ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

基于碱性抑制的矿山帷幕注浆材料配比优化研究

薛晓峰, 刘宏磊, 张帅, 孟和, 全亚鹏

薛晓峰,刘宏磊,张帅,等. 基于碱性抑制的矿山帷幕注浆材料配比优化研究[J]. 水文地质工程地质,2025,52(4): 1-9. DOI: 10.16030/j.cnki.issn.1000-3665.202501042
引用本文: 薛晓峰,刘宏磊,张帅,等. 基于碱性抑制的矿山帷幕注浆材料配比优化研究[J]. 水文地质工程地质,2025,52(4): 1-9. DOI: 10.16030/j.cnki.issn.1000-3665.202501042
XUE Xiaofeng, LIU Honglei, ZHANG Shuai, et al. Optimization of material ratio of curtain grouting based on alkali suppression[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 1-9. DOI: 10.16030/j.cnki.issn.1000-3665.202501042
Citation: XUE Xiaofeng, LIU Honglei, ZHANG Shuai, et al. Optimization of material ratio of curtain grouting based on alkali suppression[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 1-9. DOI: 10.16030/j.cnki.issn.1000-3665.202501042

基于碱性抑制的矿山帷幕注浆材料配比优化研究

基金项目: 中国工程院战略咨询项目(2024-XZ-90);鄂尔多斯市应急管理局科技项目(ZKZB2023-062)
详细信息
    作者简介:

    薛晓峰(1988—),男,硕士,高级工程师,主要从事矿井水害防治、尾矿库渗漏治理研究工作。E-mail:xxf4630@126.com

    通讯作者:

    刘宏磊(1989—),男,博士(后),讲师,主要从事矿山环境修复治理与开发利用研究工作。E-mail: liuhonglei@cumtb.edu.cn

  • 中图分类号: P641;TD745

Optimization of material ratio of curtain grouting based on alkali suppression

  • 摘要:

    某大水型金属矿山帷幕注浆工程中应用的黏土-水泥浆液水化反应后的pH值高达13,表现为强碱性,构成对地下水及地表水的潜在污染风险。为探究低碱性外加剂对该矿山水害防治帷幕注浆工程中黏土-水泥浆液性能的调控机制,采用正交试验设计,系统分析了不同配比条件下浆液的流变特性,包括流动性、泵送性能、凝结时间及pH值的变化规律。通过分别引入磷石膏、粉煤灰及降碱外加剂(substance of Jin Pin,SJP),探讨不同材料在降低浆液碱性方面的有效性。试验结果显示:磷石膏能够将浆液pH值有效降低至11,同时延长凝结时间;粉煤灰虽在降低浆液碱度方面效果有限,却改善了浆液的泵送性能并缩短了泵送期限;SJP外掺剂在降低pH值和延长泵送期方面表现突出,当掺量由2.5%增加至3.5%时,浆液pH值显著降低至8。基于试验数据,优化了SJP外掺剂-粉质黏土-磷石膏-水泥(CCAS)配方,并通过正交试验确定了最优配比:复合酸式盐0.5%、硫铝酸盐1.5%、磷石膏10.0%、黏土50.0%。该优化配方制备的浆液pH值降低至10,流动度保持在18~23 cm,泵送期延长至100~220 min,充分满足工程应用需求。研究结果可为帷幕注浆工程中通过控制浆液碱性减少环境污染提供了科学依据。

    Abstract:

    To investigate the regulatory mechanisms of low-alkalinity admixtures on the performance of clay-cement slurry in mine water hazard prevention and curtain grouting engineering, this study employed an orthogonal experimental design. The rheological properties of the slurry, including flowability, pumpability, setting time, and pH evolution, were systematically analyzed under varying mix conditions. By introducing phosphogypsum, fly ash, and the SJP admixture, the effectiveness of these materials in reducing the alkalinity of the slurry was evaluated. The results reveal that phosphogypsum effectively reduced the pH to 11 and prolonged extending the setting time. Although fly ash showed limited efficacy in alkalinity reduction, it significantly enhanced the pumpability of the slurry and shortened the pumping period. The SJP admixture demonstrats outstanding performance in both pH reduction and pumpability extension, with the pH decreasing notably to 8 when the dosage is increased from 2.5% to 3.5%. Based on experimental data, an optimized formulation of the SJP admixture, clay, phosphogypsum, and cement (CCAS) is developed. Orthogonal tests identify the optimal proportions as follows: composite acid salt 0.5%, calcium sulfoaluminate 1.5%, phosphogypsum 10.0%, and clay 50.0%. The optimized slurry achieves a significant reduction in pH to 10, maintains a flowability of 18–23 cm, and extends the pumpability window to 100–220 minutes, fully meeting the engineering application requirements. This study provides a scientific basis for controlling slurry alkalinity in curtain grouting projects, thereby mitigating environmental pollution.

  • 矿业工程活动对水环境造成的影响加剧了生态平衡面临的严峻挑战[1]。复杂的地质与水文地质条件为矿山安全运营带来了严峻挑战。在此背景下,部分国内大水型金属矿山通过帷幕注浆技术实现水体的有效封堵与加固[23],旨在消除不良水文和地质条件对深部开采的负面影响,确保矿山的安全与稳定。在注浆施工中,水泥及其复合材料(如黏土-水泥浆[4]、湖泥-水泥浆[5]、粉煤灰-水泥浆[67]、水泥-水玻璃浆液[8] 等)被广泛应用于裂隙封堵,施工工艺多采用高压注浆,使其快速失水达到初凝状态[9],然而,这些材料在失水过程中也会发生水化反应,生成水化硅酸钙、氢氧化钙和水化铝酸钙等碱性物质,导致地下水pH值显著升高,进而对地下水环境造成严重破坏[1011]。此外,矿山地下水的高碱性不仅加剧生态环境的恶化,也成为污染地表水的重要因素[12]。因此,随着绿色矿山建设的深入推进,如何有效降低大水型水文地质条件复杂的金属矿山帷幕注浆工程中浆液的碱性,已成为维护矿区周边生态环境稳定的重要课题。

