ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
LYU Yonggao, CAI Wutian, YANG Li, BIAN Chao, LI Jingjie. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: a case study of the hexavalent chromium contaminated site[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 189-195. DOI: 10.16030/j.cnki.issn.1000-3665.201809023
Citation: LYU Yonggao, CAI Wutian, YANG Li, BIAN Chao, LI Jingjie. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: a case study of the hexavalent chromium contaminated site[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 189-195. DOI: 10.16030/j.cnki.issn.1000-3665.201809023

A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: a case study of the hexavalent chromium contaminated site

More Information
  • Received Date: September 14, 2019
  • Revised Date: December 15, 2019
  • Available Online: December 09, 2020
  • Permeable reactive barrier is an efficient in-situ remediation technology for groundwater pollution. The remediation effect is affected by the barrier position under different hydrogeological conditions of contaminated sites. However, the wall location can be optimized through groundwater numerical simulation. A 2D steady state numerical model for a hexavalent chromium contaminated site is established and identified by using Visual Modflow. Based on a designed barrier size (length of 20 m, width of 2 m and depth 12 m) and hydraulic conductivity (80 m/d) of the filled material, three indexes, the hydraulic capture zone width, residence time and hexavalent chromium flux of four schemes (the same barrier size and hydraulic conductivity of the reaction material, but different locations) are estimated via numerical simulation, respectively. The results show that there is no significant difference between the residence time and the hydraulic capture zone width of the four schemes, in which the coefficient of variation is less than 2%. However, the coefficient of variation of the hexavalent chromium fluxes is as high as 76.32%, which is mainly caused by the uneven spatial distribution of hexavalent chromium concentration in groundwater. By analyzing the indexes of four plans, scheme 2 is selected as the best design, in which the capture zone width is 21.9 m, the residence time is 4.1 days and the hexavalent chromium flux is 127.7 mg/d. The established model is suitable to the actual site situation, which can evaluate the width of PRB to intercept the pollution plume and the ability to effectively remove the target pollutant, and can also provide technical support and reference for the design and implementation of PRB in-situ remediation of chromium contaminated sites.

  • [1]
    李雅, 张增强, 沈锋, 等. 堆肥+零价铁可渗透反应墙修复黄土高原地下水中铬铅复合污染[J]. 环境工程学报, 2014, 8(1): 110-115.

    LI Y, ZHANG Z Q, SHEN F, et al. Remediation of Cr-Pb polluted groundwater using a mixed zero-valent iron-compost permeable reactive barrier in Loess Plateau aera[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 110-115. (in Chinese)
    [2]
    陈梦舫, 钱林波, 晏井春, 等. 地下水可渗透反应墙修复技术原理、设计及应用[M]. 北京: 科学出版社, 2017.

    CHEN M F, QIAN L B, YAN J C, et al. Principle, design and application of permeable reactive barrier remedy technology for groundwater[M]. Beijing: Science Press, 2017. (in Chinese)
    [3]
    STARR R C, CHERRY J A. In situ remediation of contaminated ground water: the funnel-and-gate system[J]. Ground Water, 1994, 32(3): 465-476. DOI: 10.1111/j.1745-6584.1994.tb00664.x
    [4]
    US AF. Three-Dimensional numerical modeling of groundwater flow in the vicinity of funnel-and-gate systems[R]. AL/EQ-TR-1997-0020/, 1997.
    [5]
    Gavaskar A R. Permeable barriers for groundwater remediation: design, construction, and monitoring[M]. Columbus: Battelle Press, 1998.
    [6]
    XU Z G, WU Y Q, YU F. A three-dimensional flow and transport modeling of an aquifer contaminated by perchloroethylene subject to multi-prbremediation[J]. Transport in Porous Media, 2012, 91(1): 319-337. DOI: 10.1007/s11242-011-9847-1
    [7]
    ZINGELMANN M, SCHIPEK M, BITTNER A. Planning of reactive barriers-an integrated, comprehensive but easy to understand modeling approach[M]. Switzerland: UraniumPast and Future Challenges. Springer International Publishing, 2015.
    [8]
    国家发展和改革委员会, 国家环境保护总局. 铬渣污染综合整治方案[EB/OL]. http://www.docin.com/p-643362419.html.

