滹沱河冲洪积扇地下水硝酸盐的污染特征及污染源解析
Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial-pluvial fan regions
-
摘要: 为研究滹沱河冲洪积扇地区地下水硝酸盐污染机制,对滹沱河冲洪积扇地区地下水和地表水进行了采样监测,运用环境健康风险评价模型对研究区硝酸盐进行评价,采用水化学和多元统计方法研究了滹沱河冲洪积扇地区地下水硝酸盐污染问题。结果表明:研究区地表水NO-3污染较轻,NO-3均值为19.54 mg/L,所有水样均未超出我国地表水环境质量标准(45 mg/L);但是,地下水已经受到了NO-3的严重污染,NO-3均值为75.84 mg/L,且有30.43%水样超出我国地下水质量标准(88. 6 mg/L)。研究区3个水文地质单元地下水硝酸盐的平均个人年健康风险分别为4.94×10-8、1.99×10-8和2.61×10-9,低于国际辐射防护委员会(ICRP)推荐的最大可接受风险水平(5.0×10-5/a),因此,认为不会对人群构成严重危害。水文地质单元和地下水埋深对硝酸盐污染有显著影响,但是,土地利用类型对硝酸盐浓度的影响不显著。滹沱河冲洪积扇地区地下水硝酸盐的主要污染来源是生活污水和化肥。此外,强烈开采地下水也是该地区NO-3污染的诱因。Abstract: Based on investigation of groundwater and surface water of the Hutuo River alluvial-pluvial fan in October, 2015, the pollution mechanism of nitrate in the region were identified by using the water chemical and multivariate statistical technology. The results show that the nitrate contamination is lighter for surface water and the mean concentration of nitrate is 19.54 mg/L, and all the samples are not over the environmental quality standard for surface water in China (GB-3838—2002). For groundwater, however, the mean concentration of nitrate is 75.84 mg/L and 30.43% of the samples are over the quality standard in China (88.6 mg/L), indicating that the groundwater has suffered serious nitrate pollution. The personal annual risk caused by nitrate in three hydrogeological units of the Hutuo River alluvial-pluvial fan regions are 4.94×10-8, 1.99×10-8 and 2.61×10-9, respectively, and are lower than the maximum allowance risk level recommended by ICRP (5.0×10-5/a). Therefore, it is at an acceptable level and will not cause obvious health hazards. There are significant difference between nitrate concentration resulting from the different hydrogeological subregions and groundwater depth. However, there are no significant differences between the land use and the nitrate concentration. The mainly sources of NO-3 pollution is the domestic sewage and chemical fertilizer in the study area. In addition, the groundwater intensely exploited is a major inducing factor for the NO-3 pollution.
-
Keywords:
- groundwater /
- over-exploited /
- nitrate /
- influencing factors /
- pollution sources
-
-
[1] [1]ZHANG QQ, SUN JC, LIU JT, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China[J]. Journal of Contaminant Hydrology, 2015, 182: 221-230.
[2] [2]XUE, D M, BOTTE J, BAETS BD, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater[J]. Water Research, 2009, 43(5): 1159-1170.
[3] [3]PASTéN-ZAPATA E, LEDESMA-RUIZ R, HARTER T, et al. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach[J]. Science of Total Environmental, 2014, 470/471(2): 855-864.
[4] [4]LI SL, LIU CQ, LI J, et al. Evaluation of nitrate source in surface water of southwestern China based on stable isotopes[J]. Environmental Earth Science, 2013, 68: 219-228.
[5] [5]WHO (World Health Organization). Guidelines for Drinking-Water Quality[M]. 4th ed. Geneva: World Health Organization,2011.
[6] [6]LANDON MK, GREEN CT, BELITE K, et al. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, central-eastside San Joaquin Valley, California, USA[J]. Hydrogeology Journal, 2011, 19 (6):1203-1224.
[7] [7]MARTiNEA D, MOSCHIONE E, BOCANEGRA E, et al. Distribution and origin of nitrate in groundwater in an urban and suburban aquifer in Mar del Plata, Argentina[J]. Environmental Earth Sciences, 2014, 72(6):1877-1886
[8] [8]LOCKHART K, KING A, HARTER T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production[J]. Journal of Contaminant Hydrology. 2013, 151(6):140-154.