    目前国内外文献中关于水泥浆液或黏土-水泥浆液直接进行降碱的成果报道几乎没有,仅对高压注浆环境下水泥水化产物对地下水pH值影响[1314]、浆液性能[1516]等方面进行了研究。对于降碱机理,目前在生态混凝土研究方面有相应进展。如,高婷等[17]以硫铝酸盐水泥作为主材料制作生态混凝土,掺入矿物掺合料粉煤灰、矿粉,发现随矿物掺合料掺量增加,pH值呈下降趋势,且单掺和复掺效果差异不大,且降碱幅度不大;李晟等[18]研究发现将普通硅酸盐水泥为原料制成的生态混凝土进行快速碳化能够显著降低碱度,相同配比的绿色生态混凝土快速碳化7 d的pH值比自然碳化7 d下降了1.0~1.6,快速碳化14 d后pH值整体下降1.7~2.0,快速碳化28 d后pH值整体下降1.9~2.5,但快速碳化只能在生态混凝土成型后进行。综上,生态混凝土制备完成后进行降碱处理效果好于在制备过程中掺入各种降碱材料。而制备低碱性灌浆材料需要在浆液状态降低其pH值,具有一定难度且无太多文献可以借鉴参考。

    某大水型金属矿山帷幕注浆工程中应用黏土-水泥浆液。试验及现场结果显示,该浆液水化反应后通过排水口测试,pH值高达13,表现为强碱性,由于硅酸盐水泥浆液内部含有大量的OH、Ca2+、Na+等碱性离子,在发生水化反应后形成了强碱弱酸盐,最终使得pH值过高。因此,亟需对现有注浆材料进行改性,以解决帷幕注浆过程及其服役期内因地下水冲蚀与渗滤引起的矿山排水碱性过高问题。

    为应对这一挑战,本研究提出了两种降低矿山排水pH值的有效策略:一是通过添加矿物掺合料取代部分水泥,减少水泥用量,并借助辅助胶凝材料调节浆液的凝结时间,以降低碱性离子的扩散;二是通过掺加酸性盐类外加剂以抑制浆液碱性,利用多元弱酸中和浆液中的碱性离子。通过这两种手段,最终解决因注浆导致的矿山排水碱性过高问题。

    除了现场使用的黏土和水泥外,本次试验引入磷石膏、粉煤灰及降碱外加剂。具体参数如下:

    (1)磷石膏

    磷石膏是以硫酸钙为主要成分的气硬性胶凝材料,含有少量的磷酸、氟化物、有机质等杂质[1921]。试验中使用的磷石膏粉中CaSO4•2H2O质量分数大于≥90%,具体成分见表1。磷石膏常用于水泥缓凝剂,其缓凝机理是通过与水泥中的铝酸三钙及铁铝酸四钙反应,生成钙矾石沉淀。这种沉淀附着在水泥颗粒表面,阻碍了水泥颗粒与水的接触,从而减缓水泥熟料的水化速率,达到延缓凝结时间的效果。

    表  1  磷石膏化学成分
    Table  1.  Chemical composition of phosphogypsum
    化学成分CaOSiO2Al2O3Fe2O3MgO硫酸盐P2O5氟化物
    质量分数/%49.065.840.600.410.4942.650.820.13
    下载: 导出CSV 
    | 显示表格

    (2)粉煤灰

    粉煤灰的比重为1.8~2.6 g/cm3,较天然土壤轻,粒径范围为0.5~100.0 μm,属粉土范畴,含有少量细砂和黏土颗粒,其可压缩性与黏性土相似。粉煤灰的主要化学成分包括SiO2、Al2O3、Fe2O3、CaO和MgO,其中SiO2、Al2O3和Fe2O3的质量分数超过70%[2223]。粉煤灰的渗透系数取决于其中活性SiO2和活性Al2O3的含量,含量越高,其活性越好,渗透系数越小。研究表明,低钙粉煤灰经碱处理后,SiO2和Al2O3的长链结构被打断,表现为SiO2聚合度降低、溶出量增加。当颗粒的反应率达到某一设定值后,加入生石灰促使CaO与溶出的活性SiO2和Al2O3充分反应,生成大量水化硅酸钙(Ca5Si6O16(OH)4H2O)和水化铝酸钙(3CaO•Al2O3•6H2O)在特定温度下脱水,形成以水化硅酸钙和水化铝酸钙脱水相为主要成分的新物质,表现出良好的胶凝性能,具有高强度及低渗透性[2427]。粉煤灰的比重越大,其致密性越高,干密度越大,颗粒间孔隙越小,渗透系数也越小。粉煤灰颗粒越细,其渗透系数越低。通过粉碎技术可以提高粉煤灰的细度和颗粒级配,减小渗透性能 [28] 。粉碎过程能够破坏粉煤灰的形貌结构,使其成为粒度更为均匀的多面体颗粒,增加比表面积,从而提高表面活性,改善其物理性能,降低内摩擦阻力。这使得粉煤灰在较低含水率下仍可实现有效压实,获得较高的干容重和较低的渗透系数[29]。本研究采用的粉煤灰为二级、F类,化学成分如表2所示。

    表  2  粉煤灰主要化学成分
    Table  2.  Main chemical composition of fly ash
    化学成分SiO2Al2O3Fe2O3CaOMgO其他
    质量分数/%54.1822.3512.360.400.0610.65
    下载: 导出CSV 
    | 显示表格

    (3)降碱外加剂(substance of Jin Pin,SJP)

    ① 1#外加剂:为复合多元弱酸,通过与水泥水化过程中释放的OH反应,降低浆液的初始碱性。同时,该外加与体系中的Ca2+反应,减缓水泥的水化速率,延缓浆液pH值的变化。此外,与Ca2+反应生成的沉淀物会充填在浆液孔隙内,提高结石体的密实度[30]

    ② 2#外加剂:为硫铝酸盐,具有明显的胶凝作用。该材料通过与水泥中C2S和C3S反应生成C-S-A-H相,从而改变体系中水化产物组成和结构,促进水泥水化,缩短浆液的凝结时间。

    为便于后期工业化试验,依据《水泥标准稠度用水量、凝结时间、安定性检验方法》(GB/T 1346—2001)[31] 规定,本次试验主要测试流动度、可泵期、凝结时间及混合浆液pH值。