    National development and reform commission, Ministry of Enviromental Protection of China. Comprehensive control plan forchromium residue pollution[EB/OL], http://www.docin.com/p-643362419.html.(in Chinese)
    [9]
    李志红, 王广才, 康飞. 基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化[J]. 水文地质工程地质, 2017, 44(2): 57-62. https://www.swdzgcdz.com/article/id/20170209

    LI Z H, WANG G C, KANG F. Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 57-62. (in Chinese) https://www.swdzgcdz.com/article/id/20170209
    [10]
    杨青春, 卢文喜, 马洪云. Visual Modflow在吉林省西部地下水数值模拟中的应用[J]. 水文地质工程地质, 2005, 32(3): 67-69.

    YANG Q C, LU W X, MA H Y. Application of Visual Modflow in groundwater modeling in the Western of Jilin Province[J]. Hydrogeology & Engineering Geology, 2005, 32(3): 67-69. (in Chinese)
    [11]
    薛禹群, 李同斌, 贾贵庭. 地下水动力学[M]. 北京: 地质出版社, 1997.

    XUE Y Q, LI T B, JIA G T. Groundwater dynamics[M]. Beijing: Geological Press House, 1997. (in Chinese)
    [12]
    王涵, 刘琦, 张翼龙, 等. 数值模拟法划分地下饮用水源保护区-以内蒙古呼和浩特市城市水源地为例[J]. 水文地质工程地质, 2018, 45(6): 29-36.

    WANG H, LIU Q, ZHANG Y L, et al. Division of the drinking groundwater protection area based on numerical methods: A case study near Hohhot in Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 29-36. (in Chinese)
    [13]
    郑李军. 污染场地地下水数值模拟的关键问题探讨[J]. 能源环境保护, 2015, 29(1): 43-46.

    ZHENG L J. Discussion on the key problems of numerical simulation of groundwater at contaminated sites[J]. Energy Environmental Protection, 2015, 29(1): 43-46. (in Chinese)
    [14]
    沈媛媛, 蒋云钟, 雷晓辉, 等. 地下水数值模拟中人为边界的处理方法研究[J]. 水文地质工程地质, 2008, 35(6): 12-15. https://www.swdzgcdz.com/article/id/200806003

    SHEN Y Y, JIANG Y ZH, LEI X H, et al. Research on disposal method of artifitial boundary condition in numerical simulation of groundwater flow[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 12-15. (in Chinese) https://www.swdzgcdz.com/article/id/200806003
    [15]
    卢文喜. 地下水运动数值模拟过程中边界条件问题探讨[J]. 水利学报, 2003, 34(3): 33-36.

    LU W X. Approach on boundary condition in numerical simulation of groundwater flows[J]. Journal of Hydraulic Engineering, 2003, 34(3): 33-36. (in Chinese)
    [16]
    周宏博, 孙树林, 柏仇勇, 等. 悬挂式PRB几何尺寸对水文地质参数的敏感性[J]. 水文地质工程地质, 2012, 39(5): 21-25. https://www.swdzgcdz.com/article/id/4

    ZHOU H B, SUN S L, BAI Q Y, et al. Sensitivity of hanging PRB geometry dimension on hydrogeological parameters[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 21-25. (in Chinese) https://www.swdzgcdz.com/article/id/4
    [17]
    李敬杰, 蔡五田, 张涛, 等. 铸铁和椰壳活性炭混合介质修复高浓度Cr(Ⅵ)污染地下水研究[J]. 环境污染与防治, 2019, 41(5): 551-555.

    LI J J, CAI W T, ZHANG T, et al. Study on the remediation of high concentration Cr(Ⅵ)contaminated groundwater by mixed medium of cast iron and coconut shell activated carbon[J]. Environmental Pollution & Control, 2019, 41(5): 551-555. (in Chinese)
    [18]
    GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2): 41.
    [19]
    US EPA. Permeable reactive barriertechnologiesfor contaminant remediation[R]. EPA/600/R-98/125, 1998.
    [20]
    GUPTA N, FOX T C. Hydrogeologic modeling for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2): 19-39.
  • Related Articles

