energy storage in salt caverns is currently the predominant type of geological energy storage projects. Germany, the USA, and China have a total of five operating compressed air salt cavern energy storage power plants. China has abundant salt cavern resources, albeit with complex geological conditions. Suitable construction sites are concentrated in the eastern regions, and numerous projects are already underway. Compared to salt caverns, porous formations such as aquifers and depleted oil and gas reservoirs are more widespread and offer higher storage potential. However, technical challenges related to multiphase flow and chemical reactions need to be addressed. However, current site selection, potential assessment, efficiency optimization, and monitoring technologies face considerable challenges in meeting the demands of large-scale practical applications. Traditional hydrogeological exploration methods prove inadequate for selecting suitable sites, highlighting the need for efficient monitoring and risk control techniques. Additionally, there is a lack of cost-effective and accurate continuous monitoring technologies specifically designed for pressure and stress changes in storage and caprock formations. The development of key equipment components, such as monitoring and power generation systems, with independent intellectual property rights remains limited. Moreover, our reservoir simulation software requires further advancements to effectively simulate complex reservoirs at large scales. It is crucial to prioritize research and development in resource exploration, site selection technologies, and engineering equipment for both carbon sequestration and geological energy storage. The establishment of diverse demonstration projects and facilities for various storage options such as saline aquifers, depleted oil/gas fields are needed in the future as well.
-
第一次工业革命以来,人类活动排放温室气体导致全球变暖已是不争的事实,大气CO2浓度在近2个世纪中大幅增加是全球变暖的首要因素[1]。因此,减少人为向大气排放CO2是缓解全球变暖、把全球升温幅度控制在1.5 ℃之内的关键[2 − 3]。为应对全球气候变化,我国提出了“中国力争2030年前实现碳达峰,2060年前实现碳中和”(以下简称“双碳”)的重大战略目标。为实现“双碳”目标,我国需要逐步实现深度“脱碳”,达成碳中和目标时,CO2排放应减少至19×108~23×108 t/a,相对2022年114×108 t[4]的排放量要减少91×108~95×108 t/a[5]。为此,需要多端发力。一是在能源供给端以清洁能源替代大部分化石能源,从根本上减少CO2的产生。二是抵消必须排放的CO2,预计23.2×108~53.7×108 t/a,因此除了稳定陆地生态系统以保证10×108 t/a左右的碳汇能力外,需要积极采用工程技术手段开展碳封存,预计13.2×108~43.7×108 t/a[6]。以清洁能源替代大部分化石能源离不开大规模储能技术的发展,压缩气体地质储能是其中重要的方向之一[7 − 9]。对于碳封存,CO2地质封存将占95%以上[10]。因此,本文从不同于以往的视角[11 − 13],从碳封存与压缩空气地质储能技术的共性出发,对碳封存与地质储能的工程实践进行回顾,梳理总结当前发展面临的主要问题,并提出对于未来的展望,以期为今后双碳进程中相关资源调查、技术研发、项目实施提供有益参考。
1. 碳封存与地质储能的含义
