ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

采动影响下矿区地下水主要水-岩作用与水化学演化规律

殷晓曦, 陈陆望, 谢文苹, 许冬清, 曾文, 刘延娴

殷晓曦, 陈陆望, 谢文苹, 许冬清, 曾文, 刘延娴. 采动影响下矿区地下水主要水-岩作用与水化学演化规律[J]. 水文地质工程地质, 2017, 44(5): 33-33.
引用本文: 殷晓曦, 陈陆望, 谢文苹, 许冬清, 曾文, 刘延娴. 采动影响下矿区地下水主要水-岩作用与水化学演化规律[J]. 水文地质工程地质, 2017, 44(5): 33-33.
YINXiaoxi, . Main water-rock interactions and hydrochemical evolution in the aquifers under the mining-induced disturbance in a mining district[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 33-33.
Citation: YINXiaoxi, . Main water-rock interactions and hydrochemical evolution in the aquifers under the mining-induced disturbance in a mining district[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 33-33.

采动影响下矿区地下水主要水-岩作用与水化学演化规律

基金项目: 

国家自然科学基金项目(41372244、41773100);中央高校基本科研业务费专项资金项目(JZ2016HGBZ0802)

Main water-rock interactions and hydrochemical evolution in the aquifers under the mining-induced disturbance in a mining district

  • 摘要: 煤矿开采势必破坏天然水化学环境,然而矿区多类含水层地下水系统水化学研究尚未从时空角度分析采动影响下水化学演化的本质。以临涣矿区为研究示范,基于历年常规水化学数据开展主成分分析,揭示采动影响下水化学演化过程中的水-岩作用机制。其中,第1主成分代表碳酸盐、硫酸盐溶解及黄铁矿氧化作用,第2主成分代表阳离子交替吸附及脱硫酸作用。采动影响下矿区主要突水含水层地下水碳酸盐、硫酸盐溶解及黄铁矿氧化作用均逐渐减弱,减弱区域不尽相同;然而,阳离子交替吸附及脱硫酸作用的变化规律不明显。研究成果为矿井突水水源识别和水资源保护与利用提供理论依据。
    Abstract: Coal mining is bound to destroy the natural hydrochemical environment. However, hydrochemical studies of a groundwater system of multi-aquifer in the mining district rarely focus on the essence of hydrochemical evolution under the mining-induced disturbance in view of space and time. The Linhuan coal-mining district is taken as an example to reveal the mechanism of water-rock interactions under the mining-induced disturbance by using the principal component analysis based on conventional ions over the years. The result shows that the first principal component represents the dissolution of carbonate and sulfate and oxidation of pyrite and the second principal component represents the exchange and adsorption of cation and desulphidation. Under the mining-induced disturbance, dissolution of carbonate and sulfate and oxidation of pyrite wear off in the main inrush-water aquifers in the mining district, but the change characteristics of exchange and adsorption of cation and desulphidation are insignificant. The research will provide a theoretical support for the identification of water-inrush source and also for the protection and utilization of groundwater in mining districts.
  • [1] [1]武强, 赵苏启, 董书宁, 等. 《煤矿安全规程》(防治水部分)修改技术要点剖析[J]. 中国煤炭地质, 2012, 24(7): 34-37.

    [WU Q, ZHAO S Q, DONG S N, et al. Dissection of main technical points in “Coal Mine Safety Regulations” (Water Control Part) modification[J]. Coal Geology of China, 2012, 24(7): 34-37. (in Chinese)]

    [2] [2]桂和荣, 陈陆望. 矿区地下水水文地球化学演化与识别[M]. 北京: 地质出版社, 2007: 1-16.

    [GUI H R, CHEN L W. Hydrogeochemistric evolution and discrimination of groundwater in mining district[M]. Beijing: Geological Publishing House, 2007: 1-16. (in Chinese)]

    [3] [3]黄平华, 陈建生. 焦作矿区地下水水化学特征及涌水水源判别的FDA模型[J]. 煤田地质与勘探, 2011, 39(2): 42-46.

    [HUANG P H, CHEN J S. The chemical features of ground water and FDA model used to distinguish source of water burst in Jiaozuo mine area[J]. Coal Geology and Exploration, 2011, 39(2): 42-46. (in Chinese)]

    [4] [4]王心义, 徐涛, 黄丹. 距离判别法在相似矿区突水水源识别中的应用[J]. 煤炭学报, 2011, 36(8): 1354-1358.

    [WANG X Y, XU T, HUANG D. Application of distance discriminance in identifying water inrush resource in similar coalmine[J]. Journal of China Coal Society, 2011, 36(8): 1354-1358. (in Chinese)]

    [5] [5]陈松, 桂和荣. 宿县矿区太原组灰岩水地球化学特征及地质意义[J]. 水文地质工程地质, 2016, 43(5): 33-41.