    (1)流动度及可泵期测试

    采用尺寸规格为36 mm×60 mm×60 mm的水泥净浆流动度试模(图1)进行测试。将试模放在平滑的有机玻璃板上,使用烧杯将搅拌好的浆液倒入试模内,使浆液与试模顶部平齐。提起试模后静置止30 s,用尺子测量浆液在有机玻璃板上的扩散直径,当直径达到15 cm时的时间作为可泵期(图2)。

    图  1  水泥净浆流动度试模
    Figure  1.  Flow test mold of cement paste
    图  2  流动度、可泵期测试
    Figure  2.  Flowability and pumpability tests

    (2)凝结时间测试

    使用维卡仪对水泥基黏土浆液的凝结时间进行测试。将搅拌好的浆液倒入圆台形试模中,定时记录维卡仪的沉入深度,直至终凝点。

    (3)浆液pH值测试

    选用玻璃电极法测定浆液的pH值。由于本研究的主要目的是降低浆液pH值以减少对地下水体的污染,因此选取酸度计作为浆液pH值测试工具。测定方法如下:浆液制备完成后,直接测试其大致pH范围及精确值;取20 g浆液溶于30 mL纯净水中,测定上层清液的酸碱度;浆液配制2 h后测定析出液的pH值。

    水泥基浆液的碱性主要源于水泥水化过程中产生的氢氧化钙(Ca(OH)2)及C-S-H凝胶等物质,且水泥的凝结也需要碱性环境。基于此,本研究通过减少普通硅酸盐水泥在浆液中的比例并添加降碱外加剂,制备低碱性浆液。此外,矿山排水pH值升高的另一个原因是浆液进入岩体裂隙后被地下水冲蚀,未能及时凝结,导致水泥颗粒分散到地下水中,从而引发水体pH升高。因此,控制浆液的黏度与凝结时间是降低矿山排水pH值的另一个途径。

    选三种试验方案进行试配:

    方案一:黏土-水泥-磷石膏(CCA);

    方案二:黏土-水泥-粉煤灰(CCF);

    方案三:黏土-水泥-磷石膏-外掺剂(CCAS)。

    在不同配比的浆液试样制备后,测定其pH值,同时为满足浆液便于用泥浆泵灌入,需同时测定可泵期。

    (1)方案一试验结果

    依据现状,在黏土-水泥浆液中,水泥掺量或水泥与黏土的掺量比对pH值的影响较小,pH值稳定在13左右。因此,在方案一中控制水泥和黏土掺量不变,仅改变磷石膏的掺量,结果见表3。随着磷石膏掺量的增加,浆液pH值注浆降低,在30%掺量时趋于稳定(11.0~11.5)。同时,可泵期由12 min延长至40 min,表明磷石膏对浆液凝结有抑制作用,并对降低碱性具有一定效果,但其作用存在极限。

    表  3  方案一试验配比及结果
    Table  3.  Results of the proportioning test case 1
    试样
    编号
    浆液组成可泵期/minpH值
    黏土/g水泥/g磷石膏质量占比/%水/g
    15005005%10001212.0
    250050010%10001812.0
    350050020%10002511.5
    450050030%10004011.0
    550050040%10005011.0
      注:磷石膏质量占比为磷石膏占黏土和水泥总质量的百分比。
    下载: 导出CSV 
    | 显示表格

    (2)方案二试验结果

    为验证粉煤灰对黏土-水泥浆液的影响,采用单因素试验,粉煤灰掺量分别为5%、10%、20%、30%和40%(表4)。试验结果显示,粉煤灰掺量对浆液pH值影响较小,掺量达到40%时,pH值由13.0下降至12.0,而可泵期在20%掺量时达到最大值25 min。总体看来,与磷石膏相比,粉煤灰的碱性略高于磷石膏,且对浆液pH值和可泵期的影响均弱于磷石膏。

    表  4  方案二试验配比及结果
    Table  4.  Results of the proportioning test case 2
    试样
    编号
    浆液组成 可泵期 pH值
    黏土/g 水泥/g 粉煤灰质量占比/% 水/g
    1 500 500 5% 1000 20 min 12.5
    2 500 500 10% 1000 22 min 12.5
    3 500 500 20% 1000 25 min 12.5
    4 500 500 30% 1000 20 min 12.5
    5 500 500 40% 1000 19 min 12.0
      注:粉煤灰质量占比为粉煤灰占黏土和水泥总质量的百分比。
    下载: 导出CSV 
    | 显示表格

    (3)方案三试验结果

    基于上述试验,通过对黏土-水泥-粉煤灰浆试验,相较于磷石膏,粉煤灰掺量对浆液pH值影响较小,泵送期相对于磷石膏较短,所以本次选用磷石膏作为添加剂,并引入SJP,见表5。试验结果显示,随着SJP 1#外加剂掺量的增加,浆液pH值由11.0降至8.6,可泵期由20 min延长至60 min。相比之下,SJP 2#外加剂对可泵期的延长作用更明显,但对pH值的影响较小。

    表  5  方案三配比试验结果表
    Table  5.  Results of the proportioning test case 3
    试样
    编号
    浆液组成可泵期
    /min
    pH值
    SJP
    1#/%
    SJP
    2#/%
    黏土
    /g
    水泥
    /g
    磷石膏
    /%
    水/g
    10.52.03005001010002011.0
    21.02.03005001010004010.0
    31.51.5300500101000608.6
    42.01.5300500101000758.2
    52.01.050050051000908.2
    62.00.8500500510001058.0
      注:外掺剂加量为固体总重的百分比,磷石膏为黏土和水泥总重的百分比。
    下载: 导出CSV 
    | 显示表格

