ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例

李华翔, 宁立波, 黄景春, 王忠伟, 苏绘梦

李华翔, 宁立波, 黄景春, 王忠伟, 苏绘梦. 裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例[J]. 水文地质工程地质, 2017, 44(6): 9-9.
引用本文: 李华翔, 宁立波, 黄景春, 王忠伟, 苏绘梦. 裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例[J]. 水文地质工程地质, 2017, 44(6): 9-9.
LIHuaxiang, . A study of the distribution of temperature-humidity and vapor-liquid transformation in the water vapor field of fractured rock mass: a case study in the Jinping Mountain of Yiyang county in Henan[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 9-9.
Citation: LIHuaxiang, . A study of the distribution of temperature-humidity and vapor-liquid transformation in the water vapor field of fractured rock mass: a case study in the Jinping Mountain of Yiyang county in Henan[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 9-9.

裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例

基金项目: 

河南省国土资源厅地质矿产科技攻关项目(2014-20)

A study of the distribution of temperature-humidity and vapor-liquid transformation in the water vapor field of fractured rock mass: a case study in the Jinping Mountain of Yiyang county in Henan

  • 摘要: 水汽场是描述裂隙岩体非饱水带内温度、水汽时空分布的空间总称。针对目前裂隙岩体水汽场内温湿度的分布情况以及其汽、液转化规律等问题至今并未解决的现状,以宜阳锦屏山为研究对象,开展监测孔布设、长期数据监测等工作,并以春、夏、秋、冬四季的实测温湿度数据为基础,对水汽场内温湿度分布及汽液转化规律进行研究。春夏季,裂隙岩体水汽场内的温湿度呈现由内而外逐渐增加的渐变规律,是裂隙岩体内水分、热量的主要补充时期,其内部凝结水分布范围较大,外边界约为20 cm;而秋冬季,裂隙岩体水汽场内的温湿度分布趋势与之相反,是裂隙岩体内水分、热量的主要耗散时期,其内部凝结水分布范围较小,外边界约50~200 cm。
    Abstract: Water vapour field is a general term used to describe the temperature in the unsaturated water zone of the fractured rock mass and the temporal distribution of water and vapor. Some key questions have not been examined until now such as the distribution of temperature-humidity in the water vapor field of the fractured rock mass as well as the laws of vapor-liquid transformation in the water vapor field. The Jinping Mountain of Yiyang county is taken as an case study in this paper and the distribution of temperature-humidity as well as the laws of vapor-liquid transformation in the water vapor field are analyzed using the measured temperature and moisture at all seasons in the long-term monitoring holes. The research results show that (1) spring and summer are the main periods for the increase in water and heat in the fractured rock, when the humiture in the water vapor field of fractured rock gradually raises from the inside out. Distribution range of the internal condensation water in fractured rock is large and its external counterpart on the boundary is about 20 cm. (2) Conversely, water and heat in the fractured rock decrease and the humiture gradually reduces from the inside out in autumn and winter. The nternal water distribution range of fractured rock is small while that on the outside ranges from 50 to 200 cm.
  • [1] [1]夏布德. 气象学[M]. 上海:上海教育出版社,2002.

    [Grass C. Meteorology[M]. Shanghai: Shanghai Educational Publishing House, 2002. (in Chinese)]

    [2] [2]郭青林,王旭东,薛平,等. 敦煌莫高窟底层洞窟岩体内水汽与盐分空间分布及其关系研究[J]. 岩石力学与工程学报,2009,25(8):3769-3775.

    [GUO Q L, WANG X D, XUE P, et al. Spatial distribution and relationship of water vapor and salinity in Mogao grottoes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 25(8):3769-3775. (in Chinese)]

    [3] [3]万力,曹文炳,王旭升,等. 云冈石窟水汽转化特征的初步研究[J]. 工程勘察,2012,40(2):6-11.

    [WAN L, CAO W B, WANG X S, et al. A preliminary study on the characteristics of water vapor transformation in Yungang grottoes[J]. Engineering Investigation,2012,40(2):6-11. (in Chinese)]

    [4] [4]黄继忠,万力,彭涛,等. 云冈石窟水分来源探查工程及若干成果[J]. 工程勘察,2012,40(2):1-5.

    [HUANG J Z, WAN L, PENG T, et al. Water source exploration project of Yungang grottoes and some achievements[J]. Engineering Investigation, 2012,40(2):1-5. (in Chinese)]

    [5]

    [5]Bonnie S D, S Lee B, Zhou J. Prediction of water vapor movement through waste rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004(11):293-303.

    [6]

    [6]Lefebvre, Lamontagne, Wels. ARD production and water vapor transport at the Questa mine[J]. International Conference on Tailings and Mine Waste,2002(6):27-30.

    [7] [7]王旭东,郭青林,李最雄,等. 敦煌莫高窟洞窟围岩渗透特性研究[J]. 岩土力学,2010,10(5):3139-3144.

    [WANG X D, GUO Q L, LI Z X, et al. Study on permeability of surrounding rocks of Mogao grottoes[J]. Rock and Soil Mechanics,2010,10(5):3139-3144. (in Chinese)]

    [8] [8]林波,王旭东,郭青林,等. 敦煌莫高窟第108窟西壁岩体内温湿度变化规律研究[J]. 敦煌研究,2013,23(2):86-91.

