基于物理试验的海底滑坡涌浪研究
A study of the submarine landslide-induced impulse wave based on physical experiments
-
摘要: 灾难性海啸有时由海底滑坡运动造成,海底滑坡的涌浪产生过程研究是海啸研究的关键。海啸形成主要受控于滑体的几何尺寸、滑动速度、水深、滑动角度等因素。基于这些因素,文章设计并实施了水下刚性滑块正交物理实验。试验中滑块的厚长比在0.035~0.180之间,斜坡滑道的倾角在10°~16°之间,Froude数处于0.18~0.70之间。试验分析表明初始涌浪形成早于滑块停止;初始波谷(最大波谷)是在滑动最大速度时产生的,波谷位置也是速度最大时滑块的质心位置。初始涌浪波的典型特征是大的波谷与小的波峰。利用试验的输入输出数据,回归推导形成了最大波谷和最大波峰计算公式。试验分析结果深化了对海底滑坡产生海啸的认识,为海底滑坡海啸预测提供了基础和技术支撑。Abstract: Movement of submarine landslide may sometimes result in catastrophic tsunamis. The generation process of submarine landslide-induced impulse wave is crucial to the study of tsunami. The generation of tsunami is mainly controlled by the geometry of the mass, sliding velocity, sliding angle and water depth. Based on these factors, underwater orthogonal physical experiment of rigid block is designed and implemented. The proportion of thickness to length of the sliding block ranges between 0.035 and 0.180. The sliding angle is between 10°and 16°, with the Froude number between 0.18 and 0.70. The analyses of the experiments show that the formation of original impulse wave is earlier than the cease of the slide. The original trough (the biggest trough) generates when the sliding velocity reaches the maximum value. The position of trough is nearly the position of the mass center when the velocity of the slide reaches the maximum value. The original impulse wave is typically characterized by big troughs and small peaks. The calculation formula of the maximum trough and amplitude are derived by regressing the input and output data of the experiments. The analysis results of the experiments deepen the understanding of the generation of the submarine landslide-induced tsunami, and provid fundamental and technical support for submarine landslide-induced tsunami prediction.
-
Keywords:
- rigid mass /
- underwater landslide /
- impulse wave /
- physical experiment /
- wave trough
-
-
[1] [1]Norwegian Geotechnical Institute (NGI). Offshore geohazards[R]. Oslo: NGI, 2005.
[2] [2]何永金.地震与海啸关系探讨[J]. 水文地质工程地质,2005,32(6):82-84.[HE Y J.Discussion on tsunami-earthquake relation[J]. Hydrogeology & Engineering Geology, 2005,32(6):82-84. (in Chinese)]
[3] [3]Sun Yongfu, Huang Bolin. A potential tsunami impact assessment of submarine landslide at Baiyun depression in Northern South China Sea[J]. Geoenvironmental Disasters, 2014, 1(1): 1-7.
[4] [4]Philippe St-Germain, Ioan Nistor, Ronald Townsend. Numerical modeling of tsunami-induced hydrodynamic forces on onshore structures using SPH[J]. Coastal Engineering, 2012, 1(33): 1-15.
[5] [5]P Hartmann,Q Bechet,O Bernard.Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux[J]. Coastal Engineering, 2013, 79(13):9-21
[6] [6]宋新远,邢爱国,陈龙珠.基于FLUENT 的二维滑坡涌浪数值模拟[J].水文地质工程地质,2009,36(3):90-94. [SONG X Y, XIGN A G, CHEN L Z. Numerical simulation of two-dimensional water waves due to landslide based on FLUENT[J]. Hydrogeology & Engineering Geology, 2009,36(3):90-94. (in Chinese)]
[7] [7]Shih-Chun Hsiao, Ting-Chieh Lin. Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling[J]. Coastal Engineering, 2010, 57(1): 1-18.
[8] [8]Shawn Y Sim, Huang Zhenhua, Adam D Switzer. An experimental study on tsunami inundation over complex coastal topography[J]. Theoretical & Applied Mechanics Letters, 2013, 3(3): 40-45.
[9] [9]Mohrig D, Marr J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology, 2003, 20(6): 883-899.
[10] [10]Coulter S E. Seismic initiation of submarine slope failures using physical modeling in a geotechnical centrifuge[D]. Newfoundland and Labrador: Memorial University of New foundland,2005.
[11] [11]Vendeville B C, Gaullier V. Role of pore fluid pressure and slope angle in triggering submarine mass movements-natural examples and pilot experimental models[C]//Proceedings of the 1st International Symposium on Submarine Mass Movements and their Consequences.EGS-AGU-EUG Joint Assembly. Nice, France:2003:137-144.
[12] [12]Watts P,Grilli S T,Kirby J T,et al. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model[J].Nature Hazards and Earth System Sciences,2003,3 (5): 391-402.