    综合结果表明,SJP外加剂能够有效降低浆液pH值,并显著延长可泵期。最终确定方案三,即SJP外加剂-粉质黏土-磷石膏-水泥(CCAS)作为本研究的基本浆材配比。

    为进一步分析浆液中各因素对浆液性能的影响,采用正交试验对CCAS浆液体系进行优化(表6),并得出最优配比(表7)。

    表  6  因素水平表
    Table  6.  Factor level
    因素A
    1#/%
    B
    2#/%
    C
    磷石膏/%
    D
    黏土%
    10.31.01050
    20.51.51375
    30.72.015100
      注:浆液水灰比固定为0.7,黏土质量占比为水泥质量的百分比,磷石膏质量占比为黏土和水泥总质量的百分比,外掺剂质量占比为固体总质量的百分比。
    下载: 导出CSV 
    | 显示表格
    表  7  正交试验表
    Table  7.  Orthogonal test
    序号 A B C D 性能指标
    流动度/cm 可泵期/min pH值 初凝时间/min
    111112310010.0225
    212222216010.5220
    313332022010.8270
    421232224710.0420
    522312322510.0290
    623121929010.9330
    731321921010.1359
    832131818010.1260
    933212223510.0386
    流动度K165646068
    K264636660
    K359616260
    极差6368
    主次D>A=B>C
    A1B1C2D1
    可泵期K1480557570560
    K2762565642660
    K3628745625647
    极差282188172100
    主次A>B>C>D
    A1B1C1D1
    pHK131.330.131.030.0
    K230.930.630.530.5
    K330.231.730.930.9
    极差1.11.60.50.9
    主次B>A>D>C
    A3B1C1D1
    初凝K17151004815901
    K210407701026909
    K31005986919950
    极差32523421149
    主次A>B>C>D
    A1B2C1D1
    下载: 导出CSV 
    | 显示表格

    结果显示:正交试验下浆液的pH值低至10,并在保持良好流动性(18~23 cm)的基础上,将浆液的可泵期延长至100~220 min,满足泵送要求。

    各因素对pH值、流动度、可泵期及凝结时间的影响程度不同(图3),其中对pH值影响最大的因素为2#外加剂,黏土添加量对流动度影响最大,1#外加剂则对可泵期影响最为显著。因此,最终选择浆液的最优配比为A2B2C1D1

    图  3  各因素对浆液性能影响极差图
    Figure  3.  Range of the influence of each factor on the slurry performance

    (1)常规性能分析

    最优配比确定后,分别对其流动度、可泵期、初凝时间及pH值等常规性能进行测定,各性能参数见表8,从流动度、可泵期参数分析,浆液能够满足泵送要求;初凝时间为312 min,能够满足浆液进入地层后进一步扩散的要求;pH值为10,减小了对地下水的污染风险。综上,从常规性能分析,该配比浆液能够满足生产及环保需求。

    表  8  优化后各性能参数表
    Table  8.  Performance parameters after optimization
    测试项目 流动度/cm 可泵期/min 初凝时间/min pH值
    取值 22 256 312 10
    下载: 导出CSV 
    | 显示表格

    (2)浆液结石强度分析

    为保证优化后浆液结石体能够起到堵水作用,特对高压条件下的优化浆液结石体进行了测试[32]

    将现场取出的添加外掺剂后凝固的岩芯进行切割,切成10 cm长的圆柱样(图4)养护56 d后进行无侧限抗压强度试验,结果如表9所示。

    图  4  试验样品
    Figure  4.  Test sample
    表  9  岩芯抗压强度结果表
    Table  9.  Core compressive strength results
    序号直径/mm高度/mm抗压强度/MPa
    1619020.40
    26010126.10
    35910128.00
    46210123.30
    56210320.20
    66210225.80
    下载: 导出CSV 
    | 显示表格

    由结果可知,现场注浆所取岩心最大抗压强度为28.00 MPa,最小抗压强度为20.40 MPa,平均抗压强度为23.97 MPa,按照1 MPa承受100 m水柱压力考虑,优化后浆液结石体最小能够承受2 000 m水柱压力,完全满足现场300 m水柱压力的要求。

    本研究结果表明,磷石膏在降低浆液碱性方面具有显著效果,尤其在掺量达到30%时,浆液pH值稳定在11左右。这一结果与磷石膏缓凝机理一致,表明磷石膏通过延缓水泥水化过程,抑制了Ca(OH)2的过度生成。然而,磷石膏的引入也显著延长了浆液的凝结时间,需在实际工程应用中加以平衡与优化。相比之下,虽然粉煤灰在降低pH值方面的效果有限,但其在提高浆液泵送性能方面表现突出,显示出其在增强浆液流变特性方面的潜力。未来的研究可以进一步探讨磷石膏与粉煤灰的协同作用,以优化浆液配比,在保持低碱性的同时,提升浆液的综合工作性能。

    (1)试验结果分析

    通过对比不同外加剂在浆液体系中的表现,本研究发现磷石膏、粉煤灰和SJP外加剂在降低碱度和改善工作性能方面各具优势。磷石膏能够显著降低pH值,但其显著延长了浆液的凝结时间,表明其在工程应用中潜在的副作用;粉煤灰虽然在降低碱度上的效果有限,但能显著提升浆液的泵送性能。SJP外加剂在降低pH值和延长泵送期方面表现出色,适用于对碱性控制要求较高的帷幕注浆工程。

    (2)外加剂协同效应

    试验结果表明,SJP外加剂与磷石膏之间存在显著的协同作用,不仅在碱性控制上表现优异,还有效改善了浆液的流动性与泵送性能,为实际施工提供了更广泛的空间。然而,在具体工程应用中,仍需根据不同地质条件和环保要求进一步优化外加剂的配比,以确保浆液的最佳工作性能和环境相容性。

    (3)环境影响

    合理使用外加剂来降低浆液的碱性,不仅能够减少对地下水和地表水的污染风险,尤其是SJP外加剂的应用,在显著降低碱性排放、减少碱性污染的同时,保持了良好的浆液性能。未来的研究可进一步探讨其他类型酸性外加剂在不同矿区地质条件下的应用潜力,寻求更广泛的环境效益与工程应用价值。

    (1)磷石膏作为矿物掺合料,在降低浆液pH方面具有显著效果,能够将pH值最低降至11,但其降碱能力存在一定的限度。同时,磷石膏对浆液凝结时间具有一定的延迟作用。

    (2)尽管粉煤灰在降低浆液碱性方面的效果有限,但其在延长浆液可泵期方面表现突出,显著提升了浆液的可操作时间。

    (3)磷石膏与SJP外加剂的协同作用进一步降低浆液的pH值至10,并在保持良好流动性(18~23 cm)的基础上,将浆液的可泵期延长至100~220 min,满足泵送要求。

    (4)本研究确定的最优掺合方案为:1#复合酸式盐0.5%、2#硫铝酸盐1.5%、3#磷石膏10.0%、4#黏土50.0%。该配方不仅显著降低了浆液的碱性,还确保了浆液的流变性能与泵送性能,同时浆液结石体强度满足现场施工需求。