    [CHEN S, GUI H R. Hydrogeochemical characteristics of groundwater in the limestone aquifers of the Taiyuan Group and its geological significance in the Suxian mining area[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 33-41. (in Chinese)]

    [6] [6]邵杰, 李瑛, 王文科, 等. 水化学在新疆伊犁河谷地下水循环中的指示作用[J]. 水文地质工程地质, 2016, 43(4): 30-35.

    [SHAO J, LI Y, WANG W K, et al. Indicative effects of hydrochemistry on groundwater circulation in the Yili River Valley of Xinjiang[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 30-35. (in Chinese)]

    [7]

    [7]Singh A K, Mahato M K, Neogi B, et al. Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee-Balihari mining area, Jharia Coalfield, India[J]. Mine Water and the Environment, 2011,30(3): 197-207.

    [8]

    [8]Qiao X J, Li G M, Li M, et al. Influence of coal mining on regional karst groundwater system: a case study in west mountain area of Taiyuan city, northern China[J]. Environmental Earth Sciences, 2011, 64(6): 1525-1535.

    [9]

    [9]Zhu G F, Su Y H, Feng Q. The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China[J]. Hydrogeology Journal, 2008, 16(1): 167-182.

    [10] [10]李静, 梁杏, 毛绪美, 等. 水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义[J]. 地球科学(中国地质大学学报), 2012, 37(3): 612-620.

    [LI J, LIANG X, MAO X M, et al. Hydro-geochemistry implications of evolution of pore water in low-penetrability aquifer and significance of paleoclimate[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(3): 612-620. (in Chinese)]

    [11]

    [11]Yousafzai A, Eckstein Y, Dahl P S. Hydrochemical signatures of deep groundwater circulation in a part of the Himalayan foreland basin[J]. Environmental Earth Sciences, 2010, 59(5): 1079-1098.

    [12] [12]董维红, 苏小四, 侯光才, 等. 鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J]. 吉林大学学报(地球科学版), 2007, 37(2): 288-292.

    [DONG W H, SU X S, HOU G C, et al. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous Artesian basin[J]. Journal of Jilin University(Earth Science Editon), 2007, 37(2): 288-292. (in Chinese)]

    [13]

    [13]Güler C, Thyne G D, McCray J E, et al. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data[J]. Hydrogeology Journal, 2002, 10(4): 455-474.

    [14]

    [14]Cloutier V, Lefebvre R, Therrien R, et al. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system[J]. Journal of Hydrology, 2008, 353(3): 294-313.

    [15]

    [15]Laaksoharju M, Sk rman C, Sk rman E. Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information[J]. Applied Geochemistry, 1999, 14(7): 861-871.

    [16] [16]李卫东. 应用多元统计分析[M]. 北京: 北京大学出版社, 1991:191-206.

    [LI W D. Application of multivariate statistical analysis[M]. Beijing: Peking University Press, 1991: 191-206. (in Chinese)]

    [17] [17]陈陆望, 殷晓曦, 桂和荣, 等. 矿区深部含水层水-岩作用的同位素与水化学示踪分析[J]. 地质学报, 2013, 87(7): 1021-1030.

    [CHEN L W, YIN X X, GUI H R, et al. Water-rock interaction tracing and analysis of deep aquifers in the mining area by using isotope and hydrochemistry methods[J]. Acta Geologica Sinica, 2013, 87(7): 1021-1030. (in Chinese)]

  • 期刊类型引用(29)