[13] [13]Grilli S T, Watts P. Tsunami generation by submarine mass failure. Part I: Modeling, experimental validation, and sensitivity analysis[J]. Waterway, Port, Coastal and Ocean Engineering,2005, 131(6): 283-297.
[14] [14]Enet F, Grilli S T, Watts P. Laboratory Experiments for Tsunamis Generated by Underwater Landslides: Comparison with Numerical Modeling[C]// Proc. 13th Offshore and Polar Engng. Hawaii: Conf Honolulu, 2003: 372-379.
[15] [15]Colin Whittaker, Roger Nokes, Mark Davidson. Tsunami forcing by a low Froude number landslide[J]. Environmental Fluid Mechanics, 2015, 15(6):1215-1239.
[16] [16]Sue L P,Nokes R I,Davidson M J. Tsunami generation by submarine landslides: comparison of physical and numerical models[J]. Environmental Fluid Mechanics,2011, 11(2):133-165
[17] [17]Risio M Di, Girolamo P De, Bellotti G,et al. Landslide-generated tsunamis runup at the coast of a conical island: New physical model experiments[J]. Journal of Geophysical research, 2009, 114(C01009):1-16.
[18] [18]Prior,D.B. Subaqueous landslides[C]//Proceedings of the IV International Symposium on Landslides. Toronto, 1984: 179-196.
[19] [19]汪洋,殷坤龙,刘艺梁,等. 考虑水阻力的涉水滑坡运动速度计算模型研究[J]. 工程地质学报, 2012, 20(6): 903-908. [WANG Y, YIN K L, LIU Y L, et al. Model test speed model of fording landslide taking into account water resistance[J]. Journal of Engineering Geology, 2012, 20(6): 903-908.(in Chinese)]
[20] [20]殷坤龙,刘艺梁,汪洋,等. 三峡水库库岸滑坡涌浪物理模型试验[J]. 地球科学(中国地质大学学报), 2012, 37(5):1067-1074. [YIN K L, LIU Y L, WANG Y,et al. Physical model experiments of landslide-induced surge in Three Gorges Reservoir[J]. Earth Science (Journal of China University of Geoscience), 2012, 37(5):1067-1074.(in Chinese)]
[21] [21]岳书波,刁明军,王磊. 滑坡涌浪的初始形态及其衰减规律的研究[J].水利学报, 2016, 47(6): 816-825.[YUE S B, DIAO M J, WANG L. Research on initial formation and attenuation of landslide-generated waves[J]. Journal of Hydraulic Engineering, 2016, 47(6): 816-825.(in Chinese)]
[22] [22]Huang Bolin, Yin Yueping, Chen Xiaoting,et al. Experimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, China[J]. Environ Earth Sci,2014 71(9): 3813-3825.
[23] [23]Ataie-Ashtiani B, A Nik-Khah. Impulsive waves caused by subaerial landslides[J]. Environmental Fluid Mechanics, 2008, 8(3):263-280.
[24] [24]Yin Yueping, Huang Bolin, Wang Shichang,et al. Potential for a Ganhaizi landslide-generated surge in Xiluodu Reservoir, Jinsha River, China[J]. Environ Earth Sci,2015, 73(7): 1-10.
[25] [25]Heller Valentin. Landslide generated impulse waves: Prediction of near field characteristics [D].Southampton: University of Southampton, ETH Zürich,2008.
[26] [26]Fritz Hermann M. Initial phase of landslide generated impulse waves [D]. Zurich: Swiss Federal Institute of Technology, ETH Zürich, 2002.
[27] [27]Stefano Tinti, Elisabetta Bortolucci. Energy of Water Waves Induced by Submarine Landslides[J]. Pure and Applied Geophysics,2000, 157(3): 281-318.
[28] [28]Huang Bolin, Yin Yueping, Liu Guangning,et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23,2008[J]. Landslides,2012 9(3) :395-405.
[29] [29]Huang Bolin, Yin Yueping, Du Chunlan. Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on June 24, 2015[J]. Landslides,2016, 13(3):603-616.
-
期刊类型引用(3)
1. 殷跃平,王文沛,邢爱国,黄波林,李滨,韩雷岩,金少强,杨勇,张晨阳. 海底滑坡动力侵蚀机理研究:回顾与展望. 中国地质灾害与防治学报. 2025(01): 1-15 . 百度学术
2. 王佳佳,陈浩,肖莉丽,李枝强,许昕,向宇恒,车思璐. 散粒体滑坡涌浪运动特征与能量转化规律研究. 水文地质工程地质. 2023(04): 160-172 . 本站查看
3. 冯万里,黄波林,张全,王健,郑嘉豪. 二维条件下颗粒柱体崩塌入水堆积过程. 水文地质工程地质. 2020(04): 90-96 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 1045
- HTML全文浏览量: 36
- PDF下载量: 567
- 被引次数: 7