    (5)通过现场工业化试验验证,该最优掺合配比适用于对碱性控制要求较高的帷幕注浆工程。

  • 图  1   水泥净浆流动度试模

    Figure  1.   Flow test mold of cement paste

    图  2   流动度、可泵期测试

    Figure  2.   Flowability and pumpability tests

    图  3   各因素对浆液性能影响极差图

    Figure  3.   Range of the influence of each factor on the slurry performance

    图  4   试验样品

    Figure  4.   Test sample

    表  1   磷石膏化学成分

    Table  1   Chemical composition of phosphogypsum

    化学成分CaOSiO2Al2O3Fe2O3MgO硫酸盐P2O5氟化物
    质量分数/%49.065.840.600.410.4942.650.820.13
    下载: 导出CSV

    表  2   粉煤灰主要化学成分

    Table  2   Main chemical composition of fly ash

    化学成分SiO2Al2O3Fe2O3CaOMgO其他
    质量分数/%54.1822.3512.360.400.0610.65
    下载: 导出CSV

    表  3   方案一试验配比及结果

    Table  3   Results of the proportioning test case 1

    试样
    编号
    浆液组成可泵期/minpH值
    黏土/g水泥/g磷石膏质量占比/%水/g
    15005005%10001212.0
    250050010%10001812.0
    350050020%10002511.5
    450050030%10004011.0
    550050040%10005011.0
      注:磷石膏质量占比为磷石膏占黏土和水泥总质量的百分比。
    下载: 导出CSV

    表  4   方案二试验配比及结果

    Table  4   Results of the proportioning test case 2

    试样
    编号
    浆液组成 可泵期 pH值
    黏土/g 水泥/g 粉煤灰质量占比/% 水/g
    1 500 500 5% 1000 20 min 12.5
    2 500 500 10% 1000 22 min 12.5
    3 500 500 20% 1000 25 min 12.5
    4 500 500 30% 1000 20 min 12.5
    5 500 500 40% 1000 19 min 12.0
      注:粉煤灰质量占比为粉煤灰占黏土和水泥总质量的百分比。
    下载: 导出CSV

    表  5   方案三配比试验结果表

    Table  5   Results of the proportioning test case 3

    试样
    编号
    浆液组成可泵期
    /min
    pH值
    SJP
    1#/%
    SJP
    2#/%
    黏土
    /g
    水泥
    /g
    磷石膏
    /%
    水/g
    10.52.03005001010002011.0
    21.02.03005001010004010.0
    31.51.5300500101000608.6
    42.01.5300500101000758.2
    52.01.050050051000908.2
    62.00.8500500510001058.0
      注:外掺剂加量为固体总重的百分比,磷石膏为黏土和水泥总重的百分比。
    下载: 导出CSV

    表  6   因素水平表

    Table  6   Factor level

    因素A
    1#/%
    B
    2#/%
    C
    磷石膏/%
    D
    黏土%
    10.31.01050
    20.51.51375
    30.72.015100
      注:浆液水灰比固定为0.7,黏土质量占比为水泥质量的百分比,磷石膏质量占比为黏土和水泥总质量的百分比,外掺剂质量占比为固体总质量的百分比。
    下载: 导出CSV

    表  7   正交试验表

    Table  7   Orthogonal test

    序号 A B C D 性能指标
    流动度/cm 可泵期/min pH值 初凝时间/min
    111112310010.0225
    212222216010.5220
    313332022010.8270
    421232224710.0420
    522312322510.0290
    623121929010.9330
    731321921010.1359
    832131818010.1260
    933212223510.0386
    流动度K165646068
    K264636660
    K359616260
    极差6368
    主次D>A=B>C
    A1B1C2D1
    可泵期K1480557570560
    K2762565642660
    K3628745625647
    极差282188172100
    主次A>B>C>D
    A1B1C1D1
    pHK131.330.131.030.0
    K230.930.630.530.5
    K330.231.730.930.9
    极差1.11.60.50.9
    主次B>A>D>C
    A3B1C1D1
    初凝K17151004815901
    K210407701026909
    K31005986919950
    极差32523421149
    主次A>B>C>D
    A1B2C1D1
    下载: 导出CSV

    表  8   优化后各性能参数表

    Table  8   Performance parameters after optimization

    测试项目 流动度/cm 可泵期/min 初凝时间/min pH值
    取值 22 256 312 10
    下载: 导出CSV

    表  9   岩芯抗压强度结果表

    Table  9   Core compressive strength results

    序号直径/mm高度/mm抗压强度/MPa
    1619020.40
    26010126.10
    35910128.00
    46210123.30
    56210320.20
    66210225.80
    下载: 导出CSV
  • [1] 郝宪杰,许家林,朱卫兵,等. 高承压松散含水层下支架合理工作阻力的确定[J]. 采矿与安全工程学报,2010,27(3):416 − 420. [HAO Xianjie,XU Jialin,ZHU Weibing,et al. Determination of reasonable support resistance when mining under unconsolidated highly-pressured confined aquifer[J]. Journal of Mining and Safety Engineering,2010,27(3):416 − 420. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-3363.2010.03.023

    HAO Xianjie, XU Jialin, ZHU Weibing, et al. Determination of reasonable support resistance when mining under unconsolidated highly-pressured confined aquifer[J]. Journal of Mining and Safety Engineering, 2010, 27(3): 416 − 420. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-3363.2010.03.023

    [2] 王长龙,魏浩杰,王肇嘉,等. 典型金属尾矿绿色化技术研究与案例分析[M]. 北京:科学出版社,2021. [WANG Changlong,WEI Haojie,WANG Zhaojia,et al. Research and case analysis on typical greening technologies for metal tailings[M]. Beijing:Science Press,2021. (in Chinese)]

    WANG Changlong, WEI Haojie, WANG Zhaojia, et al. Research and case analysis on typical greening technologies for metal tailings[M]. Beijing: Science Press, 2021. (in Chinese)