本文的碳封存即指CO2地质封存,是将工业或能源行业点状排放源或从空气中捕集的CO2经分离、提纯、压缩后,运输并注入至地下800 m以深的适宜地层中,与大气永久隔离[14]。地下800 m是使CO2保持超临界状态的基本深度。CO2在31.26 °C、7.29 MPa时达到临界点,当温度、压力超过临界点时即成为超临界态。32~100 °C、7.3~35.0 MPa(类似800~3500 m深度地层的温压范围)内的超临界态CO2密度为288~715 kg/m3,黏度为0.02~0.06 cP[15]。这表明相同质量的CO2相对于大气中的状态,体积已缩小为原来的几百分之一,但仍具有像气体一样的流动性。因此,深部空隙地层能够容纳大量CO2,并且地层压力过快上升的风险较低。适宜的地层是包括储层和盖层的地层组合。储层是直接容纳CO2的地层,基本要求是孔隙度高、渗透性好。盖层是防止CO2因浮力向上运移脱离储层的地层,基本要求是致密、渗透性低或基本无渗透性。深部咸水层、枯竭或近枯竭的油气层、不可开采的煤层及其直接上覆的盖层通常被认为是适宜封存CO2的地层[14]。
压缩气体地质储能指利用地层孔隙或采矿之后的洞穴作为储库,以气体做为能量转化介质,在用电低谷时通过压缩机利用多余的电能将空气压缩(电能转化为机械能)并储存于储库中,在用电高峰时再将储库中的高压气体释放经涡轮机发电(机械能转化为电能)[7]。当前以压缩空气地质储能为主,近几年也出现了压缩CO2、氢气、氮气地质储能等概念与设计[16 − 18]。储库是压缩气体储能系统中的重要组成部分,利用地层孔隙或采矿之后洞穴可以实现比地面钢制储罐规模更大、占地更小、经济性更好的储库[9]。根据构成储库的地质条件特点,压缩气体地质储库可分为三大类:(1)岩石洞穴类,以盐矿水溶采矿后留下的盐穴为代表;(2)含水层类,为避免与地下淡水资源开发冲突,以地下800~1500 m以内的咸水层为宜;(3)已枯竭油气层类,深度也以地下800~1500 m以内为宜[7]。
不难看出,碳封存与地质储能的储库选择存在交集,对于咸水层和枯竭油气层,适宜储能库建设的深度往往对于碳封存来说也有很高的经济适宜性。二者的差别在于气体在储库中的储存时间,碳封存需要气体尽可能长期(永久)储存在储层中,而地质储能需要气体临时储存,短暂储存后再将气体放出用于发电,储存—释放的过程需要在较长的时期内多次循环。因此,在对碳封存与地质储能选址时,地质条件有共通性,但也要充分考虑不同工作机制下对地质体带来的不同影响。
2. 工程实践与趋势
2.1 碳封存
截至2023年7月,全球有41个碳捕集与封存(carbon capture and storage,CCS)工程正在运行中,26个正在建设中,121个处于高级研发阶段,204个处于早期研发阶段,相比2022年在数量上实现了翻番,在碳捕集能力上增长近50%[19]。CCS工程中,碳封存通过两类实现:一是CO2驱替石油以提高原油采收率(CO2 enhanced oil recovery, CO2-EOR),CO2在驱替过程中存留在地层实现封存;二是CO2注入地层直接封存。截至2022年12月,我国已实施的CCS项目有29个,以CO2驱油增产为绝对主力,直接封存的项目仅3个,封存量不足60×104 t/a[20]。受碳捕集能力限制,实际碳封存能力为200×104 t/a[20 − 21]。尽管全球正在运行的项目中,直接封存项目的数量只占30%(12个,封存量1134×104 t),但这个比例在正在建设或计划的CCS项目中却分别高达77%和83%,这表明未来以直接封存为目标的项目将是主流。
这种趋势在CCS工程的实际发展中也得到体现。当前CCS工程正在从原来单个的捕集—压缩—运输—封存全链条项目,向CCS网络转变,即不同的碳捕集工程与共享的运输系统及集中的封存工程相结合形成一个面向区域的网络[19]。网络式CCS发展促使“CO2运输与封存”这一全新行业的诞生,2023年这类设施在全球已达到101个[19],如加拿大CO2压缩和运输管道—阿尔伯塔碳干线(Alberta Carbon Trunk Line)[22 − 23]、澳大利亚碳网工程(CarbonNet)[24 − 25]、冰岛碳固运输与封存工程(CarbFix CODA CO2 transport and storage)[26]、挪威北极光开源运输与封存工程(The Northern Lights open-source transport and storage network)[27]等。与欧美类似,我国CCS工程也在向网络化集群式发展,三大石油集团已部署千万吨级CCS集群项目,如中国石油化工集团有限公司华东地区开放式CCS集群项目、中国海油集团有限公司CCS离岸封存研究项目等[28]。
集群式CCS发展需要有适宜的地质条件支撑。我国实施碳封存的地质条件总体较好,适宜封存的地层分布在陆域及海域的众多沉积盆地中,如松辽盆地、渤海湾盆地、鄂尔多斯盆地、四川盆地、准噶尔盆地、塔里木盆地、苏北盆地、江汉盆地、珠江口盆地、南黄海盆地、东海陆架盆地等。若仅考虑地质条件,我国碳封存潜力理论上可达1.21×1012~4.13×1012 t[10],海域盆地碳封存潜力为2×1012~3×1012 t[29]。但如果考虑技术及经济条件,可实现的碳封存潜力将大大下降,可能只有理论潜力的17.6%~21.0%[28]。再具体到工程实施,实际碳封存能力往往受碳捕集能力限制,随着对地质条件认识的不断提升及工程技术的提升,实际碳封存潜力将更小并且动态变化。
2.2 地质储能
地质储能工程目前以盐穴压缩空气储能为主,已有5个投产运行,其中德国亨托夫(Huntorf)电站和美国麦金托什(McIntosh)电站分别已运行45 a和23 a[7],另3个分别是我国2021年投产运行的山东肥城盐穴先进压缩空气储能调峰电站[30]、2022年江苏金坛60 MW盐穴压缩空气储能国家试验示范项目[31]以及2024年并网成功的湖北应城 300 MW级压气储能电站[32]。外国2个储能电站采用传统补燃式发电装置[33],总能效在40%~50%;我国投产运行的压缩空气储能电站则采用了更先进的技术,发电阶段无需补燃,总能效超过60%。
我国盐穴资源丰富,总容量1.3×108~2.5×108 m3 [34 − 35]。由于我国盐岩资源赋存地质条件不同,盐岩杂质较多,开采后盐腔形态较复杂,作为储气库进行储能前,需要进行盐腔形态精准测量、气密性测试等研究。相对来说,东部盐腔资源储能前景较大,除已运行投产的电站外,还有河南平顶山200 MW盐穴先进压缩空气储能电站在建[36],江苏淮安苏盐集团计划建设的465 MW盐穴压缩空气储能项目已通过评审[37]。