[9] [9]WICK K, HEUMESSER C, SCHMID E. Groundwater nitrate contamination: factors and indicators[J]. Journal of Environmental Managment, 2012, 111(3):178-186.
[10] [10]ZHANG X, XU Z, SUN X, et al. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010[J]. Journal of Environmental Sciences, 2013, 25(5): 1007-1014.
[11] [11]LI YS, ZHANG ZJ, FEI YH, et al. Investigation of quality and pollution characteristics of groundwater in the Hutuo River Alluvial Plain, North China Plain[J]. Environmental Earth Sciences, 2016,75(7): 1-10.
[12] [12]中国质量监督检验检疫局. GB/T8538—2008饮用天然矿泉水检验方法[S].北京:中国标准出版社, 2008. [General Administration of Quality Supervision. Inspection and quarantine of the People’s Republic of China. GB/T8538—2008 Methods for examination of drinking natural mineral water[S]. Beijing: China Standards Press, 2008 (in Chinese)]
[13] [13]符刚, 曾强, 赵亮,等. 基于GIS的天津市饮用水水质健康风险评价[J]. 环境科学, 2015, 36(12):4553-4560. [FU G, ZENG Q, ZHAO L, et al. Health risk assessment of drinking water quality in Tianjin based on GIS[J]. Environmental Science, 2015, 36(12):4553-4560 (in Chinese)]
[14] [14]中国环境保护部. GB/3838—2002地表水环境质量标准[S].中国环境科学出版社, 2002. [State Environment Protection Bureau of China. GB3838—2002 Environmental quality standards for surface water[S]. Beijing: China Environmental Science Press, 2002 (in Chinese)]
[15] [15]中国地质矿产部. GB/T14848—93地下水质量标准[S].中国标准出版社, 1994. [Ministry of Geology and Mineral Resources of China. GB/T14848—93 Quality standard for ground water[S]. Beijing: China Standards Press, 1994 (in Chinese)]
[16] [16]徐建国, 李生果, 朱恒华, 等. 南四湖流域平原区浅层地下水氮污染特征[J]. 工程勘察, 2010(5): 40-44. [XU J G, LI S G, ZHU H H, et al. The nitrogen pollution characteristics of the shallow groundwater in the Nansi lake drainage basin[J]. Geotechnical Investigation and Surveying, 2010(5): 40-44 (in Chinese)]
[17] [17]孙世卫. 小麦—玉米轮作区地下水硝态氮含量的研究[J]. 安徽农业科学, 2007, 35: 11525-11526. [SUN S W. Research on the nitrate nitrogen concentration of groundwater in wheat-maize rotation region[J]. Journal of Anhui Agricultural Sciences, 2007, 35: 11525-11526 (in Chinese)]
[18] [18]GU B, GE Y, CHANG S X, et al. Nitrate in groundwater of China: sources and driving forces[J]. Global Environmental Change, 2013, 23(5): 1112-1121.
[19] [19]LIU C Q, LI S L, LANG Y C. et al. Using delta15 N-and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China[J]. Environmental Science and Technology, 2006,40(22): 6928-6933.
[20] [20]JIN Z, XUE Q, CHEN L, et al. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China[J]. Journal of Contaminant Hydrology, 2015, 177/178: 64-75.
[21] [21]CHEN J, TANG C, SAKURA Y, et al. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain[J]. Hydrogeology Journal, 2005, 13(3): 481-492.
[22] [22]程中双. 强烈开采含水层的水化学和同位素响应及其水文地质指示[D]. 北京:中国地质科学院, 2015 [CHENG Z S. Chemical and isotopic response to intensive groundwater exploitation and its implications: case study in thepiedmont plain, Shijiazhuang[D]. Beijing:Chinese Academy of Geological Sciences, 2015.(in Chinese)]
[23] [23]JUAHIR H, ZAIN SM, YUSOFF MK, et al. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques[J]. Environmental Monitoring and Assessment, 2011, 173(1/4): 625-641.