    [3] 郑明明,吴祖锐,颜诗纯,等. 相变壁材微球对固井水泥浆性能影响与调控机制[J]. 煤田地质与勘探,2024,52(11):183 − 191. [ZHENG Mingming,WU Zurui,YAN Shichun,et al. Impacts and regulation mechanisms of phase-change wall microspheres on cement slurry performance in well cementing[J]. Coal Geology & Exploration,2024,52(11):183 − 191. (in Chinese with English abstract)]

    ZHENG Mingming, WU Zurui, YAN Shichun, et al. Impacts and regulation mechanisms of phase-change wall microspheres on cement slurry performance in well cementing[J]. Coal Geology & Exploration, 2024, 52(11): 183 − 191. (in Chinese with English abstract)

    [4] 吴秀美. 改性粘土浆的试验研究[J]. 矿业研究与开发,2002,22(4):36 − 37. [WU Xiumei. An experimental study on the modified clay slurry[J]. Mining Research and Development,2002,22(4):36 − 37. (in Chinese with English abstract)]

    WU Xiumei. An experimental study on the modified clay slurry[J]. Mining Research and Development, 2002, 22(4): 36 − 37. (in Chinese with English abstract)

    [5] 薛晓峰,许进鹏. 湖泥混合浆液的性能对其初凝时间的影响[J]. 矿业研究与开发,2018,38(4):79 − 81. [XUE Xiaofeng,XU Jinpeng. The influence of the properties of mixed lake mud slurry on initial setting time[J]. Mining Research and Development,2018,38(4):79 − 81. (in Chinese with English abstract)]

    XUE Xiaofeng, XU Jinpeng. The influence of the properties of mixed lake mud slurry on initial setting time[J]. Mining Research and Development, 2018, 38(4): 79 − 81. (in Chinese with English abstract)

    [6] 赵光明,王艳芬,艾洁,等. 矿用水泥基注浆材料的发展及展望[J]. 中国矿业大学学报,2024,53(1):1 − 22. [ZHAO Guangming,WANG Yanfen,AI Jie,et al. Development and prospect of cement-based grouting materials for coal mine[J]. Journal of China University of Mining & Technology,2024,53(1):1 − 22. (in Chinese with English abstract)]

    ZHAO Guangming, WANG Yanfen, AI Jie, et al. Development and prospect of cement-based grouting materials for coal mine[J]. Journal of China University of Mining & Technology, 2024, 53(1): 1 − 22. (in Chinese with English abstract)

    [7] 马砺,杜素,张照允,等. 采空区大掺量粉煤灰无机固化泡沫制备及特性研究[J]. 煤田地质与勘探,2023,51(2):243 − 251. [MA Li,DU Su,ZHANG Zhaoyun,et al. Preparation and characteristics of inorganic curing foam with large-volume fly ash in goaf[J]. Coal Geology & Exploration,2023,51(2):243 − 251. (in Chinese with English abstract)]

    MA Li, DU Su, ZHANG Zhaoyun, et al. Preparation and characteristics of inorganic curing foam with large-volume fly ash in goaf[J]. Coal Geology & Exploration, 2023, 51(2): 243 − 251. (in Chinese with English abstract)

    [8] 郑秀华. 水泥-水玻璃浆材在灌浆工程中的应用[J]. 水文地质工程地质,2000,27(2):59 − 61. [ZHENG Xiuhua. Application of cement-silica gel slurry in grouting engineering[J]. Hydrogeology & Engineering Geology,2000,27(2):59 − 61. (in Chinese with English abstract)]

    ZHENG Xiuhua. Application of cement-silica gel slurry in grouting engineering[J]. Hydrogeology & Engineering Geology, 2000, 27(2): 59 − 61. (in Chinese with English abstract)

    [9] 薛晓峰. 混合浆液在高压条件下对初凝时间的影响研究[J]. 中国矿业,2020,29(3):167 − 170. [XUE Xiaofeng. Study on mixed slurry on initial setting time under the high confining pressure[J]. China Mining Magazine,2020,29(3):167 − 170. (in Chinese with English abstract)] DOI: 10.12075/j.issn.1004-4051.2020.03.012

    XUE Xiaofeng. Study on mixed slurry on initial setting time under the high confining pressure[J]. China Mining Magazine, 2020, 29(3): 167 − 170. (in Chinese with English abstract) DOI: 10.12075/j.issn.1004-4051.2020.03.012

    [10] 窦林萍. 高掺量碱激发矿渣水泥的研究[J]. 山西建筑,2003,29(8):102 − 103. [DOU Linping. Study on large-mixed alkali-activated slag cement[J]. Shanxi Architecture,2003,29(8):102 − 103. (in Chinese with English abstract)]

    DOU Linping. Study on large-mixed alkali-activated slag cement[J]. Shanxi Architecture, 2003, 29(8): 102 − 103. (in Chinese with English abstract)

    [11] 沈裕盛,唐明亮,沈晓冬. 水泥浆体中氢氧化钙晶体的生长习性[J]. 硅酸盐学报,2016,44(2):232 − 238. [SHEN Yusheng,TANG Mingliang,SHEN Xiaodong. Growth habit of portlandite crystal in cement paste[J]. Journal of the Chinese Ceramic Society,2016,44(2):232 − 238. (in Chinese with English abstract)]

    SHEN Yusheng, TANG Mingliang, SHEN Xiaodong. Growth habit of portlandite crystal in cement paste[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 232 − 238. (in Chinese with English abstract)

    [12] 张行洲,殷乐宜,陈坚,等. 考虑污染物扩散风险的场地地下水污染多层次风险评估方法[J]. 水文地质工程地质,2023,50(2):160 − 170. [ZHANG Xingzhou,YIN Leyi,CHEN Jian,et al. A study of the multi-tiered risk assessment method of site groundwater contamination considering transport-induced risk[J]. Hydrogeology & Engineering Geology,2023,50(2):160 − 170. (in Chinese with English abstract)]

    ZHANG Xingzhou, YIN Leyi, CHEN Jian, et al. A study of the multi-tiered risk assessment method of site groundwater contamination considering transport-induced risk[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 160 − 170. (in Chinese with English abstract)

    [13] 袁胜超. 高压注浆环境下水泥水化产物对地下水pH值影响研究[J]. 采矿技术,2021,21(6):77 − 79. [YUAN Shengchao. Study on the influence of cement hydration products on groundwater pH value under high pressure grouting environment[J]. Mining Technology,2021,21(6):77 − 79. (in Chinese with English abstract)]