盐岩资源分布不平衡,使盐穴压缩空气储能只能在特定区域开展,常常无法与实际的储能需求形成良好匹配[38]。相比而言,含水或含油气的孔隙地层分布更为广泛,地层中的孔隙也为压缩空气储能系统建设提供了更多的机会[39]。虽然目前尚无并网发电的孔隙介质压缩空气储能工程,但以含水层、枯竭油气层为储库的压缩空气现场试验已证实了孔隙地层作为压缩空气储能储气库实际可行。
1981年,美国太平洋西北国家实验室在伊利诺伊州的匹兹菲尔德(Pittsfield)开展了世界首个含水层压缩空气储能试验[40],不仅证明了含水层可以作为储气库进行压缩空气地质储能的可行性,并且对利用含水层进行压缩空气地质储能的技术指标进行了分析与总结,为建设含水层型储库提出了重要参考。2023年,中国地质科学院与胜利油田合作,在孤东地区某透镜体砂岩咸水层开展了含水层压缩气体地质储能先导性试验,注入标况下10000 m3氮气到该砂体中,显示密封性良好,为下一步开展注采循环实现提供了保证。枯竭油气层的现场注气试验也在2009年由美国太平洋天然气电力公司(PG&E)开展,借鉴以往利用枯竭油气田建设储气库的经验,PG&E在加利福尼亚州 Buttonwillow 地区的King Island开展了300 MW-10 h规模的压缩空气地质储能试验,为后续工程设计提供了有力参考[38]。
以孔隙地层作为储能库建设对象,虽然可以比盐腔的选择范围更大,但现场实验数据及模拟研究都表明,注采过程中气体与地层某些矿物的化学反应不可忽视[41, 38]。作为多孔介质,在气体注入过程中涉及注入速率、压力分布、气体气相饱和度分布等诸多多相流方面的问题,需要更加详细的地质参数进行储能规模和安全性评估。
3. 技术现状与挑战
含水层、枯竭油气层、盐穴都可用作碳封存及压缩气体储能的储库,选址评估时都需要有稳定的构造条件、良好的盖层封闭特征、充足的储集空间、优良的储层渗透性以及便捷的地面配套设施,尽管二者在工作制度上存在差别,对储盖层部分参数要求不同,但总体上二者所需的地质条件和技术具有很多共性。因此,二者在选址、系统设计与优化及工程化设备研发方面都存在相似问题。
3.1 调查技术
咸水层由于其更广泛的分布及更大的理论封存潜力,被认为是未来发展CCS与地质储能的主力,但当前针对这类地层快速、准确而经济的调查或探测技术还有待发展[42]。对于以枯竭油气层及盐穴选址,这个问题相对容易,因为油气藏及盐矿在前期已有大量的地质调查、勘探及钻探资料积累,再加上实际生产过程中的油气与盐卤产量记录,可以建立比较精准的地质模型,对封存潜力、环境风验及成本估计的评价结果可靠性更高。基于油气田数据测算的我国油气田CO2封存潜力(包括CO2-EOR、CO2提高天然气采收率及油气藏枯竭之后封存)为294×108 t,而我国深部咸水层碳封存潜力则达24200×108 t[10]。两类储层潜力相差2个数量级,除了咸水层分布更多以外,也反映我们目前对于深部咸水层的分布、层位、结构、储集性及其他限制条件的认识还有较大不确定性。
现有的水文地质勘查方法与资料尚不能满足咸水层碳封存的需要。一是在勘探深度上,适宜碳封存的咸水层深度至少要800 m,适宜地质储能的含水层深度也需要在1000 m上下,这种深度在常规水文地质勘探中极其少见。二是勘探方法上,大深度的含水层探测需要与油气或地热勘探类似的物探与钻探方法,尽管未来需求巨大,但目前除了干旱缺水地区开采部分咸水可缓解水资源短缺外[43],咸水层通常几乎没有矿产价值,以直接碳封存为目的的咸水层勘探成本目前还很难获得经济回报。油气勘探的众多钻探数据中有大量关于水层的信息,但目前这些信息分散在不同的石油企业中,很难汇聚并加以利用。油气勘探资料不易获取的情况下,地热勘探资料可以在选址初期可行性论证时为咸水层碳封存潜力评估提供重要参数[44]。因此,如何充分利用可获取的油气及地热勘探资料,建立快速、准确、经济地刻画深部适宜碳封存和地质储能的咸水层的方法是水文地质工作者将面临的巨大挑战。
3.2 评价技术
无论是碳封存还是地质储能,在筛选适宜的工程场地时都应考虑区域因素、储层因素、环境因素和经济因素,具体包括沉积盆地特征、沉积盆地成熟度、储存特征和经济及社会因素[45]。我国沉积盆地类型复杂,开展相关选址技术研发十分必要。前人大多从选址技术指标、安全性评价指标、经济评价指标和地面地质-社会环境选址指标等方面来建立指标层,并以此为基础建立了数十个指标的选址指标体系,再采用层次分析法、指标叠加法进行多因子排序、打分和综合评价。但这些方法通常没有量化的地质参数,主要依赖评价者的业务经验,可移植性不足。
对于深部咸水层地质封存潜力计算目前主要有4种:美国能源部方法(US-DOE)、碳封存领导人论坛方法(CSLF)、美国地质调查局方法(USGS)和中国石油大学(北京)方法(RIPED&CUP)评价方法[11, 46]。咸水层4种封存机理经常被讨论,但在评价咸水层地质封存潜力时,很难将4种机理对应的封存量都计算出来,因为咸水层中4种封存机理对应的封存贡献随时间变化。在注入刚结束之时,构造封存的贡献比例接近100%,随着封存时间的增加,CO2在地层中运移、溶解并转化,逐步形成残余封存、溶解封存以及矿化封存。因此,理论封存量的评价,可以从物理上的封存空间入手,以储层空隙所能容纳的最大值作为理论封存潜力[47];也可以从化学上CO2溶于地层水入手,以地层残余水达到CO2饱和溶液时所溶解CO2量作为理论封存潜力[48]。同时考虑4种封存机理的潜力评估,尽管在理论上可行[45],但实际中很难取得相关参数。
理论封存潜力对选址评估是一个静态参考,由于CO2注入过程可能导致储层及盖层力学特性发生变化,因此对于工程实施需要进行更精准的动态封存能力评估,目的是了解地层对于CO2注入过程的响应以及CO2在储层中的运移过程,从而认识储层及盖层在预定注入方案下的封存性能,识别可能发生的环境风险,如断层活化、诱发地震等[49],并提出适当的应对方案,进而对CO2注入方案进行优化。地质储能也是相同道理。动态封存能力的评估离不开数值模拟方法。这类数值模拟研究始于20世纪90年代。目前使用较多的数值模拟软件包括TOUGH系列(TOUGH2/ECO2N、TOUGHREACT等)、ECLIPSE、PETREL、EEHM、GEM及MUFTE等,主要集中于对CO2注入地层中的多相流动和迁移及地球化学反应的刻画,TOUGH系列软件中也有适用于压缩气体地质储能的模块[50],最近也有GPSFLOW软件可通用于碳封存及压缩气体地质储能[51]。前人对研究中常用的数学模型和模拟软件(如FEHM、TOUGH2、 GEM、ECLIPSE及MUFTE等)针对多种封存条件展开综合对比研究,对每种模拟方法的优缺点和使用条件进行了总结[46, 52]。