-
期刊类型引用(22)
1. 何景媛,张茹星,丁水波,李思维,李东阳,马志飞. 极端干旱气候下赣江下游及支流流域地下水硝酸盐污染特征及来源. 环境工程技术学报. 2025(01): 111-119 . 百度学术
2. 刘冰,温雪茹,杨柳. 滹沱河冲洪积扇生态环境及其演化. 地下水. 2023(01): 16-18+42 . 百度学术
3. 彭飞. 某地地下水污染时空变化特征及来源分析. 地下水. 2023(03): 32-36 . 百度学术
4. 孔晓乐,常玉儒,刘夏,赵小宁,沈彦军. 滹沱河流域山区地表水-地下水水化学空间变化特征、影响因素及其来源. 环境科学. 2023(08): 4292-4303 . 百度学术
5. 刘婷,孟志龙,白欣茹. 潇河灌区地表水硝酸盐污染特征及来源解析. 太原师范学院学报(自然科学版). 2023(03): 69-75 . 百度学术
6. 成世才. 济南市新旧动能转换区浅层地下水硝酸盐污染特征. 中国煤炭地质. 2021(02): 53-59 . 百度学术
7. 张希雨,张光辉,严明疆. 滹滏平原漏斗区地下水溶解性总固体演变特征研究. 水文地质工程地质. 2021(03): 72-81 . 本站查看
8. 林向宇. 基于BIM技术的桥梁拉索表面缺陷检测仿真. 四川建材. 2021(06): 19-22 . 百度学术
9. 孟舒然,吕敦玉,张建羽,王翠玲. 基于地统计技术的地下水硝酸盐的污染源解析研究. 环境科学与技术. 2021(S2): 197-204 . 百度学术
10. 吴溪,杨瑜泽. 论矿山水文地质类型及地下水对采矿影响的防范措施. 世界有色金属. 2020(13): 54-55 . 百度学术
11. 陈云增,李天奇,马建华,阮心玲,王琳,邹桂英. 沙颍河流域典型癌病高发区水体硝态氮污染及健康风险. 环境科学学报. 2019(05): 1698-1707 . 百度学术
12. 何泽,宁卓,黄冠星,刘丹丹,张千千,孙继朝. 太行山前平原浅层地下水污染的分子生物学响应特征——以滹沱河流域为例. 中国地质. 2019(02): 290-301 . 百度学术
13. 王瑾,杨君胜,吉秀亮. 2018年青海省农村饮用水中硫酸盐、氯化物、硝酸盐的现状调查. 医学动物防制. 2019(09): 911-913 . 百度学术
14. 于晓军. 青海地区水文地质条件对水体铬污染的控制作用研究. 环境科学与管理. 2019(06): 71-75 . 百度学术
15. 唐金平,张强,胡漾,张宇,聂保伟. 湔江冲洪积扇地下水化学特征及控制因素分析. 环境科学. 2019(07): 3089-3098 . 百度学术
16. 李露,秦大军,郭艺,孙杰. 北京西山岩溶水中硝酸盐来源及迁移特征. 水文地质工程地质. 2019(04): 73-80+96 . 本站查看
17. 莫德科. 论矿山水文地质类型及地下水对采矿影响的防范措施. 世界有色金属. 2019(10): 294+296 . 百度学术
18. 张英,刘春燕,王金翠,侯钦宣. 快速城镇化进程中典型冲洪积扇地下水化学演变特征及影响因素解析. 南水北调与水利科技. 2019(05): 172-179+193 . 百度学术
19. 张涵,李奇翎,郭珊珊,付康. 成都平原典型区地下水污染时空异质性及污染源分析. 环境科学学报. 2019(10): 3516-3527 . 百度学术
20. 李圣品,李文鹏,殷秀兰,金爱芳. 全国地下水质分布及变化特征. 水文地质工程地质. 2019(06): 1-8 . 本站查看
21. 郑富新,尹芝华,杜青青,夏雪莲,翟远征,左锐,王金生,滕彦国,杨光. 某污染场地地下水硝态氮迁移过程的数值模拟. 环境工程. 2018(12): 103-107 . 百度学术
22. 张千千,王慧玮,王龙,尚铭森. 滹沱河冲洪积扇地区地下水硬度升高的机理研究. 环境科学与技术. 2018(S2): 62-68 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 1276
- HTML全文浏览量: 28
- PDF下载量: 1186
- 被引次数: 37