ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化

李志红, 王广才, 康飞, 严建飞, 黄丹丹

李志红, 王广才, 康飞, 严建飞, 黄丹丹. 基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化[J]. 水文地质工程地质, 2017, 44(2): 57-62.
引用本文: 李志红, 王广才, 康飞, 严建飞, 黄丹丹. 基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化[J]. 水文地质工程地质, 2017, 44(2): 57-62.
LIZhihong, . Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 57-62.
Citation: LIZhihong, . Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 57-62.

基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化

基金项目: 

国家自然科学基金项目(41272269)

Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence

  • 摘要: 构建合理的水文地质概念模型对于地下水数值模拟至关重要,概念模型如果确定不合理,整个数值模拟将毫无意义。通常水文地质调查可以大致确定水文地质概念模型,然而对于一些不易被发现的补给源,通过水文地质调查也无法确定。水化学和同位素特征对地下水的补给源及水流路径有很好的指示作用,可以根据这些信息对水文地质概念模型进行细化。文章通过对研究区地下水取样,分析地下水水化学和同位素特征,确定出研究区内不易识别的地下水补给源及顶层黏土-粉质黏土的透水性,最终细化了水文地质概念模型边界条件。这对于后期得到正确的地下水流和溶质运移模拟结果具有重要意义。
    Abstract: Constructing a rational conceptual model of hydrogeology is very important for the numerical simulation of groundwater. If the conceptual model is not reasonable, the whole numerical simulation will be meaningless. Generally, the conceptual model of hydrogeology can be roughly determined by hydrogeological investigation. However, it cannot be determined by the hydrogeological investigation for some recharge sources which are not easy to be found. The water chemistry and isotope characteristics are good indicators for the groundwater recharge and the flow path. Based on these characteristics, the hydrogeological conceptual model can be refined. In this paper, groundwater sampling and isotopic characteristics of groundwater in the study area were analyzed. Then the concealed groundwater source was identified, and the permeability of the top silty clay layer was determined. On the basis of the above results, the boundary conditions of the conceptual model of hydrogeology were refined. This is of great significance to get the correct simulation results of groundwater flow and solute transport in the later stage.
  • [1] [1]吴乐,张有全,宫辉力,等. 北京市西山地区地下水数值模拟及预测[J].水文地质工程地质,2016,43(3): 29-36.

    [WU L,ZHANG Y Q,GONG H L,et al. Numerical simulation of groundwater flow for Xishan area in Beijing[J]. Hydrogeology & Engineering Geology, 2016,43(3):29-36.(in Chinese)]

    [2] [2]林丽蓉,唐仲华. 地下水及溶质运移数值模拟系统[J].地质科技情报,2003,22(2):103-106.

    [LIN L R, TANG Z H. Numerical simulation system of groundwater and solute migration[J]. Geological Science and Technology Information, 2003,22(2): 103-106.(in Chinese)]

    [3] [3]魏文清,马长明,魏文炳.地下水数值模拟的建模方法及应用[J].东北水利水电,2006,24(3):25-28.

    [WEI W Q, MA C M, WEI W B. Method and application of building model for groundwater numerical simulation[J]. Water Resources & Hydropower of Northeast, 2006,24(3):25-28. (in Chinese)]

    [4] [4]薛禹群.中国地下水数值模拟的现状与展望[J].高校地质学报,2010,16(1):1-6.

    [XUE Y Q. Present situation and prospect of groundwater numerical simulation in China[J].Geological Journal of China Universities, 2010,16(1):1-6. (in Chinese)]

    [5]

    [5]Montety V D, Marc V, Emblanch C, et al. Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey[J].Earth Surface Processes and Landforms,2007, 32(1):32-48.

    [6] [6]靳书贺,姜纪沂,迟宝明,等.基于环境同位素与水化学的霍城县平原区地下水循环模式[J].水文地质工程地质,2016,43(4):43-51.

    [ JIN S H, JIANG J X, CHI B M, et al. Analyses of groundwater circulation patterns on environmental isotopes and hydrochemistry in the Houcheng Plain[J]. Hydrogeology & Engineering Geology,2016,43(4):43-51.(in Chinese)]

    [7] [7]邵杰,李瑛,王文科,等.水化学在新疆伊犁河谷地下水循环中的指示作用[J].水文地质工程地质,2016,43(4):30-35.

    [ SHAO J, LI Y, WANG W K, et al. Indicative effects of hygrochemistry on groundwater circulation in the Yili River Valley of Xinjiang [J]. Hydrogeology & Engineering Geology, 2016,43(4):30-35.(in Chinese)]

    [8] [8]王文祥,安永会,邵新民,等.基于环境同位素技术的张掖盆地地下水流动系统分析[J].水文地质工程地质,2016,43(2):25-30.

    [ WANG W X, AN Y H, SHAO X M, et al. Groundwater flow system analysis on the Zhangye basin based on environmental isolope techniques[J]. Hydrogeology & Engineering Geology, 2016,43(2):25-30.(in Chinese)]

    [9]

    [9]Barrez F, Mania J. Analysis of hydrodynamic and hydrochemical behaviour of an aquifer using dialysis cells[J].Hydrogeology Journal, 2009, 17(4):781-792.