3.3 当前主要挑战
现有场地选址、潜力评价、效率优化和监测预警技术与大规模实际工程应用要求仍存在显著差距。第一,由于CO2封存涉及到构造圈闭、残余气体封存、溶解封存及矿化封存等多种机制,现有评价技术获得的静态封存潜力与实际封存能力存在很大差别。第二,由于目前碳排放统计还是一个区域平均概念以及潜力评价,源汇匹配技术仅停留在定性描述阶段,缺乏量化表征技术方法,不利于企业决策、政府规划和管理。第三,缺乏高效的服务CO2地质封存的地质环境背景监测与风险控制技术,也缺乏针对封存过程及储能过程中对储层及盖层压力和地应力变化进行精准连续监测且成本较低的技术。
利用CO2提产增效及协同封存优化技术亟需创新。目前已经封存的CO2,主要还是通过CO2-EOR来实现。相比国外,我国利用CO2驱油实现的封存规模还较小,主要原因是我国油藏条件复杂、低渗超低渗油藏比例较高,CO2-EOR普遍存在最小混相压力过高、腐蚀与结垢、气源、窜流严重、固相沉积等问题。在双碳背景下,要综合考虑驱油增加采收率实现的经济效益与封存CO2的成本投入,亟需系统开展提产增效与永久封存的协同优化关键技术研发,实现经济与社会效益的双赢。
地质储能亟需向含水层、枯竭油气藏扩展并提高与新能源发电系统的耦合度。目前压缩气体储能工程多集中在以盐穴为储气库方面,对于分布广泛的含水层、枯竭油气田等储气库以及与新能源发电系统的耦合方面,仍处于室内试验及小规模场地试验阶段。研究表明采用压缩气体地质储能与风能结合的技术,可将风力发电在电网中的比重提高到八成[38]。除了与风能、太阳能耦合,压缩气体地质储能还可以与生物质能耦合,降低温室气体的排放,减少对天然气的依赖程度。
另外,有关工程化仪器设备、系统缺乏针对性研发。目前在碳封存与地质储能工程应用中,一些关键设备组件(如监测、动力等)主要参考油气等其他行业进行简单组合,或从国外引进,缺乏自主知识产权的针对性设计与优化。在软件系统研发方面,我国储层模拟软件的开发还处于早期阶段,在超大规模实际场地复杂储层的高效模拟方面亟待突破。
4. 结语与建议
为实现碳达峰、碳中和重大战略目标,我国需要逐步实现深度“脱碳”,CO2地质封存与压缩气体地质储能是不可缺少的重要技术。CCS工程正在向网络化集群式发展,以盐穴储气库为主的压缩气体地质储能工程需要向分布广泛的含水层、枯竭油气层等储气库发展,并与新能源发电系统耦合。
含水层、枯竭油气层、盐穴都可用作碳封存及压缩气体储能的储库,尽管两者在工作制度上存在差别,对储盖层部分参数要求不同,总体上两者所需的地质条件和技术具有很多共性。现有场地选址、潜力评价、效率优化和监测预警技术与大规模实际工程应用要求仍存在显著差距。目前传统的水文地质勘查方法与技术尚不能满足碳封存与地质储能的选址要求,缺乏高效的CO2地质封存的地质环境背景监测与风险控制技术及针对储层及盖层压力和地应力变化的低成本、精准连续监测技术。在碳封存与地质储能工程应用中,一些关键设备组件(如监测、动力等)也比较缺乏自主知识产权的针对性设计与优化。我国储层模拟软件的开发还处于早期阶段,针对超大规模实际场地复杂储层的高效模拟方面亟待突破。
未来在以下几方面应加强技术研发与工程示范:
(1)碳封存及地质储能资源调查与场地选址关键技术。基于多尺度调查与试验数据,确定选址适宜性评估指标,建立通用的CO2地质封存选址评估基本模型,提高咸水层封存潜力评价效率,在此基础上,构建多场耦合影响的封存动态潜力评价方法,提出封存方案设计及优化准则。研发压缩气体地质储能选址技术,在储气库选择及评价方面,根据储能需求与地质条件开展源汇技术方法研发、地质储能系统效率优化技术研发,包括耦合储热、水力压裂、人造低渗边界等技术组合等。
(2)碳封存与地质储能工程化装备研发。研发用于监测CO2封存状态的分布式声波传感器技术,实现三维井中垂直地震测井、时移地震和完井动态监测,对CO2存储设备和地层的整个生命周期进行主动和被动地震监测。研发压缩气体气动机发电技术,研发新型分布式压缩空气储能发电技术,形成可输出电、冷、热能源的多功能分布式能源站。加大超大规模多相流体数值模拟软件研究力度,以共享内存与分布式内存相结合的混合式并行计算方案为思路,实现高效的、千万网格超大规模储层数值模拟。
(3)应用调查与场地选址技术,针对咸水层、枯竭油气藏等主要储库资源开展多类型工程示范研究,建设具有不同地质特征及行业特色的CO2利用与封存、压缩空气储能示范基地。
-
[1] IPCC. Summary for policymakers[C]//Climate change 2023:Synthesis report. contribution of working groups I,II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva,Swizerland:2023.
[2] IEA. Credible pathways to 1.5 °C Four pillars for action in the 2020s[R/OL]. (2024-04-01) [2024-06-11]. https://www.iea.org/reports/credible-pathways-to-150c,Licence:CC BY 4.0.
[3] IPCC. Global warming of 1.5 °C[R]//An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways,in the context of strengthening the global response to the threat of climate change,sustainable development,and efforts to eradicate poverty[R]. Cambridge,New York:Cambridge University Press,2018.
[4] DATA O W I. China:CO2 Country Profile[DS/OL]. https://ourworldindata.org/co2/country/china.