    [LIN B, WANG X D, GUO Q L, et al. Study on changes of Mogao grottoes cave 108th west wall rock temperature and humidity in Dunhuang[J]. Dunhuang Research,2013,23(2):86-91. (in Chinese)]

    [9] [9]杨善龙,王旭东,郭青林,等. 敦煌莫高窟崖体中水分分布初步分析[J]. 水文地质工程地质,2009,36(6):94-97.

    [YANG S L, WANG X D, GUO Q L, et al. Preliminary analysis of water distribution in cliff body of Dunhuang Mogao grottoes[J]. Hydrogeology & Engineering Geology,2009,36(6):94-97. (in Chinese)]

    [10] [10]郭青林,王旭东,李最雄,等. 高密度电阻率法在敦煌莫高窟水汽调查中的初步应用[J]. 敦煌研究,2008(6):79-116.

    [GUO Q L, WANG X D, LI Z X, et al. Preliminary application of high density resistivity method in the investigation of water vapor in Mogao grottoes of Dunhuang[J]. Dunhuang Research,2008(6):79-116. (in Chinese)]

    [11] [11]徐恒力. 环境地质学[M]. 北京:地质出版社,2009.

    [XU H L. Environmental geology[M]. Beijing: Geological Publishing House,2009. (in Chinese)]

    [12] [12]邹珊刚,李继宗,苏子仪,等. 系统科学[M]. 北京:人民出版社,1987.

    [ZOU S G, LI J Z, SU Z Y, et al. System science[M]. Beijing:People’s Publishing House,1987. (in Chinese)]

    [13] [13]北京地质学院水文地质教研室. 普通水文地质学[M]. 北京:中国工业出版社,1964.

    [The hydrogeological research room of Beijing college of geology. General hydrologic geology[M]. Beijing: China Industry Press,1964. (in Chinese)]

    [14] [14]严家騄,王永春. 工程热力学[M]. 北京:高等教育出版社,2005.

    [YAN J L, WANG Y C. Engineering thermodynamics[M]. Beijing: Higher Education Press, 2005. (in Chinese)]

    [15] [15]严家騄,余晓福,王永青,等. 水和水蒸气热力学性质图表[M].北京:高等教育出版社,2004.

    [YAN J L, YU X F, WANH Y Q, et al. Thermodynamic properties of water and steam[M].Beijing: Higher Education Press, 2004. (in Chinese)]

    [16] [16]徐恒力,孙自永,马瑞. 植物地境及物种地境稳定层[J]. 地球科学,2004,23(8):239-246.

    [XU H L, SUN Z Y, MA R. Plant below-ground habitat and stable layer of plant species in habitat[J]. Earth Science, 2004,23(8):239-246. (in Chinese)]

    [17]

    [17]Frie D E. Thermal conduction contribution to heat transfer at contacts[J]. Thermal Conductivity, 1969(2):197-199.

    [18] [18]崔海宁. 热力学系统理论[M]. 长春:吉林大学出版社,2009.

    [CUI H N. Thermodynamic system theory[M]. Changchun: Jilin University Press, 2009. (in Chinese)]

  • 期刊类型引用(9)

    1. 何守强. 水文地质勘探孔分层抽水施工实践. 钻探工程. 2023(S1): 328-331 . 百度学术
    2. 李康. 精细化抽水成井施工及抽水系统下放工艺应用研究. 中国煤炭地质. 2022(S2): 54-56 . 百度学术
    3. 马少华,赵新民,李强. 水文精细化探查钻孔分层抽水技术实践. 内蒙古煤炭经济. 2021(11): 131-133 . 百度学术
    4. 李海学,程旭学,韩双宝,刘伟坡. 分层抽水在大厚度含水层水文地质勘查中的应用. 南水北调与水利科技(中英文). 2020(05): 174-181 . 百度学术
    5. 王明明,解伟,安永会,龚磊,王文祥,崔虎群. 封隔注浆分层成井技术在水文地质勘查中的应用研究. 水文地质工程地质. 2019(01): 50-55 . 本站查看
    6. 李亮,解伟,赵胤凯,常晓军,贾军元,朱意萍. 双封隔器技术在无锡市WTS01井水文地质勘查中的应用. 成都理工大学学报(自然科学版). 2019(04): 482-486 . 百度学术
    7. 张龙嘉. 水文地质问题对地质工程勘查的影响分析. 世界有色金属. 2019(22): 242+244 . 百度学术
    8. 崔义文,文相正. 重金属污染场地水文地质勘察技术研究. 环境科学与管理. 2018(09): 67-71 . 百度学术
    9. 王长青. 矿山工程地质勘查中水文地质问题产生的危害性分析. 世界有色金属. 2018(22): 136+138 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1324
  • HTML全文浏览量:  17
  • PDF下载量:  881
  • 被引次数: 11
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-11

目录

    /

    返回文章
    返回
    x 关闭 永久关闭


    通知:因服务器维护升级,3月14日17时至17日网站暂停服务。

    编辑部  

    2025年3月14日