    YUAN Shengchao. Study on the influence of cement hydration products on groundwater pH value under high pressure grouting environment[J]. Mining Technology, 2021, 21(6): 77 − 79. (in Chinese with English abstract)

    [14] 黄玮,丛玉凤,张磊. pH值对SiO2-Al2O3制备与性能的影响[J]. 精细石油化工,2016,33(6):12 − 16. [HUANG Wei,CONG Yufeng,ZHANG Lei. Effects of pH on the synthesis and performance of SiO2-Al2O3[J]. Speciality Petrochemicals,2016,33(6):12 − 16. (in Chinese with English abstract)]

    HUANG Wei, CONG Yufeng, ZHANG Lei. Effects of pH on the synthesis and performance of SiO2-Al2O3[J]. Speciality Petrochemicals, 2016, 33(6): 12 − 16. (in Chinese with English abstract)

    [15] 袁胜超. 低碱性外掺剂对帷幕注浆浆液性能的影响[J]. 采矿技术,2022,22(1):75 − 77. [YUAN Shengchao. Effect of low alkaline admixture on properties of curtain grouting slurry[J]. Mining Technology,2022,22(1):75 − 77. (in Chinese with English abstract)]

    YUAN Shengchao. Effect of low alkaline admixture on properties of curtain grouting slurry[J]. Mining Technology, 2022, 22(1): 75 − 77. (in Chinese with English abstract)

    [16] 吕欢,武海良,开吴珍,等. Ca2+,Mg2+,Na+及pH值抑制聚酯混合浆液水溶性机理[J]. 西安工程大学学报,2019,33(3):239 − 243. [LV Huan,WU Hailiang,KAI Wuzhen,et al. The water-soluble mechanism of inhibiting polyester blended size by Ca2+,Mg2+,Na+ and pH value[J]. Journal of Xi’an Polytechnic University,2019,33(3):239 − 243. (in Chinese with English abstract)]

    LV Huan, WU Hailiang, KAI Wuzhen, et al. The water-soluble mechanism of inhibiting polyester blended size by Ca2+, Mg2+, Na+ and pH value[J]. Journal of Xi’an Polytechnic University, 2019, 33(3): 239 − 243. (in Chinese with English abstract)

    [17] 高婷. 生态多孔混凝土降碱技术研究[D]. 长沙:中南林业科技大学,2017. [GAO Ting. Research on the alkaline reduction technology of ecologically porous concrete[D]. Changsha:Central South University of Forestry and Technology,2017. (in Chinese with English abstract)]

    GAO Ting. Research on the alkaline reduction technology of ecologically porous concrete[D]. Changsha: Central South University of Forestry and Technology, 2017. (in Chinese with English abstract)

    [18] 李晟,尹健,张贵,等. 绿色生态混凝土碳化降碱技术研究[J]. 湘潭大学自然科学学报,2017,39(2):33 − 37. [LI Sheng,YIN Jian,ZHANG Gui,et al. Research on alkalinity reduction of green eco-concrete by carbonization[J]. Natural Science Journal of Xiangtan University,2017,39(2):33 − 37. (in Chinese with English abstract)]

    LI Sheng, YIN Jian, ZHANG Gui, et al. Research on alkalinity reduction of green eco-concrete by carbonization[J]. Natural Science Journal of Xiangtan University, 2017, 39(2): 33 − 37. (in Chinese with English abstract)

    [19] 张汉泉,许鑫,胡超杰,等. 磷化工固体废弃物综合利用技术现状[J]. 中国矿业,2021,30(4):50 − 55. [ZHANG Hanquan,XU Xin,HU Chaojie,et al. Current situation of comprehensive utilization technology of solid waste of phosphorus chemical[J]. China Mining Magazine,2021,30(4):50 − 55. (in Chinese with English abstract)]

    ZHANG Hanquan, XU Xin, HU Chaojie, et al. Current situation of comprehensive utilization technology of solid waste of phosphorus chemical[J]. China Mining Magazine, 2021, 30(4): 50 − 55. (in Chinese with English abstract)

    [20] 宋生琼,李士彬,管永胜,等. 贵州省磷矿及伴生矿种开发利用面临的问题与对策建议[J]. 中国矿业,2020,29(3):24 − 28. [SONG Shengqiong,LI Shibin,GUAN Yongsheng,et al. Problems and suggestions on the development and utilization of phosphate ores and associated ores in Guizhou province[J]. China Mining Magazine,2020,29(3):24 − 28. (in Chinese with English abstract)]

    SONG Shengqiong, LI Shibin, GUAN Yongsheng, et al. Problems and suggestions on the development and utilization of phosphate ores and associated ores in Guizhou province[J]. China Mining Magazine, 2020, 29(3): 24 − 28. (in Chinese with English abstract)

    [21] 张雷,郭利杰,李文臣. 矿物掺合料对水泥孔溶液碱度和强度影响及机理研究[J]. 中国矿业,2020,29(9):141 − 146. [ZHANG Lei,GUO Lijie,LI Wenchen. Effect of mineral admixtures on alkalinity and strength of cement pore solution and its mechanism[J]. China Mining Magazine,2020,29(9):141 − 146. (in Chinese with English abstract)] DOI: 10.12075/j.issn.1004-4051.2020.09.012

    ZHANG Lei, GUO Lijie, LI Wenchen. Effect of mineral admixtures on alkalinity and strength of cement pore solution and its mechanism[J]. China Mining Magazine, 2020, 29(9): 141 − 146. (in Chinese with English abstract) DOI: 10.12075/j.issn.1004-4051.2020.09.012

    [22] 王建华,肖佳,陈雷,等. 粉煤灰对水泥水化与强度的影响[J]. 粉煤灰综合用,2009(5):34 − 36. [WANG Jianhua,XIAO Jia,CHEN Lei,et al. Effect of fly ash on cement hydration and strength[J]. Fly Ash Comprehensive Utilization,2009(5):34 − 36. (in Chinese with English abstract)]

    WANG Jianhua, XIAO Jia, CHEN Lei, et al. Effect of fly ash on cement hydration and strength[J]. Fly Ash Comprehensive Utilization, 2009(5): 34 − 36. (in Chinese with English abstract)