[5] DUAN H,ZHOU S,JIANG K,et al. Assessing China’s efforts to pursue the 1.5 C warming limit[J]. Science,372(6540):378 − 385.
[6] 李采,郭朝斌,李霞,等. 地质调查助力碳达峰碳中和目标实现的路径浅析[J]. 中国地质调查,2021,8(4):1 − 12. [LI Cai,GUO Chaobin,LI Xia,et al. Analysis of the role of geological survey on the roadmap design for realizing the goal of carbon emissions peak and carbon neutrality[J]. Geological Survey of China,2021,8(4):1 − 12. (in Chinese with English abstract)] LI Cai, GUO Chaobin, LI Xia, et al. Analysis of the role of geological survey on the roadmap design for realizing the goal of carbon emissions peak and carbon neutrality[J]. Geological Survey of China, 2021, 8(4): 1 − 12. (in Chinese with English abstract)
[7] BUDT M,WOLF D,SPAN R,et al. A review on compressed air energy storage:Basic principles,past milestones and recent developments[J]. Applied Energy,2016,170:250 − 268. DOI: 10.1016/j.apenergy.2016.02.108
[8] BAZDAR E,SAMETI M,NASIRI F,et al. Compressed air energy storage in integrated energy systems:A review[J]. Renewable and Sustainable Energy Reviews,2022,167:112701. DOI: 10.1016/j.rser.2022.112701
[9] 黄宽, 张万益, 王丰翔, 等. 地下空间储能国内外发展现状及调查建议[J]. 中国地质,2024,51(1):105 − 117. [HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China,2024,51(1):105 − 117. (in Chinese with English abstract)] HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 2024, 51(1): 105 − 117. (in Chinese with English abstract)
[10] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)――中国 CCUS 路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021. [CAI Bofeng,LI Qi,ZHANG Xian,et al. China’s annual report on carbon capture,utilization,and storage (CCUS) (2021) -A study on China’s CCUS pathways[R]. Ministry of Ecology and Environment Environmental Planning Institute,Wuhan Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,China 21st Century Agenda Management Center,2021. (in Chinese)] CAI Bofeng, LI Qi, ZHANG Xian, et al. China’s annual report on carbon capture, utilization, and storage (CCUS) (2021) -A study on China’s CCUS pathways[R]. Ministry of Ecology and Environment Environmental Planning Institute, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China 21st Century Agenda Management Center, 2021. (in Chinese)
[11] AJAYI T,GOMES J S,BERA A. A review of CO2 storage in geological formations emphasizing modeling,monitoring and capacity estimation approaches[J]. Petroleum Science,2019,16(5):1028 − 1063. DOI: 10.1007/s12182-019-0340-8
[12] AMINU M D,ALI NABAVI S,ROCHELLE C A,et al. A review of developments in carbon dioxide storage[J]. Applied Energy,2017,208:1389 − 1419. DOI: 10.1016/j.apenergy.2017.09.015
[13] KREVOR S,DE CONINCK H,GASDA S E,et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future[J]. Nature Reviews Earth & Environment,2023,4(2):102 − 118.