    [10]

    [10]Dilsiz C. Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data[J].Hydrogeology Journal,2006, 14(4):562-572.

    [11]

    [11]Plummer L N, Bexfield L M, Anderholm S K, et al. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow[J]. Hydrogeology Journal,2004,12(4):359-388.

    [12]

    [12]Sanford W E, Plummer L N, McAda D P, et al. Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model[J]. Hydrogeology Journal, 2004, 12(4): 389-407.

    [13]

    [13]Birkle P, Angulo M, Lima S. Hydrochemical-isotopic tendencies to define hydraulic mobility of formation water at the Samaria-Sitio Grande oil field, Mexico[J].Journal of Hydrology,2006, 317(3/4): 202-220.

    [14] [14]武亚遵,万军伟,潘国营,等.新乡市地下水化学特征及演化规律[J].人民黄河,2011,33(1):70-72.

    [WU Y Z, WAN J W, PAN G Y, et al. Hydrochemical characteristics and evolution of groundwater in Xinxiang city[J].Yellow River, 2011,33(1):70-72.(in Chinese)]

    [15] [15]张立杰.地下水资源管理研究[J].低温建筑技术, 2003(1):75-77.

    [ZHANG L J. Study on groundwater resource management[J]. Low Temperature Architecture Technology, 2003(1):75-77. (in Chinese)]

    [16] [16]田良河.新乡市浅层地下水水环境特征[J].地质灾害与环境保护,2011(3):105-109.

    [TIAN L H. Features of shallow groundwater in Xinxiang city[J].Journal of Geological Hazard and Environment Preservation, 2011(3):105-109. (in Chinese)]

    [17] [17]齐登红,靳孟贵,刘延锋.降水入渗补给过程中优先流的确定[J].地球科学(中国地质大学学报), 2007, 32(3): 420-424.

    [QI D H, JIN M G, LIU Y F. Determination of preferential flow in precipitation infiltration recharge[J]. Earth Science(Journal of China University of Geosciences),2007,32(3): 420-424. (in Chinese)]

  • 期刊类型引用(14)

    1. 吕永高,蔡五田,杨骊,边超,李敬杰,王明国. 某铬渣堆污染地下水六价铬污染特征与迁移转化规律研究. 水文地质工程地质. 2024(03): 180-190 . 本站查看
    2. 王硕,熊超,韩小宾. 生活垃圾填埋场内及周边地下水中氨氮污染多方法预测. 环境保护科学. 2024(05): 170-174 . 百度学术
    3. 林向宇. 基于BIM技术的桥梁拉索表面缺陷检测仿真. 四川建材. 2021(06): 19-22 . 百度学术
    4. 常成. 岩土工程地质勘察过程中的水文地质相关问题研究. 世界有色金属. 2021(12): 196-197 . 百度学术
    5. 韩堃. 工程地质勘察中水文地质问题分析. 世界有色金属. 2020(03): 263+266 . 百度学术
    6. 王平,韩占涛,张海领,孔贝贝,张鑫馨. 某氨氮污染地下水体抽出-处理系统优化模拟研究. 水文地质工程地质. 2020(03): 34-43 . 本站查看
    7. 吕永高,蔡五田,杨骊,边超,李敬杰. 中试尺度下可渗透反应墙位置优化模拟——以铬污染地下水场地为例. 水文地质工程地质. 2020(05): 189-195 . 本站查看
    8. 于晓军. 青海地区水文地质条件对水体铬污染的控制作用研究. 环境科学与管理. 2019(06): 71-75 . 百度学术
    9. 李颖智,蔡五田,耿婷婷,张涛,张智印. 区域地下水污染调查取样点布设量化分配方法. 水文地质工程地质. 2019(05): 24-30 . 本站查看
    10. 郭腾翔,蔡俊勇,魏骏,刘湘萍. 矿山地质地面沉降与地下水资源污染的关系建模研究. 环境科学与管理. 2019(10): 34-39 . 百度学术
    11. 王小霞. 刍议复杂水文地质条件对矿山开采顺序的影响. 世界有色金属. 2019(23): 142+144 . 百度学术
    12. 陈言菲,李翠梅,齐国远,金美华,曹正杰. 基于GMS的江南某地区浅层地下水溶质迁移规律分析. 水电能源科学. 2018(08): 33-38 . 百度学术
    13. 田高锋. 安庆市潜山县皖水水文地质情况分析. 资源信息与工程. 2018(05): 58-59 . 百度学术
    14. 夏泽军,李小龙. 基于关联模型的重金属锰渗透对地下水污染评估建模. 中国锰业. 2017(05): 146-149 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1401
  • HTML全文浏览量:  39
  • PDF下载量:  942
  • 被引次数: 21
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2017-01-10

目录

    /

    返回文章
    返回