    [23] 方光俊,吴波,周隆海. 电石渣基碱激发剂对粉煤灰同步注浆材料影响研究[J]. 中国矿业,2024,33(增刊1):290 − 296. [FANG Guangjun,WU Bo,ZHOU Longhai. Study on the effect of calcium carbide slag based alkali activator on the properties of fly ash synchronous grouting materials[J]. China Mining Magazine,2024,33(Sup1):290 − 296. (in Chinese with English abstract)]

    FANG Guangjun, WU Bo, ZHOU Longhai. Study on the effect of calcium carbide slag based alkali activator on the properties of fly ash synchronous grouting materials[J]. China Mining Magazine, 2024, 33(Sup1): 290 − 296. (in Chinese with English abstract)

    [24] 赵文华,崔锋,刘鹏亮,等. 粉煤灰-脱硫石膏充填材料性能及微观结构研究[J]. 中国矿业,2022,31(9):132 − 138. [ZHAO Wenhua,CUI Feng,LIU Pengliang,et al. Study on properties and microstructure of fly ash-flue gas desulphurization gypsum filling material[J]. China Mining Magazine,2022,31(9):132 − 138. (in Chinese with English abstract)]

    ZHAO Wenhua, CUI Feng, LIU Pengliang, et al. Study on properties and microstructure of fly ash-flue gas desulphurization gypsum filling material[J]. China Mining Magazine, 2022, 31(9): 132 − 138. (in Chinese with English abstract)

    [25] 王永定,温震江,杨晓炳,等. 粉煤灰—矿渣基固结粉胶凝材料开发与配比优化研究[J]. 矿业研究与开发,2019,39(5):88 − 94. [WANG Yongding,WEN Zhenjiang,YANG Xiaobing,et al. Study on development and ratio optimization of cementing material of fly ash-slag based consolidated powder[J]. Mining Research and Development,2019,39(5):88 − 94. (in Chinese with English abstract)]

    WANG Yongding, WEN Zhenjiang, YANG Xiaobing, et al. Study on development and ratio optimization of cementing material of fly ash-slag based consolidated powder[J]. Mining Research and Development, 2019, 39(5): 88 − 94. (in Chinese with English abstract)

    [26] 杨建军,徐小彬,殷素红,等. 粉煤灰综合利用新途径的探讨[J]. 材料研究与应用,2008,2(4):309 − 312. [YANG Jianjun,XU Xiaobin,YIN Suhong,et al. A new approach of fly ash utilization[J]. Materials Research and Application,2008,2(4):309 − 312. (in Chinese with English abstract)]

    YANG Jianjun, XU Xiaobin, YIN Suhong, et al. A new approach of fly ash utilization[J]. Materials Research and Application, 2008, 2(4): 309 − 312. (in Chinese with English abstract)

    [27] 李维安,苏胜,岳素贞. 粉煤灰掺量对高性能混凝土强度、碱度及抗碳化性能的影响研究[J]. 煤炭工程,2005(2):53 − 55. [LI Weian,SU Sheng,YUE Suzhen. Research on additive quantity of fly ash influenced to strength,alkalinity and carbonization of high performance concrete[J]. Coal Engineering,2005(2):53 − 55. (in Chinese with English abstract)]

    LI Weian, SU Sheng, YUE Suzhen. Research on additive quantity of fly ash influenced to strength, alkalinity and carbonization of high performance concrete[J]. Coal Engineering, 2005(2): 53 − 55. (in Chinese with English abstract)

    [28] 陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质,2022,49(4):100 − 108. [CHEN Zhongqing,ZHU Zewei,LV Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(4):100 − 108. (in Chinese with English abstract)]

    CHEN Zhongqing, ZHU Zewei, LV Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100 − 108. (in Chinese with English abstract)

    [29] 靖向党,于波,马戈,等. 城市垃圾填埋场粘土基防渗浆材的实验研究[J]. 水文地质工程地质,2007(5):94 − 97. [JING Xiangdang,YU Bo,MA Ge,et al. Research of antiseepage slurry based on clay used in waste landfill sites[J]. Hydrogeology & Engineering Geology,2007(5):94 − 97. (in Chinese with English abstract)]

    JING Xiangdang, YU Bo, MA Ge, et al. Research of antiseepage slurry based on clay used in waste landfill sites[J]. Hydrogeology & Engineering Geology, 2007(5): 94 − 97. (in Chinese with English abstract)

    [30] 中华人民共和国质量监督检验检疫总局. 水泥标准稠度用水量、凝结时间、安定性检验方法:GB/T 1346—2001[S]. 北京:中国标准出版社,2004. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Test methods for water requirement of normal consistency,setting time and soundness of the portland cements:GB/T 1346—2001[S]. Beijing:Standards Press of China,2004. (in Chinese)]

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Test methods for water requirement of normal consistency, setting time and soundness of the portland cements: GB/T 1346—2001[S]. Beijing: Standards Press of China, 2004. (in Chinese)

    [31] 王光荣. 对强碱弱酸盐溶液酸碱性的探究[J]. 长江大学学报(自然科学版),2011,8(11):52 − 54. [WANG Guangrong. An exploration of the acidity and alkalinity of strong base weak acid salt solutions[J]. Journal of Yangtze University(Natural Science Edition),2011,8(11):52 − 54. (in Chinese with English abstract)]

    WANG Guangrong. An exploration of the acidity and alkalinity of strong base weak acid salt solutions[J]. Journal of Yangtze University(Natural Science Edition), 2011, 8(11): 52 − 54. (in Chinese with English abstract)

    [32] 易富,姜旭桐,李军,等. 离子侵蚀下注浆结石体劣化机理分析[J]. 水文地质工程地质,2022,49(6):200 − 208. [YI Fu,JIANG Xutong,LI Jun,et al. An analysis of the deterioration mechanism of a grouting stone under the ion erosion[J]. Hydrogeology & Engineering Geology,2022,49(6):200 − 208. (in Chinese with English abstract)]

    YI Fu, JIANG Xutong, LI Jun, et al. An analysis of the deterioration mechanism of a grouting stone under the ion erosion[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 200 − 208. (in Chinese with English abstract)

图(4)  /  表(9)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  9
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-05-20

目录

/

返回文章
返回