[14] IPCC. IPCC special report on carbon dioxide capture and storage[M]//Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2005.
[15] NIST. NIST chemistry WebBook[DS/OL]. https://webbook.nist.gov/chemistry/fluid/.
[16] ZIVAR D,KUMAR S,FOROOZESH J. Underground hydrogen storage:A comprehensive review[J]. International Journal of Hydrogen Energy,2021,46(45):23436 − 23462. DOI: 10.1016/j.ijhydene.2020.08.138
[17] LIU Z,YAN X W,WANG S,et al. Performance of compressed CO2 energy storage systems with different liquefaction and storage scenarios[J]. Fuel,2024,359:130527. DOI: 10.1016/j.fuel.2023.130527
[18] ELBERRY A M,THAKUR J,SANTASALO-AARNIO A,et al. Large-scale compressed hydrogen storage as part of renewable electricity storage systems[J]. International Journal of Hydrogen Energy,2021,46(29):15671 − 15690. DOI: 10.1016/j.ijhydene.2021.02.080
[19] Global Status of CCS 2023—Scaling up THROUGH 2030[EB/OL].(2023-11-09)[2024-06-08]. https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2023-executive-summary/.
[20] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023. [ZHANG Xian,YANG Xiaoliang,LU Xi,et al. Annual report on carbon capture,utilization,and storage (CCUS) in China (2023) [R]. Beijing:China 21st Century Agenda Management Center,Global Carbon Capture and Storage Research Institute,Tsinghua University,2023. (in Chinese)] ZHANG Xian, YANG Xiaoliang, LU Xi, et al. Annual report on carbon capture, utilization, and storage (CCUS) in China (2023) [R]. Beijing: China 21st Century Agenda Management Center, Global Carbon Capture and Storage Research Institute, Tsinghua University, 2023. (in Chinese)
[21] 李阳,王锐,赵清民,等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报,2023,8(4):391 − 397. [LI Yang,WANG Rui,ZHAO Qingmin,et al. Status and prospects for CO2 capture,utilization and storage technology in China[J]. Petroleum Science Bulletin,2023,8(4):391 − 397. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2096-1693.2023.04.030 LI Yang, WANG Rui, ZHAO Qingmin, et al. Status and prospects for CO2 capture, utilization and storage technology in China[J]. Petroleum Science Bulletin, 2023, 8(4): 391 − 397. (in Chinese with English abstract) DOI: 10.3969/j.issn.2096-1693.2023.04.030
[22] Wolf Carbon – Wolf Midstream[EB/OL]. [2024-06-08]. https://wolfmidstream.com/carbon/.
[23] Alberta Carbon Trunk Line now fully operational[EB/OL].(2020-07-02)[2024-06-08]. https://www.globalccsinstitute.com/news-media/latest-news/alberta-carbon-trunk-line-now-fully-operational/.
[24] HARKIN T,FILBY I,SICK H,et al. Development of a CO2 Specification for a CCS Hub Network[J]. Energy Procedia,2017,114:6708 − 6720. DOI: 10.1016/j.egypro.2017.03.1801
[25] About the CarbonNet Project[EB/OL].(2024-03-15)[2024-06-08]. https://djsir.vic.gov.au/carbonnet/about-the-project.
[26] Coda Terminal[EB/OL]. (2024-04-30) [2024-06-08]. https://www.carbfix.com/codaterminal.
[27] Northern Lights—Who we are[EB/OL]. (2021-03-01) [2024-06-08]. https://norlights.com/who-we-are/.
