ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • GeoRef收录期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

基于地下水流数值模型的改进DRASTIC方法

周超, 邵景力, 崔亚莉, 张秋兰

周超, 邵景力, 崔亚莉, 张秋兰. 基于地下水流数值模型的改进DRASTIC方法[J]. 水文地质工程地质, 2018, 45(1): 15-22.
引用本文: 周超, 邵景力, 崔亚莉, 张秋兰. 基于地下水流数值模型的改进DRASTIC方法[J]. 水文地质工程地质, 2018, 45(1): 15-22.
ZHOUChao, . A Groundwater-Model-Based DRASTIC for assessing aquifer vulnerability[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 15-22.
Citation: ZHOUChao, . A Groundwater-Model-Based DRASTIC for assessing aquifer vulnerability[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 15-22.

基于地下水流数值模型的改进DRASTIC方法

基金项目: 

国家科技基础资源调查专项(2017FY100405)

A Groundwater-Model-Based DRASTIC for assessing aquifer vulnerability

  • 摘要: 地下水脆弱性评价作为地下水资源保护和地下水开发利用规划的一个重要工具,被广泛的应用于实际工作中。尝试利用地下水数值模型为改进的DRASTIC方法提供数据支持,并以北京市平原区为例探讨地下水脆弱性评价方法。评价结果与传统方法在高值区和低值区具有很好的对应性,而基于模型的方法在地下水水位计算、含水层介质和水力传导系数确定上较传统方法更具优势,如地下水位的计算上较传统方法更为客观地体现含水介质对地下水运动的影响,且能够方便地获得模拟期内任意时间的流场数据;经由模型调试后的含水层参数数据,较传统方法更为准确。评价结果分区之间的变化较传统方法更为平滑,更符合水文地质条件渐变的特性。
    Abstract: Assessment of groundwater vulnerability as an essential tool for protection and management of groundwater resources is widely used. This article uses a modified DRASTIC model, in which a groundwater flow model is used as a data supplier, to evaluate the vulnerability of the Beijing plain aquifer, and discuss the pros and cons of this new method. The results of this method and ordinary one are familiar in high-value and low-value regions. However, the new method is more competitive in calculating water table, hydraulic conductivity and mapping aquifer media. The groundwater-model-based way is more objective in describing the influence of the aquifer media on groundwater movement and the time-based water table is available. The parameters describing the aquifer media of a calibrate groundwater model is more precise than the statistics-based way. The values between the estimated regions are more smooth than the ordinary one, which is accordance with the continuity of hydrogeological conditions.
  • [1]

    [1]WANG J J, HE J T, CHEN H H. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China[J]. Sci Total Environ, 2012, 432: 216-226.

    [2] [2]张珍, 温忠辉, 鲁程鹏, 等. 改进的DRASTIC地下水脆弱性评价模型及应用[J]. 水资源保护, 2014,30(6): 13-18.

    [ZHANG Z, WENG Z H, LU C P, et al. A modified DRASTIC model for assessment of groundwater vulnerability and its application[J]. Water Resources Protection, 2014,30(6): 13-18.(in Chinese)]

    [3] [3]郝静, 张永祥, 丁飞, 等. 改进的DRASTIC模型在地下水易污染性模糊评价中的应用[J]. 水文地质工程地质, 2013,40(5): 34-39.

    [HAO J, ZHANG Y X, DING F, et al. Improved DRASTIC model and its applying for the Fuzzy evaluation of groundwater vulnerability[J]. Hydrology & Engineering Geology, 2013,40(5): 34-39.(in Chinese)]

    [4] [4]王国利, 周惠成, 杨庆. 基于DRASTIC的地下水易污染性多目标模糊模式识别模型[J]. 水科学进展, 2000,11(2): 173-179.

    [WANG G L, ZHOU H C, YANG Q. A multi-objective fuzzy pattern recognitionmodel for assessing groundwater vulnerabil ity based on the DRASTIC system[J]. Advances in Water Science, 2000,11(2): 173-179.(in Chinese)]

    [5] [5]孙才志, 奚旭, 董璐. 基于ArcGIS的下辽河平原地下水脆弱性评价及空间结构分析[J]. 生态学报, 2015, 35(20): 6635-6646.

    [SUN C Z, XI X, DONG L. An ArcGIS-based analysis of groundwater spatial structure and groundwater vulnerability in the lower reaches of the Liaohe river plain[J]. Acta Ecologica Sinica, 2015, 35(20): 6635-6646.(in Chinese)]

    [6] [6]周书葵, 江海浩, 陈朝猛, 等. 改进AHP-DRASTIC模型用于地下水U(Ⅵ)污染风险评价及回归分析[J]. 环境工程, 2016,34(1): 130-134.

    [ZHOU S Q, JIANG H H, CHEN C M, et al. Risk assessment of U(VI) pollution to groundwater based on modified AHP-drastic model and analysis of the linear regression[J]. Enviromental Engineering, 2016,34(1): 130-134.(in Chinese)]

    [7] [7]李定龙, 王宗庆, 杨彦. 基于综合方法的区域浅层地下水脆弱性评价——以常州市为例[J]. 环境化学, 2013, 32(11): 2099-2108.

    [LI D L, WANG Z Q, YANG Y. Regional shallow groundwater vulnerability assessment based on comprehensive approach: take Changzhou as an example[J]. Environmental Chemistry, 2013, 32(11): 2099-2108.(in Chinese)]

    [8]

    [8]PACHECO F A L, PIRES L, SANTOS R M B, et al. Factor weighting in DRASTIC modeling[J]. Sci Total Environ, 2015, 505: 474-486.

    [9]

    [9]NESHAT A, PRADHAN B. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment[J]. Nat Hazards, 2015, 76(1): 543-563.

