ISSN 1000-3665 CN 11-2202/P

    地下水苯系物微生物降解及其碳同位素标记

    Biodegradation of BTEX in groundwater and its carbon isotope identification

    • 摘要: 微生物降解是地下水中有机物自然衰减评估的关键,单体稳定同位素是一种有效的评估方法。在对某油罐泄露场地地下水流场识别的基础上,刻画不同地下水中污染物、微生物及电子受体特征,发现随着与污染源水力联系的减弱,污染物浓度明显减小,微生物群落结构和电子受体氧化还原作用类型与源相似的程度也逐渐减弱,呈现出“污染源-下游源区-下游污染羽-上游源区-侧翼污染羽”的空间变化规律。甲苯、间/对二甲苯碳的同位素标记结果发现,降解程度“侧翼污染羽﹥下游污染羽﹥下游源区”,与电子受体表征降解量的排序相反;该场地微生物降解符合一般化学反应“勒沙特列原理”:污染物浓度越高,降解量越大,但降解程度相对减小。

       

      Abstract: Compound Specific Isotope Analysis is an effective method to identify biodegradation of contaminants, which is the key for Monitored Natural Attenuation (MNA) of contaminated sites. In this work, the groundwater flow at a site contaminated by oil tank leakage was determined. Contaminants, microbial community structure, and electron acceptors in various zones at the site were characterized to elucidate biodegradation of benzene, toluene, ethyl benzene, xylene (BTEX). It was found that contaminant concentrations decreased in the following order: source zone, downstream source zone, plume downstream of the source zone, zone upstream of the source, and side plume. Similarities in the microbial community structure and in electron donors decreased in the same order. These observations can be explained by the decreasing hydraulic connection between different zones. Compound specific isotope analysis of toluene, xylene indicated that the extent of biodegradation decreased in the order of side plume, plume downstream of the source zone and downstream source zone. This order in extent of degradation in different zones was opposite to the order of degradation capacity derived based on consumption of electron acceptors, indicating that biodegradation at the site followed the Le Chatelier’s principle in accordance with general law of chemical reaction. This principle is that the higher the concentration of pollutants, the greater the amount of degradation, but the extent of degradation is relatively reduced.

       

    /

    返回文章
    返回