[28] 李阳,王锐,赵清民,等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发,2023,50(2):424 − 430. [LI Yang,WANG Rui,ZHAO Qingmin,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):424 − 430. (in Chinese with English abstract)] LI Yang, WANG Rui, ZHAO Qingmin, et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development, 2023, 50(2): 424 − 430. (in Chinese with English abstract)
[29] 中国地质调查局. 中国海域二氧化碳地质封存潜力评价报告[R]. 2022. [China Geological Survey. Assessment report on the geological storage potential of carbon dioxide in China's seas[R]. 2022. (in Chinese)] China Geological Survey. Assessment report on the geological storage potential of carbon dioxide in China's seas[R]. 2022. (in Chinese)
[30] 首个盐穴先进压缩空气储能示范电站并网发[EB/OL]. (2021-10-02)[ 2024-06-08]. [First advanced salt cavern compressed air energy storage demonstration plant connected to the grid[EB/OL]. (2021-10-02)[ 2024-06-08]. https://www.cas.cn/cm/202110/t20211012_4808732.shtml.(in Chinese)] First advanced salt cavern compressed air energy storage demonstration plant connected to the grid[EB/OL]. (2021-10-02)[ 2024-06-08]. https://www.cas.cn/cm/202110/t20211012_4808732.shtml.(in Chinese)
[31] 世界首个!全国唯一!金坛盐穴压缩空气储能项目正式投产[EB/OL]. (2022-05-22) [2024-06-08]. [Jintan Salt Cave Compressed Air Energy Storage Project—the first of its kind globally and the only one in China,is officially operational[EB/OL]. (2022-05-22) [2024-06-08]. https://health.jschina.com.cn/zyjt/zyjtywq/202205/t20220526_3006776.shtml.(in Chinese)] Jintan Salt Cave Compressed Air Energy Storage Project—the first of its kind globally and the only one in China, is officially operational[EB/OL]. (2022-05-22) [2024-06-08]. https://health.jschina.com.cn/zyjt/zyjtywq/202205/t20220526_3006776.shtml.(in Chinese)
[32] 世界首台(套)300 兆瓦级压缩空气储能电站并网发电[EB/OL]. (2024-04-10) [2024-06-09]. [The world’s first 300 MW compressed air energy storage power station has been connected to the grid[EB/OL]. (2024-04-10) [2024-06-09]. https://new.qq.com/rain/a/20240409A04GID00.(in Chinese)] The world’s first 300 MW compressed air energy storage power station has been connected to the grid[EB/OL]. (2024-04-10) [2024-06-09]. https://new.qq.com/rain/a/20240409A04GID00.(in Chinese)
[33] ZHANG Xinjing,GAO Ziyu,ZHOU Bingqian,et al. Advanced compressed air energy storage systems:Fundamentals and applications[J/OL]. Engineering,2024,34:246 − 269. DOI: 10.1016/j.eng.2023.12.008.
[34] 梅生伟,公茂琼,秦国良,等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术,2017,41(10):3392 − 3399. [MEI Shengwei1,GONG Maoqiong,QIN Guoliang,et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology,2017,41(10):3392 − 3399. (in Chinese with English abstract)] MEI Shengwei1, GONG Maoqiong, QIN Guoliang, et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology, 2017, 41(10): 3392 − 3399. (in Chinese with English abstract)
[35] 王建夫,王斌,王玮,等. 基于U型盐穴储气库的新型CCUS方法[J]. 盐科学与化工,2024(4):14 − 18. [WANG Jianfu,WANG Bin,WANG Wei,et al. New CCUS method based on U-shaped salt cavern gas storage [J]. Journal of Salt Science and Chemical Industry,2024 (4):14 − 18 (in Chinese with English abstract)] WANG Jianfu, WANG Bin, WANG Wei, et al. New CCUS method based on U-shaped salt cavern gas storage [J]. Journal of Salt Science and Chemical Industry, 2024 (4): 14 − 18 (in Chinese with English abstract)
[36] 总投资15亿!河南省平顶山市叶县200兆瓦先进压缩空气储电站项目通井开工[EB/OL]. (2022-06-15) [2024-06-09]. [With a total investment of 1.5 billion yuan,the well drilling for a 200-megawatt advanced compressed air energy storage station project has begun in Ye County,Pingdingshan City,Henan Province[EB/OL]. (2022-06-15) [2024-06-09]. https://news.bjx.com.cn/html/20220615/1233415.shtml.(in Chinese)] With a total investment of 1.5 billion yuan, the well drilling for a 200-megawatt advanced compressed air energy storage station project has begun in Ye County, Pingdingshan City, Henan Province[EB/OL]. (2022-06-15) [2024-06-09]. https://news.bjx.com.cn/html/20220615/1233415.shtml.(in Chinese)
[37] 陈欢欢. 全球最大盐穴压缩空气储能项目通过可行性评审[EB/OL]. (2022-07-18) [2024-06-09]. [CHEN Huanhuan. The world’s largest salt cavern compressed air energy storage project has passed its feasibility study[EB/OL]. (2022-07-18) [2024-06-09]. https://paper.sciencenet.cn/sbhtmlnews/2022/7/370321.shtm.(in Chinese)] CHEN Huanhuan. The world’s largest salt cavern compressed air energy storage project has passed its feasibility study[EB/OL]. (2022-07-18) [2024-06-09]. https://paper.sciencenet.cn/sbhtmlnews/2022/7/370321.shtm.(in Chinese)
[38] 郭朝斌,李采,杨利超,等. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查,2021,8(4):109 − 119. [GUO Chaobin,LI Cai,YANG Lichao,et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China,2021,8(4):109 − 119. (in Chinese with English abstract)] GUO Chaobin, LI Cai, YANG Lichao, et al. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 2021, 8(4): 109 − 119. (in Chinese with English abstract)
[39] GUO Chaobin,LI Cai,ZHANG Keni,et al. The promise and challenges of utility-scale compressed air energy storage in aquifers[J]. Applied Energy,2021,286:116513. DOI: 10.1016/j.apenergy.2021.116513
[40] ANR STORAGE COMPANY. Compressed-air energy storage:Pittsfield aquifer field test[R]//Test data:engineering analysis and evaluation. Detroit,MI:ANR Storage Company,1990.