    1. 郑慧铭,张丰,史启朋,仝路,孟甲. 煤炭资源型城市浅层地下水化学特征及成因分析. 人民长江. 2024(02): 51-56 . 百度学术
    2. 王旭东,闫祖喻,郭强,张锁,唐佳伟,胡瑜恬,刘小庆,李井峰. 地下水水化学垂向分带特征及成因机制——以新街矿区为例. 煤炭科学技术. 2024(08): 222-233 . 百度学术
    3. 韩雪. 盘锦市地下水化学特征及影响因素机制分析. 水利科学与寒区工程. 2024(08): 72-75 . 百度学术
    4. 侯俊华. 矿井地表水与深部水形成机制及控制因素分析. 矿业安全与环保. 2022(04): 194-198+204 . 百度学术
    5. 李倩,马龙,刘廷玺,王硕. 采煤对海流兔流域大气降水-地表水-地下水-矿井水转化关系的影响. 中国沙漠. 2022(05): 146-157 . 百度学术
    6. 郝春明,张伟,孙伟,何培雍. 峰峰矿区深层奥灰水水化学演化规律研究. 中国矿业. 2021(05): 230-236 . 百度学术
    7. 张春潮,侯新伟,李向全,王振兴,桂春雷,左雪峰. 三姑泉域岩溶地下水水化学特征及形成演化机制. 水文地质工程地质. 2021(03): 62-71 . 本站查看
    8. 吴晓丽,张杨,孙媛媛,吴吉春. 平朔矿区地下水水化学特征及成因. 南京大学学报(自然科学). 2021(03): 417-425 . 百度学术
    9. 吕情绪. 采煤活动对煤矿地下水化学特征的影响研究. 能源与环保. 2021(05): 84-90 . 百度学术
    10. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 . 百度学术
    11. 樊娟,南生辉,刘英锋,周天威,张光明. 基于水化学和氢氧同位素特征的小屯煤矿充水条件研究. 安全与环境工程. 2021(04): 80-87 . 百度学术
    12. 谢华东,侯俊华,李萍,朱术云. 基于水化学场的63_上06工作面突水水源判别研究. 煤矿现代化. 2021(06): 135-138 . 百度学术
    13. 陈陆望,任星星,张杰,陈逸飞,郑忻. 淮北煤田太原组灰岩水水文地球化学形成作用及反向模拟研究. 煤炭学报. 2021(12): 3999-4009 . 百度学术
    14. 顾鸿宇,马凤山,王东辉,李胜伟,刘港,向元英,郭子奇. 基于水化学数据的矿山涌水水源识别:主成分分析与残差分析. 地球科学与环境学报. 2020(01): 132-142 . 百度学术
    15. HAO Chun-ming,HUANG Yue,MA Deng-jun,FAN Xing. Hydro-geochemistry evolution in Ordovician limestone water induced by mountainous coal mining: A case study from North China. Journal of Mountain Science. 2020(03): 614-623 . 必应学术
    16. 黄望望,姜春露,陈星,傅先杰,程世贵,郑刘根. 淮南新集矿区主要充水含水层水化学特征及成因. 地球与环境. 2020(04): 432-442 . 百度学术
    17. 韩金亮,韦昊然,蒋欣欣,陈梦洁,韩瑞泽. 基于改进GWO-ELM的矿井突水水源识别算法. 计算机与数字工程. 2020(07): 1552-1557 . 百度学术
    18. 谢毫,查君珍,姜春露,陈永春,安士凯,郑刘根. 潘谢矿区深部灰岩水离子来源解析与水循环示踪. 中国矿业. 2020(S2): 258-264 . 百度学术
    19. 周孟然,李大同,胡锋,来文豪,王亚,朱松. AdaBoost算法在矿井突水水源的荧光光谱识别中的研究. 光谱学与光谱分析. 2019(02): 485-490 . 百度学术
    20. 陈星,郑刘根,姜春露,黄望望,董祥林. 安徽淮北临涣矿区地表水水化学及硫氢氧同位素组成特征. 地球与环境. 2019(02): 177-185 . 百度学术
    21. 孙伟,郝春明,黄越,何培雍. 峰峰矿区奥灰水中氢氧同位素漂移特征分析. 中国矿业. 2019(05): 151-157 . 百度学术
    22. 贾亚琳,边凯,李冲,白晓,白峰青. 基于GIS和相关性分析峰峰矿区岩溶水水化学特征. 中国煤炭. 2019(06): 95-101 . 百度学术
    23. 兰建梅,黄凤寸,王璨,周光辉. 停排水矿井对水资源的影响分析——以冷水江利民矿区为例. 国土资源导刊. 2019(02): 53-58 . 百度学术
    24. 方刚,杨建. 榆横矿区巴拉素井田水文地球化学特征研究. 煤矿安全. 2019(08): 56-62 . 百度学术
    25. 方刚,梁向阳,黄浩,夏玉成,靳德武,刘洋. 巴拉素井田煤层富水机理与注浆堵水技术. 煤炭学报. 2019(08): 2470-2483 . 百度学术
    26. 王振广,李飞龙,白志永,朱术云. 煤系顶板砂岩含水层富水性分区研究. 能源与环保. 2019(10): 59-62+66 . 百度学术
    27. 张妹,刘启蒙,刘凯旋. 顾北矿区地下水化学特征及成因分析. 煤矿安全. 2018(05): 187-190 . 百度学术
    28. 秦文婧,宋献方,谷洪彪. 基于层次聚类法的柳江煤矿对地下水水质影响分析. 水文地质工程地质. 2018(03): 30-39 . 本站查看
    29. 武亚遵,潘春芳,林云,曹飞龙,王子杰. 鹤壁矿区奥陶系灰岩地下水水文地球化学特征及反向模拟. 水资源与水工程学报. 2018(04): 25-32+40 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1057
  • HTML全文浏览量:  57
  • PDF下载量:  940
  • 被引次数: 49
出版历程
  • 收稿日期:  2016-09-03
  • 修回日期:  2016-11-09

目录

    /

    返回文章
    返回