    [1]WANG Kesan. Exploration of methods for Cr(Ⅵ) pollution remediation in karst groundwater[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 248-254. DOI: 10.16030/j.cnki.issn.1000-3665.202407014
    [2]ZHAO Yongsheng. Discussion on the site contamination hydrogeology[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 222-228. DOI: 10.16030/j.cnki.issn.1000-3665.202311032
    [3]LYU Yonggao, CAI Wutian, YANG Li, BIAN Chao, LI Jingjie, WANG Mingguo. Pollution characteristics, migration and transformation of hexavalent chromium in groundwater of a chromium slag[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 180-190. DOI: 10.16030/j.cnki.issn.1000-3665.202305030
    [4]ZHENG Jiating, LIU Likui, WANG Aihua, WANG Yan, LIU Ganbin. An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 206-212. DOI: 10.16030/j.cnki.issn.1000-3665.202010056
    [5]ZHAO Kefeng, WANG Jinguo, CAO Huiqun. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 43-55. DOI: 10.16030/j.cnki.issn.1000-3665.202001019
    [6]WANG Ping, HAN Zhantao, ZHANG Hailing, KONG Beibei, ZHANG Xinxin. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 34-43. DOI: 10.16030/j.cnki.issn.1000-3665.201907053
    [7]HANZhan-tao, . Groundwater remediation technology of nanoscale zero-valent iron particles: a review[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 41-47.
    [8]LIPeng, . A study of contaminant remediation guidelines for soil and groundwater near an insecticide factory[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 98-103.
    [9]YUTing-ting, . Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination[J]. Hydrogeology & Engineering Geology, 2011, 38(1): 103-109.
    [10]QINChuan-yu, . A study of the influencing factors of air sparing remediation to chlorobenzene in groundwater[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 99-103.
  • Cited by

    Periodical cited type(15)

    1. 钟晓梅,宋丹丹,金晶,褚兴飞,王庆,王殿二. 注入式可渗透反应墙治理六价铬污染地下水工程设计实例分析. 广东化工. 2025(04): 100-102+93 .
    2. 吕永高,蔡五田,杨骊,边超,李敬杰,王明国. 某铬渣堆污染地下水六价铬污染特征与迁移转化规律研究. 水文地质工程地质. 2024(03): 180-190 . 本站查看
    3. 王凡,徐冰,谌伦建,李从强,邢宝林,苏发强. UCG污染物苯酚在PRB中穿透行为及数值反演. 洁净煤技术. 2024(05): 155-161 .
    4. 钟晓梅,褚兴飞,姜翠萍,宋丹丹,顾鑫峰,王殿二. 可渗透反应墙技术系统设计研究. 广东化工. 2024(18): 110-112+126 .
    5. 李子邦,张亮,刘豪,龚星. 竹炭-沸石混合料可渗透反应墙修复镉污染地下水的试验. 中国环境科学. 2024(10): 5607-5619 .
    6. 时舟扬,袁巧林,沈星,吕晨. 重金属污染地下水可渗透反应墙技术修复分析. 造纸装备及材料. 2023(09): 146-148 .
    7. 李敬杰,蔡五田,吕永高,边超,杨骊,王明国. 中试尺度下连续式可渗透反应墙修复Cr(Ⅵ)污染地下水效果评估. 环境工程. 2022(02): 162-167+176 .
    8. 李志建,魏丽,倪恒. 零价铁可渗透反应屏障钝化和堵塞研究进展及案例分析. 环境工程. 2022(02): 206-213+224 .
    9. 贺勇,胡广,张召,娄伟,邹艳红,李星,张可能. 污染场地六价铬迁移转化机制与数值模拟研究. 岩土力学. 2022(02): 528-538 .
    10. 宋乐乐,王继誉. 工业场地地下水污染修复技术的应用研究. 皮革制作与环保科技. 2022(03): 120-122 .
    11. 高鸣,李冰,马志盼,宛文博,王艺伟,彭冲. 重金属污染地下水可渗透反应墙技术修复效果研究. 环境科技. 2022(03): 48-53 .
    12. 郑凯旋,黄俊龙,罗兴申,王洪涛,陈坦. 数值模拟在可渗透反应墙设计中的应用研究进展. 环境工程. 2022(06): 22-30 .
    13. 张希,冯悦峰,李正斌,李杰,戴建军,刘福强. 可渗透反应墙技术修复重金属污染地下水的发展与展望. 离子交换与吸附. 2022(03): 269-283 .
    14. 孟梦. 矿山环境中的复杂地质生态修复效果数值模拟. 矿冶. 2022(06): 1-8 .
    15. 马春龙,施小清,许伟伟,任静华,王佩,吴吉春. 基于自组织神经网络的污染场地多监测指标相关性分析. 水文地质工程地质. 2021(03): 191-202 . 本站查看

    Other cited types(8)

Catalog

    Article views (310) PDF downloads (595) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return