[41] WANG B,BAUER S. Induced geochemical reactions by compressed air energy storage in a porous formation in the North German Basin[J]. Applied Geochemistry,2019,102:171 − 185. DOI: 10.1016/j.apgeochem.2019.02.003
[42] 丁国生,唐立根,丁一宸,等. 中国水层CO2地质封存技术攻关方向[J]. 天然气工业,2024,44(4):39 − 45. [DING Guosheng,TANG Ligen,DING Yichen,et al. Research direction of CO2 geological storage technology in aquifers in China[J]. Natural Gas Industry,2024,44(4):39 − 45. (in Chinese with English abstract)] DING Guosheng, TANG Ligen, DING Yichen, et al. Research direction of CO2 geological storage technology in aquifers in China[J]. Natural Gas Industry, 2024, 44(4): 39 − 45. (in Chinese with English abstract)
[43] 马鑫, 李旭峰, 文冬光, 等. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质,2021,48(6):196 − 205. [MA Xin,LI Xufeng,WEN Dongguang,et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology & Engineering Geology,2021,48(6):196 − 205. (in Chinese with English abstract)] MA Xin, LI Xufeng, WEN Dongguang, et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 196 − 205. (in Chinese with English abstract)
[44] 马永法, 周学军, 董俊领, 等. 黑龙江林甸地区深部咸水层CO2地质储存条件与潜力评估[J]. 水文地质工程地质,2022,49(6):179 − 189. [MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2022,49(6):179 − 189. (in Chinese with English abstract)] MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 179 − 189. (in Chinese with English abstract)
[45] 刁玉杰, 刘廷, 魏宁, 等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质,2023,50(3):943 − 951. [DIAO Yujie, LIU Ting, WEI Ning, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China,2023,50(3):943 − 951. (in Chinese with English abstract)] DIAO Yujie, LIU Ting, WEI Ning, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 2023, 50(3): 943 − 951. (in Chinese with English abstract)
[46] 叶航, 刘琦, 彭勃. 基于二氧化碳驱油技术的碳封存潜力评估研究进展[J]. 洁净煤技术,2021,27(2):107 − 116. [YE Hang,LIU Qi,PENG Bo. Research progress in evaluation of carbon storage potential based on CO2 flooding technology[J]. Clean Coal Technology,2021,27(2):107 − 116. (in Chinese with English abstract)] YE Hang, LIU Qi, PENG Bo. Research progress in evaluation of carbon storage potential based on CO2 flooding technology[J]. Clean Coal Technology, 2021, 27(2): 107 − 116. (in Chinese with English abstract)
[47] USDOE. Carbon Storage Atlas of United States and Canada:Fifth Edition [R/OL]. (2015-12-28)[2024-06-08].https://edx.netl.doe.gov/dataset/netl-carbon-storage-atlas-fifth-edition/resource/4f44abdf-0976-4251-8838-457c60e638ba.
[48] DAHOWSKI R T,LI X,DAVIDSON C L,et al. Regional opportunities for carbon dioxide capture and storage in China:PNNL-19091[R/OL]. (2009-12-01)[2024-06-08].DOI: https://doi.org/10.2172/990594.
[49] 于子望, 卢帅屹, 白林, 等. CO2地质封存岩石力学问题研究进展[J]. 吉林大学学报(地球科学版), (2023-12-27) [2024-06-18]. [YU Ziwang, LU Shuaiyi, BAI Lin, et al. Research progress on rock mechanics of CO2 geological sequestration[J]. Journal of Jilin University (Earth Science Edition), (2023-12-27) [2024-06-18]. (in Chinese with English abstract)] YU Ziwang, LU Shuaiyi, BAI Lin, et al. Research progress on rock mechanics of CO2 geological sequestration[J]. Journal of Jilin University (Earth Science Edition), (2023-12-27) [2024-06-18]. (in Chinese with English abstract)
[50] PRUESS K,OLDENBURG C,MORIDIS G. TOUGH2 User’s Guide,Version 2.0[R/OL]. Berkeley:Lawrence Berkeley National Laboratory,1999. (1999-11-01)[2024-06-08] https://tough.lbl.gov/assets/files/02/documentation/TOUGH2_V2.0_Users_Guide.pdf
[51] CAI Zuansi,ZHANG Keni,GUO Chaobin. Development of a novel simulator for modelling underground hydrogen and gas mixture storage[J]. International Journal of Hydrogen Energy,2022,47(14):8929 − 8942. DOI: 10.1016/j.ijhydene.2021.12.224
[52] PRUESS K,GARCÍA J,KOVSCEK T,et al. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2[J]. Energy,2004,29(9/10):1431 − 1444.
计量
- 文章访问数: 284
- HTML全文浏览量: 96
- PDF下载量: 153