    [10] [10]陈浩, 王贵玲, 侯新伟, 等. 城市周边地下水系统脆弱性评价——以栾城县为例[J]. 水文地质工程地质, 2006,33(5): 103-105.

    [CHENG H, WANG G L, HOU X W, et al. The groundwater vulnerability assessment of the district around city: taking Luancheng County as an example[J]. Hydrology & Engineering Geology, 2006,33(5): 103-105.(in Chinese)]

    [11]

    [11]SHEKHAR S, PANDEY A C, TIRKEY A S. A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer[J]. Arab J Geosci, 2015, 8(3): 1385-1401.

    [12]

    [12]KURA N U, RAMLI M F, IBRAHIM S, et al. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods[J]. Environmental Science and Pollution Research, 2015, 22(2): 1512-1533.

    [13] [13]张丽君. 地下水脆弱性和风险性评价研究进展综述 [J]. 水文地质工程地质, 2006, 33(6): 113-119.

    [ZHANG L J. Review on groundwater vulnerability and risk assessment [J]. Hydrology & Engineering Geology, 2006,33(6): 113-119.(in Chinese)]

    [14] [14]曲文斌, 王欣宝, 钱龙, 等. 石家庄城市区地下水脆弱性评价研究[J]. 水文地质工程地质, 2007,34(6): 6-9.

    [QU W B, WANG X B, QIAN L, et al. Frangibility evalution of the ground water in Shijiazhuang city[J]. Hydrology & Engineering Geology, 2007,34(6): 6-9.(in Chinese)]

    [15]

    [15]AL HALLAQ A H, ABU ELAISH B S. Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza Strip-Palestine, using the DRASTIC model within GIS environment[J]. Arab J Geosci, 2012, 5(4): 833-847.

    [16]

    [16]JENKS G F, CASPALL F C. Error on Choroplethic Maps: Definition, Measurement, Reduction[J]. Annals of the Association of American Geographers, 1971, 61(2): 217-244.

    [17]

    [17]BABIKER I S, MOHAMED M A A, HIYAMA T, et al. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan[J]. Sci Total Environ, 2005, 345(1/3): 127-140.

    [18]

    [18]RAHMAN A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India[J]. Appl Geogr, 2008, 28(1): 32-53.

    [19]

    [19]MOHAMMADI K, NIKNAM R, MAJD V J. Aquifer vulnerability assessment using GIS and fuzzy system: a case study in Tehran-Karaj aquifer, Iran[J]. Environ Geol, 2009, 58(2): 437-446.

    [20]

    [20]SAIDI S, BOURI S, BEN DHIA H, et al. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to souassi aquifer, tunisian sahel[J]. Agricultural Water Management, 2011, 98(10): 1671-1682.

    [21] [21]张安京, 叶超, 李宇, 等. 北京地下水[M]. 北京: 中国大地出版社, 2008.

    [ZHANG A J, YE C, LI Y, et al. Groundwater of Beijing[M]. Beijing: China Land Press, 2008.(in Chinese)]

    [22]

    [22]BRINDHA K, ELANGO L. Cross comparison of five popular groundwater pollution vulnerability index approaches[J]. J Hydrol, 2015, 524: 597-613.

    [23] [23]李绍飞, 孙书洪, 王勇. 基于DRASTIC的含水层脆弱性模糊评价方法与应用[J]. 水文地质工程地质, 2008,35(3): 112-117.

    [LI S F, SUN S H, WANG Y. Application of the method for fuzzy assessment of aquifer vulnerability based on DRASTIC[J]. Hydrology & Engineering Geology, 2008,35(3): 112-117.(in Chinese)]

  • 期刊类型引用(9)

    1. 韩积斌,张海云,张宝云. 柴达木盆地那棱格勒河冲积扇浅层地下水的脆弱性评价. 盐湖研究. 2023(03): 10-17 . 百度学术
    2. 朱君,李婷,陈超,谢添,张艾明. 近海核电厂核素地下水释放通量的模型计算方法. 吉林大学学报(地球科学版). 2021(01): 201-211 . 百度学术
    3. 宋仁亮,韩迪,马雷. 基于DRASTIC改进模型的小流域河间平原地下水防污性能评价. 地下水. 2021(04): 22-24+28 . 百度学术
    4. 石林,彭浩,聂小东,胡晓倩,宁珂. 基于知识图谱的河湖管理中3S技术应用研究进展. 人民长江. 2021(08): 1-9 . 百度学术
    5. 李海涛,凤蔚,王凯霖,赵凯,李刚,张源,李木子,孙璐,陈一超,尤冰. 雄安新区地下水资源概况、特征及可开采潜力. 中国地质. 2021(04): 1112-1126 . 百度学术
    6. 王登,霍思远,孙芳,曾娟,伊明启. 人工溴示踪法评价潜水蒸发可行性数值模拟. 水文地质工程地质. 2020(01): 19-27 . 本站查看
    7. 王嘉瑜,蒲生彦,胡玥,李博文. 地下水污染风险预警等级及阈值确定方法研究综述. 水文地质工程地质. 2020(02): 43-50 . 本站查看
    8. 陈建立,刘仪,李赫然,张书才,陈英男. 泌阳凹陷碱矿平原区浅层地下水脆弱性评价. 勘察科学技术. 2020(03): 38-42+50 . 百度学术
    9. 唐学芳,吴勇,陈晶,邓东平. 基于DRASTIC-GIS 模型的成都典型区域地下水脆弱性评价. 环境监测管理与技术. 2020(06): 28-32 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1402
  • HTML全文浏览量:  22
  • PDF下载量:  1290
  • 被引次数: 13
出版历程
  • 收稿日期:  2017-07-31
  • 修回日期:  2017-09-09

目录

    /

    返回文章
    返回